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Abstract

Background: Recently developed methods of protein contact prediction, a crucially important step for protein
structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of
target proteins. Protein sequences are accumulating to an increasing degree such that abundant sequences to
construct an MSA of a target protein are readily obtainable. Nevertheless, many cases present different ends of the
number of sequences that can be included in an MSA used for contact prediction. The abundant sequences might
degrade prediction results, but opportunities remain for a limited number of sequences to construct an MSA. To
resolve these persistent issues, we strove to develop a novel framework using DNNs in an end-to-end manner for
contact prediction.

Results: We developed neural network models to improve precision of both deep and shallow MSAs. Results show
that higher prediction accuracy was achieved by assigning weights to sequences in a deep MSA. Moreover, for
shallow MSAs, adding a few sequential features was useful to increase the prediction accuracy of long-range
contacts in our model. Based on these models, we expanded our model to a multi-task model to achieve higher
accuracy by incorporating predictions of secondary structures and solvent-accessible surface areas. Moreover, we
demonstrated that ensemble averaging of our models can raise accuracy. Using past CASP target protein domains,
we tested our models and demonstrated that our final model is superior to or equivalent to existing meta-
predictors.

Conclusions: The end-to-end learning framework we built can use information derived from either deep or shallow
MSAs for contact prediction. Recently, an increasing number of protein sequences have become accessible, including
metagenomic sequences, which might degrade contact prediction results. Under such circumstances, our model can
provide a means to reduce noise automatically. According to results of tertiary structure prediction based on contacts
and secondary structures predicted by our model, more accurate three-dimensional models of a target protein are
obtainable than those from existing ECA methods, starting from its MSA. DeepECA is available from https://github.
com/tomiilab/DeepECA.

Keywords: Contact prediction, Convolutional neural network, Deep learning, Multiple sequence alignment, Protein,
Secondary structure prediction
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Background
Many methods have been developed for protein contact
prediction, a crucially important step for protein struc-
ture prediction [1–19]. In the earlier stages of contact
prediction history, most successful prediction methods
were based on evolutionary coupling analysis (ECA) of
large multiple sequence alignments (MSAs) of homolo-
gous sequences. In evolutionary processes, pairs of resi-
dues that are mutually proximate in the tertiary
structure tend to co-evolve to maintain their structure.
For instance, when one becomes larger, the other be-
comes smaller. Alternatively, when one becomes a posi-
tively charged residue, the other becomes a negatively
charged residue.
Usually, evolutionary information includes noise be-

cause of indirect correlation between residues (A and B)
when residues (A and C) and residues (B and C) are dir-
ectly correlated. True correlation must be distinguished
from such noise. Many challenges have been undertaken
to do so. The methods used to address them can be cat-
egorized into two groups: Graphical Lasso and pseudo-
likelihood maximization. Friedman et al. developed
Graphical Lasso, a graph structure estimation method,
in 2008 [20]. It can estimate the graph structure from a
covariance matrix using likelihood estimation of a preci-
sion matrix with L1 regularization. A well-known pro-
gram that applies Graphical Lasso to contact prediction
problems is PSICOV [4]. A pseudo-likelihood method is
used for an approximation method for probabilistic
models, such as a Potts model, to estimate interaction
strength between residues. It is usually difficult to calcu-
late the marginal probability exactly. For that reason,
such an approximation method is often used. Major pro-
grams using this method are EVFold [5], plmDCA [11],
GREMLIN [7], and CCMpred [13].
After these extensive studies of ECA, meta-predictors

emerged. The methods achieve protein contact predic-
tion using the ECA method results as input features.
MetaPSICOV [14], a well-known supervised method,
uses outputs of PSICOV, CCMpred, and FreeContact
[12] as input features and uses many other features such
as secondary structure probability, solvent accessibility,
and Shannon entropy. Using 672 features in this way,
MetaPSICOV improved prediction accuracy much more
than a single ECA method can. Subsequently, Wang
et al. [19] proposed a method based on an ultra-deep re-
sidual neural network and achieved much higher accur-
acy than had ever been attained previously. The recently
reported DeepCov [21], which is a conceptually similar
method to ours uses a covariance matrix calculated from
MSA for input features for DNN. For the 13th Commu-
nity Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction (CASP13),
several groups used a deep neural network (DNN) for

contact prediction. Among them, ResPRE [22] used a pre-
cision matrix instead of a covariance matrix and DeepMe-
taPSICOV [23] which combined the covariance-based
method, DeepCov and features from MetaPSICOV.
Nevertheless, despite recent success achieved using

