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Abstract

Background: Recurrent neural network(RNN) is a good way to process sequential data, but the capability of RNN to
compute long sequence data is inefficient. As a variant of RNN, long short term memory(LSTM) solved the problem in
some extent. Here we improved LSTM for big data application in protein-protein interaction interface residue pairs
prediction based on the following two reasons. On the one hand, there are some deficiencies in LSTM, such as shallow
layers, gradient explosion or vanishing, etc. With a dramatic data increasing, the imbalance between algorithm
innovation and big data processing has been more serious and urgent. On the other hand, protein-protein interaction
interface residue pairs prediction is an important problem in biology, but the low prediction accuracy compels us to
propose new computational methods.
Results: In order to surmount aforementioned problems of LSTM, we adopt the residual architecture and add
attention mechanism to LSTM. In detail, we redefine the block, and add a connection from front to back in every two
layers and attention mechanism to strengthen the capability of mining information. Then we use it to predict
protein-protein interaction interface residue pairs, and acquire a quite good accuracy over 72%. What’s more, we
compare our method with random experiments, PPiPP, standard LSTM, and some other machine learning methods.
Our method shows better performance than the methods mentioned above.
Conclusion: We present an attention mechanism enhanced LSTM with residual architecture, and make deeper
network without gradient vanishing or explosion to a certain extent. Then we apply it to a significant problem–
protein-protein interaction interface residue pairs prediction and obtain a better accuracy than other methods. Our
method provides a new approach for protein-protein interaction computation, which will be helpful for related
biomedical researches.
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Background
Recurrent neural network(RNN), proposed by Hochreiter,
is a major neural network in deep learning, which does
as a bridge to connect the the information from past to
present. It is based on the back propagation algorithm and
contains the factor caused by time, therefore RNN is a
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kind of back propagation through time(BPTT) algorithm.
What’s more, it can tackle the sequencial data including
temporal and spatial data owing to its property.
Look at the standard RNN Fig. 1, the information is for-

ward propagation from inputs to outputs.We can describe
those information flow by a series of equations. Symbols
and notations in this paper mainly refer to the book [1]
written by Alex Graves. But here we’ll write it briefly. x
denotes the input vector value, xti denotes the value of
input ith of vector x at time t, and wij denotes the weight
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Fig. 1 There is a standard RNN model, including three layers-input, recurrent, and output layer, whose outputs will be activated by linear or
nonlinear functions acting on previous or latter inputs. The arrows show the flow in detail

from the unit i to unit j. For the hidden layer unit h, we
denote the input of hidden layer unit h at time t:

ath =
I∑

i=1
wihxti +

H∑

h′=1
wh′hbt−1

h′ , (1)

the output of the hidden layer unit h at time t is denoted
as bth , and the activation function is θh, so

bth = θ(ah), (2)

the output layer’s input can be calculated at the same time:

atk =
H∑

h=1
whkbth. (3)

Like the standard back propagation algorithm, BPTT is
also a repeated application of chain rule. For the gradients
of loss functions in RNN, the influence from loss function
to hidden is not only through hidden layer’s output, but
also through its next time step:

δth = θ ′(ath)
( K∑

k=1
δtkwhk +

t+1∑

h′=1
whh′

)
, (4)

where

δtj
def= ∂L

∂atj
, (5)

Then we can get the derivative of whole network weight
respectively :

∂L
∂wij

=
T∑

t=1

∂L
∂atj

∂atj
∂wij

=
T∑

t=1
δtj b

t
i . (6)

Long short termmemory [2](LSTM), as a variant of RNN,
proposed by Hochreiter and shown in Fig. 2, consists
of one block which has three gates(input/forget/output
gate) whose every activation probability is from 0(the gate
closes)to 1(the gate opens), and some cells which can
remember information and transit it to the next step,
while the hidden layer unit in RNN is replaced by three
gates. The output values of input gate and forget gate are
determined by the prior cells states and the input values.