these methods, most of them do not predict contacts
from MSA directly. None has any means of optimizing
the input MSAs. Some room for improvement remains
for contact prediction pipeline optimization. As pre-
sented herein, we describe a novel approach to contact
prediction that can extract correlation information, and
which can predict contacts directly from MSA using a
DNN in an end-to-end manner. Using DNN, one can
outperform existing ECA methods, MetaPSICOV, Deep-
Cov, ResPRE and DeepMetaPSICOV, and obtain com-
parable accuracy to that of RaptorX-Contact [19] using
no other additional input feature such as secondary
structures. Furthermore, our DNN-based method can
provide a means of optimizing the input MSAs in a su-
pervised manner. The weight of each sequence in MSA
is parameterized (Fig. 1). It can be optimized through
DNN to eliminate noise sequences in MSA automatic-
ally. In this model, we expect that more important se-
quences have greater weights and that less-important
sequences have less weight after optimization. Today, a
growing number of protein sequences are obtainable so
that not all sequences in MSA necessarily have the same
contacts. These sequences can introduce noise that
affects contact prediction. In addition, Fox et al. [24] re-
ported that the contact prediction accuracy depends on
the MSA accuracy. Motivated by those findings, we at-
tempt to weight the sequences of MSA correctly. We
also report that adding features and ensemble averaging
can raise accuracy considerably and that high accuracy
of secondary structures prediction can be achieved with
our contact model using multi-task learning. Our experi-
ments demonstrate that addition of a few features and
the use of ensemble averaging are effective means of
raising accuracy. High accuracy of secondary structures
and accessible surface area prediction can be achieved
using our contact model with multi-task learning. This

Fig. 1 Schematic representation of weighted MSA: The left panel
shows a part of the MSA. The right panel shows weight values for
each sequence in the MSA
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result of multi-task learning suggests that contact infor-
mation includes secondary structure and accessible sur-
face area information. It can help to raise the accuracy
of these predictions. Finally, we build a tertiary structure
solely from predicted contacts and predicted secondary
structures and retrieve a TMscore [25] greater than 0.5
for 50 out of 105 (48%) CASP11 domains and 18 out of
55 (33%) CASP12 domains.

Results
Effects of weighting sequences in an MSA
Here, we demonstrate that weighting of sequences in an
MSA can boost prediction accuracy. Our network can
learn correctly how to weight the MSA sequence. Fig-
ure 2a presents the distribution of the weight values of
one protein. Results show that some values were nearly
zero, which indicates that some noise sequences were
present in the original MSA.
To investigate the result further, we calculate the pre-

diction accuracy dependence on the number of se-
quences in MSA using 160 protein domains of the
CASP11 and CASP12 datasets. For these assessments,
we select the results of Long top L prediction as a meas-
ure of accuracy because this area has the greatest num-
ber of predictions and because the standard deviation is
smallest. Figure 2b shows that we can improve the pre-
diction accuracy of more than 70% of targets when we
have more than 200 sequences, but we cannot improve
it when we have only a few sequences. The percentage
of improvement is the number of improved proteins

divided by the total number of proteins in a bin. This re-
sult demonstrates that the network can remove noise se-
quences when MSA has numerous homologous
sequences. Figures 2c and d show an accuracy compari-
son between our Baseline Model and Weighted MSA
Model (about our models, see Method), which also sup-
ports our result.
Another approach to test our models is to increase the

noise sequences in MSA and testing of the prediction ac-
curacy robustness. We use HHblits and set E-values 1 and
3 and eliminate the “-cov” option to produce noisy MSAs
and to predict contacts using these noisy MSAs as input.
Table 1 presents the results. Because of the increasing
noise, the prediction accuracy of Baseline Model is de-
creasing but that of Weighted MSA Model largely retains
its accuracy. This result also indicates that our Weighted
MSA Model can eliminate noise sequences.
In the experiments conducted on the CASP11 and

CASP12 datasets, but not in all prediction categories, we
can improve accuracy using the Weighted MSA Model.
To assess the effects of weighting sequences further, we
compare the accuracies of the Baseline Model and the
Weighted MSA Model on one of our five validation
datasets. The best epochs of each model are determined
by the average loss of the validation set. Using these
epochs, the accuracies of the models are calculated.
Table 2 shows that the accuracies of the Weighted MSA
Model are higher than those of the Baseline Model at
every distance and prediction count. These differences
were inferred as significant from Student’s t-test results.