The subscripts ι, φ and ω denote the input, forget and
output gate of the block respectively, and c denotes one of
theCmemory cells. The peephole weight from cell c to the
input, forget and output gates is denoted as wcι, wcφ and
wcω respectively. stc denotes the state of cell c at time t. f, g
and h is the activation function of the gates, cell input and
output, respectively. Let I denote the number of inputs, K
denote the number of outputs and H denote the number
of cells in the hidden layer.
Viewing to the Fig. 2 framework, we can get the

equations :
input gate

atι =
I∑

i=1
wiιxti +

H∑

h=1
whιbt−1

h +
C∑

c=1
wcιst−1

c , (7)

btι = f
(
atι

)
, (8)

forget gate

atφ =
I∑

i=1
wiφxti +

H∑

h=1
whφbt−1

h +
C∑

c=1
wcφst−1

c , (9)

btφ = f (atφ), (10)
cell

atc =
I∑

i=1
wicxti +

H∑

h=1
whcbt−1

h , (11)

stc = btφs
t−1
c + btιg

(
atc

)
, (12)

output gate

atω =
I∑

i=1
wiωxti +

H∑

h=1
whωbt−1

h +
C∑

c=1
wcωst−1

c , (13)

btω = f
(
atω

)
, (14)

cell’s output

btc = btωh
(
stc

)
. (15)

When compared with RNN, LSTM is easier to change
the weight of self-recursive model dynamically by adding
the gates, and handle different scale data with better per-
formance. Although there are many variants of LSTM, like
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Fig. 2 The memory block with one cell of LSTM neural network

GRU [3] which is a simplification of LSTM, and bidirec-
tional LSTM [4], showing stronger performance, there are
also some problems in LSTM–gradient explosion or gra-
dient vanishing. [5, 6] both mentioned that in their paper,
and employed residual learning [7] to avoid that problem,
and did related experiment in speech and human activity
recognition. That is why the applications of LSTM that we
see are always in shallow neural networks. Though there
are a lot of methods [8, 9] getting away from gradient
explosion or gradient vanishing to some extent, such as
weight regularization, batchnorm, clip gradient, etc, there
are no better measures to solve the problem of gradient
combining with layer scales. Recently, Sabeek [10] had
done RNN in the depths of residual learning, which solved
the gradient vanishing problem and showed a better per-
formance. Given the thought of convolutional residual
memory networks [11] and deep residual neural networks
[7], we utilize a method with mathematical derivation to
avoid the problems and deepen LSTM neural networks
to excavate more information from original data in next
section. Though some researchers aforementioned uti-
lized this thought, there are some differences from our
work–we use every two layers as a residue instead of
one layer as a residue to accelerate the computational
velocity in a sequential and larger dataset while Sabeek

used it for sentimental analysis with a small dataset. And
we prove its convergence theoretically. Furthermore, we
utilize the attention mechanism to strengthen the extrac-
tion of information. This part will be shown in “Model
architecture” section. If there are some notations you feel
confused in “Results” section, we suggest that you’d bet-
ter to read the “Methods” section before “Results” section.
All of these will be described in the flow processes of the
algorithm and application in our paper in Fig. 3.

Results
Because the impact to accuracy of FRPP of layer num-
ber in neural networks is usually more uncomplicated and
efficient than units numbers in parametric numbers. Like
the methods of dichotomization, we use different layer
numbers in a wide bound to find one with the best per-
formance, then in this way continue to find the neighbor
layer numbers and choose the optimal unit number. View-
ing to the Table 1 left, we find that layer_60, not only
the predicted true positive amounts in top 1%� but also
themean accuracy, shows better performance than others.
In like manner the unit_n and the model layer_m_unit_n
can be denoted similarly in whole passage. After that, we
continue to narrow it. Table 1 right shows the layer num-
ber near to layer_60, which is better than ones around it.
So we next search the optimal unit number in layer_60,
and finally we choose the best result with unit number in
layer_60. Based on Table 1, Table 2 shows the results of
the number of different units in detail. Despite the model
mean of layer_60_unit_6 is lower than layer_60_unit_8,
the number of RFPP(1%�) is quite lager inversely. Table 3
elaborates the result of model layer_60_unit_8 further on.
In this model we can predict 8/11 if we choose the top
1%� pairs of every dimer in the test set as predictions.

Comparison with other methods
PPiPP [12] is a method by using protein sequences for
monomer binding site predictions, and PAIRpred [13] is
a fresh complex interface prediction approach published
in 2014 and realizes a higher prediction accuracy. Zhenni
Zhao [14] used a deep learning architecture–multi-layer
LSTMs, to predict interface residue pairs, and achieved
a better accuracy. Table 4 shows the results from the
above-mentioned approaches in different Docking Bench-
mark Data dataset. The evaluation index is RFPP. When
p equals 90%, our model can predict around 90% proteins
correctly in our dataset if we choose top 194 residue pairs
as prediction. And it improves around a third when com-
paring with others. Because of the differences of proteins
that we select in our train and test set, and pre-treatment
methods, we can only take a look at the results of the com-
parison partly. In addition, our protein sequence is longer
and residue pairs amount is bigger than above, hence these
can increase the difficulties for predicting RFPP. In order
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Fig. 3 The evolutional flow processes from methods to application in this paper

to balance the comparison, we use another evaluation
index–accuracy order, to replace it. Wei Wang.etc [15]
used different machine learning methods chosen by dif-
ferent protein properties to predict interface residue pairs.
we show the comparison and our prediction precision by
choosing top 1%� residue pairs in Table 5.
Furthermore, we also use random theory to calculate

the RFPP. As we know mathematical expectation is one of
the most significant numerical characteristics to describe
the average of variables. X denotes the random variable
of RFPP here. In order to correspond to our index of
algorithm, we select 1000 pairs randomly, so

P(X = i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ci−1
N−MC1

MC1000−i
N−M−i

C1000
N

, i = 1, 2, ..., 1000

1 −
1000∑

i=1

Ci−1
N−MC1

MC1000−i
N−M−i

C1000
N

. else

where N denotes the number of surface residue pairs and
M denotes the number of interface residue pairs.

Then

E(X) =
∑

i
i×P(X = i) ≥

1000∑

i=1
i×P(X = i)+1000×C1000

N−M
C1000
N

Why we use the inequality is that the the latter is sim-
pler than the former in computational complexity, but
calculation is still complicated based on pure theory.
Monte Carlo simulation is a well-known method to com-
pute the expectation by using the frequency of events
to estimate its probability respectively. This will be more
convenient for us to achieve them. We use, more specifi-
cally, random simulation about 10 billion times, then we
count it that happens respectively. The formula:

i=1000∑

i=1
i × count(RFPP = i)

10billion
+ 1000

×
10billion −

1000∑
i=1

count(RFPP = i)

10billion
= 1

10billion
[ · · · ]

Table 1 The accuracy order of dimers in test set

Accuracy order layer_10 layer_20 layer_30 layer_40 layer_50 layer_60 layer_70 layer_56 layer_58 layer_59 layer_60 layer_61 layer_62

1H9D 0.002534 0.003481 0.000013 0.000040 0.000067 0.000053 0.000747 0.003801 0.001147 0.000854 0.000053 0.017938 0.001227

1GL1 0.018904 0.006083 0.012480 0.000708 0.003592 0.005086 0.008416 0.011222 0.000105 0.001363 0.005086 0.005034 0.000026

2G77 0.009398 0.006355 0.002103 0.000076 0.001325 0.000636 0.000098 0.002614 0.001325 0.000443 0.000636 0.000210 0.002914

2VDB 0.000991 0.000991 0.002419 0.000091 0.001487 0.000202 0.000417 0.002680 0.001213 0.000972 0.000202 0.000913 0.004108

1KTZ 0.011788 0.006598 0.004096 0.007914 0.014994 0.002094 0.022055 0.060532 0.005134 0.003077 0.002094 0.034992 0.004874

1S1Q 0.003033 0.002597 0.000437 0.002757 0.000827 0.000758 0.001126 70.001815 0.003699 0.006112 0.000758 0.000184 0.009720

1BUH 0.000137 0.002547 0.001425 0.010694 0.007806 0.009923 0.000742 0.004908 0.003434 0.001229 0.009923 0.016499 0.000185

1BKD 0.003846 0.000317 0.002938 0.002416 0.000311 0.000227 0.000386 0.000053 0.000945 0.002301 0.000227 0.000724 0.001468

1GPW 0.000556 0.000281 0.004957 0.001203 0.001449 0.000386 0.000311 0.002241 0.000160 0.000226 0.000386 0.000647 0.000496

1SYX 0.000989 0.006525 0.000537 0.000141 0.001271 0.000876 0.001864 0.001328 0.000141 0.009181 0.000876 0.001977 0.002740