Fig. 2 a One example of weight distribution in the sequences of one MSA for T0843 on the CASP11 dataset. b Accuracy improvement depends
on the number of sequences in an MSA. We divided 160 protein domains into five bins according to their lengths. The numbers of proteins in
the bins are equal (i.e., 32 protein domains in each bin). c Baseline Model top L accuracy shown against the Weighted MSA Model when we have
over 200 homologous sequences and d with fewer than 200 homologous sequences
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To investigate the extent to which each feature (gap
ratio, sequence identity and sequence identity with a
consensus sequence) contributes to improvement of ac-
curacy, we train the Weighted MSA Model without each
feature and their average values. Furthermore, we com-
pare the prediction accuracies for the validation dataset.
The results are shown as “Drop Consensus”, “Drop Iden-
tity”, and “Drop Gap Ratio” models in Table 3a. Predic-
tion accuracies of these feature-dropped models are
between those of the Baseline Model and the Weighted
MSA Model. The accuracy becomes lowest when we
drop sequence identity with a consensus sequence and
its average value, which means that the contribution of
this feature to the accuracy is the highest among three
features. The contribution of the gap ratio is the smal-
lest, but a slight contribution is observed in Medium L/5
and Long L/5 categories.
In the paper describing PSICOV, another method to

weight sequences in MSA was introduced before ours. It
weights sequences in an MSA using several redundant se-
quences in the MSA to eliminate redundancy. However, it
is not optimized in an end-to-end manner. To compare
the accuracy of these two weighting methods, we calculate
the weight values of PSICOV separately and apply them
to our Baseline Model. The result is presented as the
“Baseline+PSICOV” model in Table 3 (B). In this experi-
ment using our weighting method, the Weighted MSA
Model is equivalent to or better than “Baseline+PSICOV”
model at every distance and prediction count.
Finally, we present distributions of sequence weights calcu-

lated using the Weighted MSA Model for a protein chain
from the validation dataset. The calculated weights are
shown respectively against the gap ratio, sequence identity,
and sequence identity with a consensus sequence (Fig. 3). As
shown in Figs. 3 and S1, dependencies of sequence weights
against their gap ratio and sequence identity can be observed
to some extent in some cases. However, such dependencies

are not always evident. As described above, sequence identity
with a consensus sequence and its average value have the
highest contribution to our model. The relations between
weights and this feature are complicated. At least, these are
not linear dependencies (perhaps because we use DNN to
weight the sequences). Other examples of relations between
weights and features are shown in Additional file 1: Figure
S1. These plots show that these relations vary depending on
proteins and their MSAs.

Effects of adding features
In our experiments, adding a few sequential features was
useful for increasing the prediction accuracy in cases
with shallow MSAs. Results showed that the Feature
Added Model can produce considerable accuracy gains
of prediction at long range for the CASP11 and CASP12
datasets (Fig. 4). Although DNN can find useful features
automatically, handmade feature engineering is still ef-
fective in our experiments. For this experiment, we
added five features, as described in Method.

Effects of multi-task learning
Presumably, a predicted contact map includes secondary
structure information. Based on this assumption, we tried
to use multi-task learning to predict contacts and second-
ary structures simultaneously. We examined three state
secondary structure prediction. Table 4 presents the re-
sults. Our method outperformed existing methods such as
RaptorX-Property [26] and SCRATCH-1D [27] in terms
of prediction accuracy. This result demonstrates that our
2D feature maps are a good representation of secondary
structure prediction. It also demonstrates that we can ex-
tract useful information from these feature maps through
multi-task learning. In our experiments, convergence of
the secondary structure prediction differed from that of
contact prediction. We use the best epoch of each.

Table 1 Top L Contact Prediction Accuracy on the CASP11 dataset against HHblits e-values

Table 2 Accuracy comparison between the Baseline Model and the Weighted MSA Model tested on the validation dataset and the
p-value of Student’s t-test
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SCRATCH-1D uses structural data from PDB to predict
secondary structures. The time stamp of the structural
data is June 2015, which is after the CASP11 experiment.
This might explain why SCRATCH-1D obtains better re-
sults with the CASP11 dataset than the results obtained
using the CASP12 dataset.
To investigate these results further, the recall and pre-

cision of each predicted secondary structure class on the
CASP11 and CASP12 datasets are calculated and are
presented in Table 5. The model shows especially good
results for precision of sheet prediction on both the
CASP11 and CASP12 datasets. Although SCRATCH-1D
shows better results for the recall of helix and sheet pre-
diction and precision of coil prediction on the CASP11
dataset because of the structural data used in
SCRATCH-1D, our model outperforms the other two
methods in almost all classes on the CASP12 dataset.
We also compared the prediction results of accessible

surface area with those obtained using two other methods.
Our model, which is a regression model, outputs the pre-
dicted accessible surface area as a real number. However,
RaptorX-Property is a classification model that outputs
the relative solvent accessibility in three states: B, Buried;
M, Medium; and E, Exposed. (10 and 40% are the thresh-
olds). Furthermore, SCRATCH-1D outputs relative solv-
ent accessibility in 20 classes (0–95% in 5% increments).
To compare these three results, the results of our models
and SCRATCH-1D are converted to three state predic-
tion, similarly to RaptorX-Property. As in secondary struc-
ture prediction, our model can obtain the highest
accuracies among these three methods (Table 6).
Finally, we analyze what types of contacts (e.g. helix–

helix, helix–sheet and sheet–sheet) are better predicted
with the Feature Added Model and the Multi-task
Model. Table 7 shows the results. On both the CASP11
and CASP12 dataset, recalls of the Multi-task Model are
equivalent to or higher than those of the Feature Added
Model for contacts of all three types rather than a

particular type of contact. Regarding precision, the
sheet–sheet contact of the Feature Added Model is bet-
ter than that of the Multi-task Model. The secondary
structure types contribute somewhat to the contact pre-
diction accuracy.

Effects of ensemble averaging
Regarding the model ensemble, according to the ma-
chine learning theory, ensemble methods of some types
exist such as bagging, boosting, and stacking. Our en-
semble averaging is similar to bagging. It uses bootstrap-
ping samples as training data. However, in our case, we
use datasets from cross validation. Generally, ensemble
models use weak classifiers such as a decision tree as a
base model. We use DNN, which is not regarded as a
weak classifier. However, in our experiments, the ensem-
ble model is still effective. Tables 8 and 9 show that
ensemble-learning can raise the accuracy considerably
for almost all prediction categories, except Medium top
L/10 prediction on the CASP12 dataset.
We also investigate how contact prediction accuracy de-

pends on the training datasets in our ensemble averaging.
We test 3-, 5-, 7-, and 10-fold and compare the respective
degrees of accuracy using a Baseline Model. Generally, it is
expected that as the number of folds increases, prediction
accuracy is also increasing, but it eventually reaches a plat-
eau because the overlap of data is large and because the
model diversity becomes small. Table 10 shows that the 10-
fold result yields the highest accuracy at almost all predic-
tion categories. However, the difference is not so large. We
use 5-fold to save computational time for all experiments.

Accuracy comparison for the CASP11 and CASP12 targets
Tables 11 and 12 respectively present the predictive
accuracies of five existing methods and our methods.
We evaluated our method using the CASP11 and
CASP12 datasets. Both the CASP11 and CASP12
datasets yielded similar results. Even our baseline

Table 3 Accuracy comparisons of (a) the dropped feature models and (b) the weighing method of PSICOV against the Weighted
MSA Model tested on the validation dataset. Bold typeface characters show the highest accuracy in the columns
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method outperformed existing ECA methods at every
distance and prediction count. Additionally, our base-
line model outperformed DeepCov, which also takes
the covariance matrices as input and which uses
DNN. Comparison against other existing models re-
vealed that the Multi-task Model can outperform
metaPSICOV, ResPRE, and DeepMetaPSICOV, and
that it can obtain comparable results to those of
RaptorX-Contact.
Among our models, results show that Weighted MSA,

Feature Added, and Multi-task Models can gradually

raise the total accuracy compared with our baseline
model, except for Weighted MSA Model in CASP12.
The Weighted MSA Model is ineffective in such situa-
tions because most CASP12 targets have an insufficient
number of homologous sequences in MSA.

Tertiary structure prediction
From the predicted contacts and secondary structures
obtained using our Multi-task Model, we attempt to
construct tertiary structures using the CONFOLD script

Fig. 3 Distributions of weight values of (a) the gap ratio,
(b) sequence identity and (c) identity with a consensus sequence.
Each dot represents a sequence in the MSA of 1EEJ

Fig. 4 Accuracy improvement depends on the number of sequences
in an MSA. The mean differences of prediction accuracy, between the
Feature Added model and the Weighted MSA Model, against the
number of sequences in an MSA, are shown for (a) top L/5, (b) top L/2,
and (c) top L contacts of prediction at long range. The number of
proteins in each bin is equal (i.e., 32 protein domains in each bin)
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[28]. We measure the quality of predicted structures
in terms of the TMscore. The average TMscores are
0.472 (CASP11) and 0.402 (CASP12). We can obtain
a TMscore over 0.5 only by MSA information against
50 in 105 (48%) of CASP11 domains and 18 in 55
(33%) of CASP12 domains. Especially when we have
more than 0.8 top L predicted contact accuracy, the
numbers improve to 17 in 22 (77%) of CASP11 do-
mains and 5 in 7 (71%) of CASP 12 domains. Here,
we present an example of the best predicted structure
T0811-D1 (TMscore 0.818) in CASP11 and T0920-D1
(TMscore 0.848) in CASP12 (Fig. 5). In these do-
mains, the accuracies of top L contact predictions are
85.3% (T0811-D1) and 86.3% (T0920-D1).

Calculation time
In terms of calculation time, our method also exhibits
good performance. We compare the calculation time of
our method with that of CCMpred, which is the fastest
method among existing ECA methods. Table 13 shows
that our method takes much less time than the
CCMpred with or without GPU, when we used 150 pro-
teins in the PSICOV dataset. Although Graphical Lasso
and pseudo-likelihood methods have iterative calcula-
tions, neural network methods can calculate the result
directly. Results are obtainable in a short time once one
has completed network training. Our method is practic-
ally useful when huge numbers of contact predictions
are necessary.