1Z5Y 0.029783 0.001220 0.001341 0.000157 0.006787 0.000254 0.003635 0.001981 0.004903 0.008816 0.000254 0.000157 0.002778

mean 0.007451 0.003363 0.002977 0.002382 0.003629 0.001863 0.003618 0.008470 0.002019 0.003143 0.001863 0.007207 0.002776

Note: mean means the average of columns and the bold fonts are the minimal mean values of the corresponding model and the layer_mmeans that the layer number is m
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Table 2 The accuracy order of dimers in test set with layer_60

Accuracy order unit_5 unit_6 unit_7 unit_8 unit_9

1H9D 0.002574 0.000293 0.000373 0.000053 0.006642

1GL1 0.006397 0.000419 0.000052 0.005086 0.000629

2G77 0.000336 0.004471 0.003813 0.000636 0.006704

2VDB 0.000848 0.000339 0.008646 0.000202 0.000711

1KTZ 0.014790 0.001890 0.015494 0.002094 0.004689

1S1Q 0.024311 0.001287 0.006916 0.000758 0.001677

1BUH 0.000751 0.000332 0.000703 0.009923 0.003493

1BKD 0.003591 0.001284 0.007017 0.000227 0.000078

1GPW 0.002180 0.000311 0.000401 0.000386 0.000571

1SYX 0.005085 0.004633 0.035678 0.000876 0.001215

1Z5Y 0.004928 0.001135 0.000556 0.000254 0.007379

mean 0.005981 0.001490 0.007241 0.001863 0.003072

Here,the purpose we extract the coefficient 1
10billion is to

avoid something happening to reduce the error like the
frequency 15

10billion limited to 0. All the results will be
shown in the last row of Table 3. We can clearly see that
our result is extremely better than random RFPP except
1GL1 and 1BUH.

Discussion
Viewing Tables 1 and 2, we select the two best predic-
tion accuracy in each table while choosing top 1%� as
estimated index. According to the Fig. 4, we find that
our model shows poor performance in protein 1BUH and
good performance in protein both 2VDB and 1Z5Y com-
monly. One of the most possible reasons is that 1BUH
is far away from the train data in homology while 2VDB
and 1Z5Y aren’t. This will be verified by identity matrix
to some extent which shows the highest homology in
train set is 12.86% between 1DFG and 1BUH. As for
1GL1, We notice that the random model with RFPP 124

shows better performance than our model with RFPP
194. This is hard to give an explanation. But from the
perspective of homology, we find that 1GL1 has a lit-
tle higher homology 16.7% with 2I9B. This may be one
possible reason for 1GL1. We also depict some of protein-
protein interaction interface pairs predicted by our model
in Fig. 5 where the first row is predicted well, but the
second is not.
On the one hand, how to choose hyperparameters is

also a complicated problem in deep learning. The exist-
ing methods such as grid search which gives a trick for
us. On the other hand, most biological data will lose
some information when we transform it. In detail we use
three-dimensional coordinates of one atom to replace an
amino acid for simplification and we excessively depend
on the structure of monomers, It’s one of the biggest lim-
itations. Because our problem is to predict whether any
two monomers can form a dimer complex. And the dif-
ferent features selection from original data make different

Table 3 The prediction results of layer_60_unit_8 in test set

PDB Code 1H9D 1GL1 2G77 2VDB 1KTZ 1S1Q 1BUH 1BKD 1GPW 1SYX 1Z5Y

Protein function OX EI OG OX OR OX EI OG OX OX ES

RFPP 4 194 142 31 113 33 1017 73 77 31 21

Number of surface residue pair 74980 38141 223440 153360 53955 43520 102490 321630 199500 35400 82800

Accuracy order(%�) 0.053 5.086 0.636 0.202 2.094 0.758 9.923 0.227 0.386 0.876 0.254

NCPD 1%� 3%% 8%%

8 4 7

Number of interface residue pair 501 300 425 382 188 245 301 687 434 210 264

Random experiment 141 124 442 364 274 173 317 413 401 165 296

Note: NCPD(m%�)=n means that there are n dimers which meet the in equation accuracy order≤ m%�, and the result of last row will be explained in next section
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Table 4 Comparison with PAIRpred, PPiPP and multi-layered LSTM

Data set Method
RFTP(p)