Discussion
This report presented a novel approach of end-to-end
learning for protein contact prediction. On the CASP11
and CASP12 test proteins, for all precisions (short,
medium, and long), we confirmed that our models per-
formed better than any other ECA method. Moreover,
we were able to obtain comparable results to those ob-
tained using RaptorX-Contact, a successful prediction
method that uses outputs of an ECA method
(CCMpred) and additional features as inputs, although
we use much simpler features derived from an MSA as
inputs. Using our prediction results including secondary
structures as inputs of other meta-predictors might en-
gender higher precision.
When extracting correlation information for one resi-

due pair, 21 × 21 correlation scores from 21 × 21 amino
acid pairs are obtained. However, these scores are
merely averaged in PSICOV. By contrast, our method
uses 441 covariance matrices as input features and feeds
them to the CNN architecture. This method does not
engender loss of information, which is an important
benefit of our method compared to PSICOV. Moreover,

Table 4 Secondary structure prediction accuracy on the (a)
CASP11 and (b) CASP12 datasets. Bold typeface characters show
the highest accuracy in the column

Table 5 Recall and precision of secondary structure components on the (a) CASP11 and (b) CASP12 datasets. Bold typeface
characters show the highest accuracy in the column
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the CNN architecture can extract useful features from
covariance matrices automatically through convolutional
operation.
Comparison with existing meta-predictors such as

metaPSICOV, DeepMetaPSICOV, and RaptorX-Contact
revealed that, although we use only correlation informa-
tion based on an MSA and use no other feature such a
secondary structure as input, all our methods outper-
formed metaPSICOV. Moreover, the Multi-task Model
outperformed DeepMetaPSICOV and yielded compar-
able results to those obtained using RaptorX-Contact.
Our methods show better results for short range predic-
tion than results obtained with RaptorX-Contact.
Using DNN, we can not only raise the accuracy of

contact prediction: we also have an opportunity to
weight sequences in an MSA in an end-to-end manner.
Recently, we have become able to access an increasing

number of protein sequences including metagenomic se-
quences, which can include many noise sequences for
contact prediction. In such situations, our method pro-
vides a means to eliminate noise sequences automatically
and to find relevant ones.
Results of our study demonstrate that adding features

and using ensemble averaging can raise accuracy. Fur-
thermore, we demonstrate that we can obtain high pre-
diction accuracy of contact, secondary structure and
accessible surface area prediction in one network merely
using MSA information. This result illustrates that con-
tact information strongly regulates the secondary struc-
ture but that the secondary structure information does
not include contact information. Recently, Hanson et al.
[29] described that the predicted contact maps improve
the accuracy of secondary structure prediction. Our re-
sult is consistent with those described in that report.
When the available homologous sequences are few,

existing methods, including our methods, are incapable
of predicting contacts accurately, although our method
is effective to some degree for cases of shallow MSAs.
As the next step, we would like to improve the MSA
construction process and to collect sufficient evolutional
information from wider sequence spaces through exten-
sive research.
As for tertiary structure prediction, some proteins

exist for which we cannot obtain good models, even
though our contact prediction results are fairly good.
One example of these results is T0845-D1. For this pro-
tein, the predicted contact accuracy is 86.6% (for top L
prediction), but the resultant TMscore is 0.276. Figure 6
portrays the structure of this sample. The general shape
of this predicted model is similar to the native structure,
but all strands go in opposite directions against the na-
tive structure. Actually, T0845 is a 97-residue protein
with 127 long-range contacts (1.32 L). In this case, 86.6%
top L prediction is insufficient. More precise contact in-
formation would be necessary to solve such a mirror
image-like problem. Furthermore, more sophisticated
tertiary structure construction methods are necessary.

Table 7 Recall and Precision of three types of contact: helix–helix (HH), helix–sheet (HS), and sheet–sheet (SS) on the (a) CASP11
and (b) CASP12 datasets

Table 6 Accessible surface area prediction accuracy on the (a)
CASP11 and (b) CASP12 datasets. Bold typeface characters show
the highest accuracy in the columns
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Conclusions
As described in this paper, we propose an end-to-end
learning framework of protein contact prediction that can
effectively use information derived from either deep or
shallow MSAs. For deep MSAs, our model can perform
weighting of the sequences in MSA to eliminate noise se-
quences and to gain accuracy. However, for shallow
MSAs, it is useful to add some features derived from the
sequence itself and MSA to improve the accuracy. Results
demonstrate that our model can obtain good results com-
pared with existing ECA methods such as PSICOV,
CCMpred, DeepCOV, and ResPRE when tested on the
CASP11 and CASP12 datasets. Moreover, our Multi-task
Model is good at predicting secondary structures. Using
these predicted contact and secondary structures, we can
obtain more accurate three-dimensional models of a tar-
get protein than those obtained using existing ECA
methods, starting from its MSA.