10% 25% 50% 75% 90%

DBD 3.0

PPiPP 9 19 78 297 760

PAIRPred

PAIRPred_1 No post-processing 2 13 68 257 804

PAIRPred_2 No post-processing 1 5 22 89 282

With post-processing 1 3 16 103 272

DBD 4.0
PAIRPred_2 No post-processing 2 6 19 75 340

With post-processing 1 3 18 101 282

DBD 5.0 Multi-layered LSTM Network

lstm_1_nodes_20 12 53 139 175 331

lstm_5_nodes_20 13 17 46 146 271

lstm_6_nodes_35 1 2 7 639 1384

lstm_5_nodes_45 4 13 36 94 847

our model layer_60_unit_8 4 31 33 113 194

Note: lstm_m_nodes_n means the model has m layer LSTMs,and each layer has n units

prediction performance. If we don’t consider any physic-
ochemical and geometric properties, from sequence to
predict structure directly usually shows low accuracy. And
because our prediction method depends on the 9 fea-
ture values from monomers structure other than dimer
complexes structure, therefore if some values are missing,
we will delete the corresponding pairs or whole dimers.
This is also a limitation. Recently AlQuraishi [16] employ
bi-directional LSTM to predict protein structure from
protein sequence and obtain state-of-art achievement.
This may inspire us to rethink the problem from protein
sequence perspective. Data extreme imbalance is a serious
problem introduced to model for training. How to choose
a good approach is also preferred.

Conclusions
In this paper, we employ a novel LSTM based on resid-
ual architecture and attention mechanism, and derive the
gradient. Then we utilize this model to predict protein-
protein interaction interface residue pairs, and compare
our model with standard LSTMs and other methods, to
show that our prediction accuracy is more than 72 percent
which far surpasses other methods in performance. This
will be more significant for biomedical related research as
well as the computational though there are a lot of fur-
ther problems we can consider like the feature selections,

Table 5 Comparison by choosing top 1%� residue pairs

Methods Precision

multi-layer LSTM[14] 30.8%

different machine learning[15] 42.4%

our model 72.7%

coevolution [17] information, contact preferences and
interface composition [18].

Methods
Algorithm derivation
Before deriving the equations of backward pass, we need
to redefine LSTM. We call the LSTM unit a small block,
and the two LSTM layers a big block, which possesses
an additional connection from the output layer l to the
output layer l + 2 (see bold line in Fig. 6).
Figure 6 is a simplified version, and we just consider

that there is only one cell in LSTM unit. However, what
we usually use is full connection traditionally. In order to
view the differences from different layers, we use the (·)l
to present the values of the layer l respectively. For exam-
ple, the

(
btc

)l denotes the cell output value of layer l. And
if they are in a same layer, then we omit the superscript l
additionally.

(
εtc

)l+2 def= ∂L
∂

(
btc

)l + ∂
(
btc

)l+2 , εts
def= ∂L

∂stc
,

cell’s output

εtc =
K∑

k=1
wckδ

t
k +

G∑

g=1
wcgδ

t+1
g , (16)

output gate

δtω = ∂L
∂atω

= ∂L
∂

(
btc

)l + ∂
(
btc

)l+2
∂

(
btc

)l + ∂
(
btc

)
l + 2

∂
(
btω

)l
∂

(
btω

)l

∂
(
atω

)l

= (
εtc

)l+2 h
(
stc

)
(
1 + ∂

(
btc

)l+2

∂
(
btc

)l

)
f ′ (atω

)
,

(17)
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Fig. 4 Prediction of different model parameters, where code_m_n means the layer number of LSTM is n, and the unit number in each LSTM layer is
m. Longitudinal axis represents accuracy order and horizontal axis means PDB respectively

Fig. 5Model architecture. Where big block LSTM is defined as
mentioned above

state

εts = btωh
′ (stc

)
εtc+bt+1

φ εt+1
s +wcιδ

t+1
ι +wcφδt+1

φ +wcωδtω,
(18)

cell

δtc = ∂L
∂atc

= ∂L
∂stc

∂stc
∂atc

= εtsb
t
ιg

′ (atc
)
, (19)

forget gate

δtφ = ∂L
∂atφ

= ∂L
∂stc

∂stc
∂btφ

∂btφ
∂atφ

= εts s
t−1
c f ′ (atφ

)
, (20)

input gate

δtι = ∂L
∂atι

= ∂L
∂stc

∂stc
∂btι

∂btι
∂atι

= εts g
(
atc

)
f ′ (atι

)
. (21)

We can see that if gradient vanishing happens in layer

l + 2 which also means that ∂(btc)
l+2

∂(btc)
l = 0, the conventional

LSTM fail to update parameters before layer l + 2. But
from (2.2), our model architecture can prohibit that

because of 1 + ∂(btc)
l+2

∂(btc)
l = 1.
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Fig. 6 Some of prediction of protein-protein interaction interface residue pairs, which are highlighted in surface and shown in different colors with
amino acid name and site in corresponding chains. a 1H9D b 2VDB c 1GL1 d 1BUH

Background, data, and evaluation criteria
Proteins are the foundations of life activities for cells, but
most of them exert their functions only having interaction
with other molecules. As a result, protein-protein inter-
action prediction becomes a very important project. The
first step of it is to know the site of interface residue pairs
precisely. The most common methods are from experi-
mental and computational perspective recently. One the
one hand, anatomizing all proteins is unfeasible to exper-
iment technicians for the high expenses. On the other
hand, the computational methods become the scientific
tidal current due to its low costs and convenience, such as
template [19] and structure model [20] methods. In recent
years, artificial intelligence especially machine learning
and deep learning has been used in computer vision image
and language recognition,etc, and received many achieve-
ments. At the same time some computational researchers
transfer those methods to biology. Protein contact pre-
diction [21] is one of the good instances by using deep
residual networks. Though there are some achievements
[13–15] in protein-protein interaction interface residue
pairs predictions especially while Zhenni [14] used a deep
learning architecture to tackle this project, we still need to
proceed and develop new algorithms for its low accuracy.
Here we will apply our method to predict interface residue
pairs.
Our data is from benchmark versions 3.0, 4.0, and

5.0 [22, 23] on the international Critical Assessment
of PRotein-protein Interaction predictions(CAPRI). All

selected dimers whose states are unbound satisfy our
requirement and add up to 54, then they are ran-
domly split into three parts including train, vali-
dation, test set with ratio around 6:2:2 (shown in
Table 6). Moreover, In order to illustrate test effi-
ciency of our data partition structure, we identity multi
protein sequences homology comparison in ClustalW2
https://www.ebi.ac.uk/Tools/msa/muscle/. Both of the
results are attached in supplementary–identity matrix,
and only the homology≥ 30% of two dimers is shown
in Table 6. From the identity matrix, we can see only
the partition of 2I25(in train set) and 1H9D(in test set)
is little unreasonable because of the homology with 40%,
but we will show the better prediction result of 1H9D
with such litter higher homology later. Every residue
pair consists of 18 features which are concatenated by
the two 9 feature values of each residue proposed bas-
ing on physicochemical and geometric properties which
are common in computation. The 9 features are listed
below and their computation are shown respectively in
Table 7. Interior Contact area(IC) [24], Exterior Contact
area with other residues(EC) [24] Exterior Void area(EV)
[24, 25], Absolute Exterior Solvent Accessible area(AESA)
[25], Relative Exterior Solvent Accessible area(RESA) [25],
Hydropathy Index(HI, two versions) [26, 27] and pKα (two
versions) [28]. paper [29]summarized these features and
their respective tools for computation. Here we just simply
describe it. IC is the Interior Contact area between atoms
inside a residue. EC is the Exterior Contact area between

https://www.ebi.ac.uk/Tools/msa/muscle/
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Fig. 7 Big block LSTM with no connection from the same layers and
full connection from adjacent two layer networks. To simplify the
network, we just consider an input with one unit in the layer l and an
output with one unit in the layer l + 2

residues from the same protein. EV is the area does not
contact with water molecules or any amino acid. AESA
is the contact area between water molecules and surface
residues. RESA is a proportion between AESA in protein
and AESA of free amino acids. H1 andH2 are two versions

of hydrophobicity index used to measure the hydrophobic
ability. pKa is a reflection of the electrostatics of surface
residue in the specific environment.
A residue pair is defined as interface if the contact

areas of two amino acids from different two monomers
are not zero. Here we use two statistical evaluation crite-
ria combining biological meanings to measure our model
prediction: rank of the first positive prediction(RFPP),
and the number of correctly predicted dimers(NCPD). In
order to overcome the length differences and balance the
predicted difficult degree in different proteins, accuracy
order is adopted.
accuracy order = RFPP

TNRP , where TNRP is the total
number of residue pairs in a dimer.