Method
Datasets
An original dataset was prepared for this study using the
following steps. 1) A set of non-redundant amino acid
sequences was obtained from PISCES, a PDB sequence
culling server (30% sequence identity cutoff, 2.5 Å reso-
lution cutoff, 1.0 R-factor cutoff, 15,209 total number of
chains as of April 5, 2018) [30]. 2) PDB files were re-
trieved. Then true contact pairs were calculated from
the protein coordinates. For this study, we defined a
contact if the distance of Cβ atoms of the residue pair
was less than 8 Å. For glycine residues, Cα atoms were
used instead of Cβ atoms. The PDB coordinates include
many missing values (in our dataset, more than 5000
proteins have at least one missing value for Cβ atoms).

Therefore, we marked a residue pair that had a missing
Cβ coordinate as NaN and excluded it when we calcu-
lated the loss. 3) Removal of redundancy was performed
with the test set (see below). We excluded from our
dataset those proteins sharing > 25% sequence identity
or having a BLAST E-value < 0.1 with any test protein
by blastp [31]. 4) Proteins with length greater than 700
residues or with fewer than 25 residues were also elimi-
nated. At this stage, our dataset comprised 13,262 pro-
tein chains. In ensemble averaging (see below), we split
them into five (up to ten) sets and used one of them as a
validation set. We used the remaining sets as training
sets for the respective models. For our Multi-task Model
described below, secondary structures and solvent-
accessible surface areas of proteins were calculated using
DSSP [32]. We used only those proteins for which the
secondary structure states could be assigned for 80% or
more of their residues. We noticed that one protein,
12AS had been removed by error. Consequently, 1938
protein chains were excluded from the 13,262 protein
chains. For fair comparison between our models, the
remaining 11,324 protein chains were used in all experi-
ments. We used one of our five training/validation data-
sets to evaluate effects of weighting sequences in an
MSA (results shown in Tables 2 and 3 and Fig. 3). This
dataset includes 9058 protein chains for training and
2266 protein chains for validation. As the test sets for
benchmarking our methods, we used the CASP11 (105
domains) and CASP12 (55 domains) dataset [33, 34] ob-
tained from the CASP download area (http://www.pre-
dictioncenter.org/download_area/). We prepared MSAs
for proteins in both our original and test datasets using
HHblits [35] with three iterations. The threshold E-value
was set to 0.001 on the UniProt20_2016 library.

Table 9 Contact prediction accuracy comparison between single learning and ensemble averaging on the CASP12 dataset. Bold
typeface characters signify that ensemble averaging can raise the accuracy of this field

Table 8 Contact prediction accuracy comparison between single learning and ensemble averaging on the CASP11 dataset. Bold
typeface characters show that ensemble averaging can raise the accuracy of this field
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Sequence coverage was set to 60% using the “-cov” op-
tion. These settings were the same as those used in
PSICOV.

Neural network models
We developed our neural network models to achieve im-
provement in the respective precisions of both shallow
and deep MSAs. Moreover, we expanded our model to a
multi-task model to increase the prediction accuracy by
incorporation with predictions of secondary structures
and solvent-accessible surface areas. Methods using con-
volutional neural networks (CNNs), which are widely ap-
plied to image classification tasks, have been used
successfully for protein contact prediction [36]. There-
fore, we also used CNNs in our models.
As in Graphical Lasso methods, our models take co-

variance matrices calculated from MSAs as their inputs
to calculate the probability of contact for each residue
pair in a protein. To calculate covariance matrices, we
used a formula used for a study of PSICOV, as shown
below.

Saib j ¼ f aib j
� �� f aið Þ f b j

� � ð1Þ

Therein, a and b respectively represent amino acid
types at positions i and j. Also, f (ai) (and f (bj)), respect-
ively denote frequencies of amino acid a (and b) at pos-
ition i (and j); f (aibj) stands for the frequency of amino
acid pairs a and b at positions i and j. If no correlation
is found between i and j with respect to amino acid pairs
a and b, then Saibj is equal to zero. Using this formula
with pairs of 21 amino acid type (including a gap), one
can obtain 441 L × L covariance matrices, where L

signifies the sequence length of a target protein. Our in-
put covariance matrices are L × L pixel images with 441
channels: typical color images have three channels.
Therefore, we can apply a CNN. For this study, we adopt
a residual network [37] to deepen the model and to
achieve higher accuracy. We tested the four model vari-
ants described below. Their architectures are presented
in Fig. 7.
A) Baseline Model: First, in this model, 441 channels

of L × L covariance matrices calculated from MSAs are
fed into a 1 × 1 CNN to reduce the dimensionality of
channels to 128. Then the matrices are fed into the 30-
block residual network. Each residual block has two
CNN layers. The total number of layers in our residual
network is 60. We used 60 layers because of GPU mem-
ory limitations. Each output of the residual network is
128 channels of L × L matrices. We transform them and
feed them into a fully connected layer and sigmoid func-
tion to obtain contact probabilities.
B) Weighted MSA Model: To reduce noise of MSA,

we weight each sequence of an MSA in this model.
This weighting is also assigned using a neural net-
work. First, we use a multilayer perceptron (MLP)
network to calculate the weight for each sequence in
an MSA using features of seven types: the number of
sequences in an MSA, sequence identity with a target
sequence, sequence identity with a consensus se-
quence of an MSA, the gap ratio for each sequence,
and average values of the last three features (i.e., se-
quence identities and a gap ratio). The MLP, which
has two hidden layers and for which each hidden
layer has seven nodes, are used for this task. The out-
put of this network is then used to weight each

Table 11 Contact prediction accuracy on the CASP11 dataset. Bold typeface characters show the highest accuracy in the column

Table 10 Dependencies of prediction accuracy on the number of folds on the CASP11 dataset. Bold typeface characters show the
highest accuracy in the column
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sequence in an MSA. Subsequently, based on the
weighted MSA, 441 L × L covariance matrices are cal-
culated and are fed into a 1 × 1 CNN. Because all
these calculations can be written as matrix operations
and because they can be represented by one con-
nected network, gradients of loss function with re-
spect to each variable in MLP and CNN are
calculable through backpropagation. Consequently, the
network can be optimized completely in an end-to-
end manner.
C) Feature Added Model: To this model, we add

five features: a query sequence, a Position Specific
Score Matrix (PSSM), entropy of each column of
weighted MSA, mutual information of each column
pair of weighted MSA, and sequence separations cal-
culated from query sequences. The first three features
are 1D features of length L. These 1D features are
stacked L times vertically to shape L × L matrices. We
also used a transposed version of these matrices be-
cause information of both i and j at position (i, j)
must be obtained. We treat query sequences and
PSSMs as categorical variables and apply one-hot en-
coding to these features. The final dimensions of
these features are (L, L, 20 × 2) for query sequences,
(L, L, 21 × 2) for PSSMs, and (L, L, 1 × 2) for entropy.
The final dimensions of both mutual information and

sequence separations are (L, L, 1). Finally, after con-
catenating these features to covariance matrices and
reducing their dimensionality to 128, we feed them
into residual networks.
D) Multi-task Model: Secondary structures are also

key elements to predict tertiary structures. Multi-task
learning, a common technique of DNN [38, 39] is
also used in protein research [40]. In our case, we try
to predict contacts, secondary structures, and access-
ible surface areas simultaneously using multi-task
learning. Although the network is based on the Fea-
ture Added model, after 20 blocks of residual net-
work, we separate the residual blocks for each task:
we share the parameters of 20 residual blocks within
these three tasks and do not share the last 10 residual
blocks. Finally, the outputs of these residual blocks
are fed respectively into a fully connected layer to
predict contacts, secondary structures, and accessible
surface areas. For the secondary structures and ac-
cessible surface areas, we use an i-th row and an i-th
column of the L × L matrices and concatenate them
as features of i-th residues.
We calculate the losses separately and add them for

joint training.
Total Loss = Loss Contact + Loss Secondary Structure

+ Loss Accessible Surface Area (2).

Fig. 5 (a) Our best predicted model T0811-D1 in CASP11 and (b) T0920-D1 in CASP12. Cyan shows the native structure. Green represents
our model

Table 12 Contact prediction accuracy on the CASP12 dataset. Bold typeface characters show the highest accuracy in the column.
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We define each term, in eq. (2), as

ContactLoss ¼ −
X

i j
ðyContact i jlogpContact i j

þ ð1−yContact i jÞlogð1−PContact i jÞÞ ð3Þ

where ycontact ij is the true label (1 for contact, otherwise
0) for the residue pair of (i, j) positions and pcontact ij is
the predicted contact probability. The summation is cal-
culated over all residue pairs of (i, j), except when the
true label is not missing values.

Secondary StructureLoss

¼ −
X

k
ðyHelix k logpHelix k þ ySheet k logpSheet k

þ yCoil k logpCoil kÞ ð4Þ

Therein, yHelix k, ySheet k, and yCoil k respectively repre-
sent the one-hot encoded true label for the kth residue of
helix, sheet, and coil. In addition, pHelix k, pSheet k, and
pCoil k respectively denote their predicted probabilities.
The summation is calculated over all residues, except
when the true label is missing.