Model architecture

This is a binary classification problem. The input format
is a matrix with dimension L×18 Fig. 7, since every amino
acid consists of 9 features and a residue pair possesses 18
features.Where L is the number of combinations of amino
acid residue pairs. We use the label 1 to present that the
pair is an interface residue pair, and label 0 is opposite.
Because the amount of label 0s is extremely larger than 1s,
so we need to pre-treat the imbalance between the pos-
itive and negative samples. We use a distance to exclude
some impossible residue pairs. The distance between dif-
ferent chains will be small to someway tomeet a threshold
if the residue pairs are contact. Therefore we choose the
residue pairs with the most short distance, then choose
3 residues around them in each chain respectively, hence
there are 3 × 3 pairs altogether. This method can reduce
the amount of negative samples efficiently. Because we use
this selective method which can make the data sequen-
tial, therefore the LSTM neural network is a quite good
choice for us. Then the data pre-treated will be input to
the neural network architecture. There are some hyper-
parameters to explain in detail. Dropout [30] is a way to
prevent model from over-fitting, because it can be a prob-
ability from 0 to 1 to drop out the units and cutdown all
the connections from the units to next units randomly. In
this paper, we use 0.15 to dropout some redundant infor-
mation of the inputs. According to the new achievement,

Table 6 The data partition structure and homology (≥ 30%)

Train(32) Validation(11) Test(11) Homology(%)

1UDI,1EWY,2SIC,2I25,7CEI,2I9B,1FFW,1ACB,
2J0T,1OC0,1Y64,2O3B,1MAH,1DFJ,
1R0R,1BVN,
2OUL,2ABZ,2A5T,2HLE,1GLA,1WQ1,1ATN,1GHQ,
2B42,1R6Q,1CLV,1KXQ,1IBR,1KAC,
1US7,1AK4

1OYV,2PCC,1CGI,
2AJF,1B6C,1MQ8,
1FC2,1AY7,1ZM4,
4CPA,1KXP

1H9D,1GL1,2G77,
2VDB,1KTZ,1S1Q,
1BUH,1BKD,1GPW,1SYX,1Z5Y

1KXQ,1BVN(tr,tr,98.59);
2I25,1H9D(tr,te,40);
2ABZ,4CPA(tr,va,97.72);
4CPA,1H9D(va,te,33.33);
2SIC,1OYV(tr,va,68.5);
1GPW,1H9D(te,te,33.33);
2SIC,1R0R(tr,tr,68.25);
1BUH,1H9D(te,te,33.33)

Note: A,B(C,D,E) in homology column means the homology between dimers A and B is E%, where C and D is the corresponding data partition structure of A and B.
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Table 7 The 9 features and their computation

Features Abbreviation Software or Researchers

Interior Contact area IC Qcontacts

Exterior Contact area with other residues EC Qcontacts

Exterior Void area EV NACCES, Qcontacts

Absolute Exterior Solvent Accessible area AESA NACCES

Relative Exterior Solvent Accessible area RESA NACCES

Hydropathy index, version 1 H1 Jack Kyte et al.

Hydropathy index, version 2 H2 David Eisenberg

pKa1: computation pKa1 PROPKA3.1

pKa2: standard pKa2 PROPKA3.1

Wojciech Zeremba [31] proposed a new method–adding
dropout from the current layer to next layer, but not to
recurrent layer, to regularize the RNN, which inspires us
to use dropout in LSTM and fit it in 0.6. These hyper-
parameters can be fitted by a common technique–grid
search, and the results will be shown in supplementary.
Attention has been widely used in speech recognition [32]
and reasoning [33],etc for its efficient mechanism which
can reallocate weight and retrieve some more critical
information, therefore these motivate us to use attention
in our model. The dense layer’s activation function is soft-
max, and the loss function is categorical crossentropy.
Softmax and crossentropy is designed as following

σ(Zj) = ezj
∑K

k=1 ezk
for j = 1, 2, ...,K . (22)

H(p, q) = Ep[− log q]= H(p) + DKL(p‖q) (23)

where p is a true distribution while q is an estimated
distribution. Softmax function can mapping a nd vector
to another nd vector whose elements are from 0 to 1.
Crossentrop, equal to maximum likelihood estimation, is
an index to measure the gap between the true distribution
and the estimated distribution.

Abbreviations
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