Accessible Surface Area Loss

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k ASAtrue k−ASApred k
� �2

N

s
ð5Þ

In that equation, ASAtrue k and ASApred k respectively
stand for the accessible surface area of the true value and
the predicted value of the kth residue. In addition, N signi-
fies the total number of residues calculated from the ac-
cessible surface area. The summation is over the same
residues as those used in the case of secondary structures.
For our experiments, all filter sizes of convolutional op-

erations in the residual network are 3 × 3. The ReLU acti-
vation function is used. We trained all these networks
using the ADAM optimizer with the learning rate of
0.0005. Batch normalization is used to obtain higher ac-
curacy and faster convergence. One batch includes the
data of one domain. Proteins have their different lengths.
Therefore, input matrices can have different sizes. How-
ever, because the number of our network parameters is in-
dependent of protein length, we can deal comprehensively
with proteins of different lengths. Furthermore, by calcu-
lating the gradient and updating the network parameters
by one batch size, we obviate the use of zero padding. All
hyperparameters and network architectures such as the
number of layers and variation of connections are selected
according to the results achieved for validation sets. All
experiments were conducted using an ordinary desktop
computer with a GPU (GeForce TITAN X; Nvidia Corp.)
using the TensorFlow library. Training required several
days to calculate 20–30 epochs.

Ensemble averaging
To raise accuracy, we used ensemble averaging. We split
our dataset into five sets. Consequently, we were able to
obtain five (or up to ten) different models trained with
five (or up to ten; see Table 10) different sets. Our final
prediction result for each residue pair was obtained sim-
ply by averaging these predicted probabilities.

Cropping and sampling
To overcome the GPU memory size limitation and to
deepen the network, we crop a part of the protein se-
quences and sample the sequences in MSAs. More con-
cretely, when the sequence length is greater than 200
residues, we crop 200 residues from all protein se-
quences. When the number of sequences in MSAs is
greater than 30,000, we sample 30,000 sequences from
them. That number is adequate because our residual
network has 3 × 3 filters and 60 layers and because it
covers only 121 × 121 of the covariance matrices. We
observed decreased prediction accuracy for sampling
numbers less than 10,000. These cropping and sampling

Fig. 6 Badly predicted model obtained in spite of good predicted
contacts: (a) predicted model and (b) native structure

Table 13 Calculation time of CCMpred and our method

CCMpred
(CPU)

CCMpred
(GPU)

Our DNN
(CPU)

Our DNN
(GPU)

Time
(min)

585 47 10 2
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are only done during training. Entire sequences and
MSAs are used during prediction.

Evaluation of prediction results
To assess contact prediction accuracies, we compared
our results with those obtained using existing prediction
methods. According to sequence separations of residue
pairs, we defined the contact types as “short” 6 < =|i -
j| < =11, “medium” 12 < =|i - j| < =23, and “long” 24 < =|i -
j|, and compared the top L/k (k = 10,5,2,1) prediction re-
sults as described by Wang et al. [19]. The prediction ac-
curacy (precision) was calculated using the following eq.
TP / (TP + FP) (6).
In that equation, TP represents the number of true

contacts among the predicted ones: TP + FP is the
number of all predicted contacts. We selected PSI-
COV, CCMpred, DeepCov and ResPRE as representa-
tives of ECA methods and selected MetaPSICOV,
DeepMetaPSICOV and RaptorX-Contact as represen-
tatives of meta-predictors to be compared. We

performed calculations with our own local prediction
directed by instructions for using each method. The
same MSAs used in our models are also used for
these models except for MetaPSICOV and RaptorX-
Contact. For MetaPSICOV “–id 99” option was used
in its default setting. For the RaptorX-Contact, no
local execution file was available. Predictions were
calculated on their server. However, for 3 out of 105
CASP11 domains and for 1 out of 55 CASP12 do-
mains, the results were not retrieved because of ser-
ver error. The MSAs were prepared by their server
originally. They differed from ours. Using the CASP11
and CASP12 datasets, we calculated the accuracy for
each separate domain, not an entire protein.
For evaluation of secondary structure and for access-

ible surface area prediction, we used RaptorX-Property
and SCRATCH-1D as state-of-the-art methods. We cal-
culated the results obtained using local prediction. To
evaluate prediction results of secondary structure, we
also measured recall: TP/(TP + FN).

Fig. 7 Architectures of the proposed networks: (a) Baseline Model, (b) Weighted MSA Model, (c) Feature Added Model, and (d) Multi-task Model
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Tertiary structure prediction
To predict tertiary structures from obtained contacts
and secondary structure predictions, we used a script in
the CONFOLD package. We mixed up all three (short,
medium, and long) ranges of predicted contacts, ordered
them by their probability of contact; then we used (up
to) the top 2 L contacts among them as inputs for the
script.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3190-x.

Additional file 1: Figure S1. Distributions of weight values of gap ratio,
sequence identity and sequence identity with a consensus sequence.
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