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Abstract

Background: Obesity is associated with chronic activation of the immune system and an altered gut microbiome,
leading to increased risk of chronic disease development. As yet, no biomarker profile has been found to distinguish
individuals at greater risk of obesity-related disease. The aim of this study was to explore a correlation-based network
approach to identify existing patterns of immune-microbiome interactions in obesity.

Results: The current study performed correlation-based network analysis on five different datasets obtained from 11
obese with metabolic syndrome (MetS) and 12 healthy weight men. These datasets included: anthropometric
measures, metabolic measures, immune cell abundance, serum cytokine concentration, and gut microbial composition.
The obese with MetS group had a denser network (total number of edges, n = 369) compared to the healthy network
(n = 299). Within the obese with MetS network, biomarkers from the immune cell abundance group was found to be
correlated to biomarkers from all four other datasets. Conversely in the healthy network, immune cell abundance was
only correlated with serum cytokine concentration and gut microbial composition. These observations suggest high
involvement of immune cells in obese with MetS individuals. There were also three key hubs found among immune
cells in the obese with MetS networks involving regulatory T cells, neutrophil and cytotoxic cell abundance. No hubs
were present in the healthy network.

Conclusion: These results suggest a more complex interaction of inflammatory markers in obesity, with high
connectivity of immune cells in the obese with MetS network compared to the healthy network. Three key hubs were
identified in the obese with MetS network, involving Treg, neutrophils and cytotoxic cell abundance. Compared to a t-
test, the network approach offered more meaningful results when comparing obese with MetS and healthy weight
individuals, demonstrating its superiority in exploratory analysis.

Keywords: Network analysis, Obesity, Metabolic syndrome, Inflammation, Immune system, Gut microbiome,
Multidimensional data, Multivariate analysis
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Background
Obesity is a multifactorial disease that dysregulates many
different body systems, including the immune system [1]
and the gut microbiota [2], leading to increased risk of
chronic diseases, including type 2 diabetes mellitus
(T2DM), some cancers, and increased mental health prob-
lems [1]. Despite extensive research, no specific biomarker
profile is clinically recognised to characterise individuals
with a greater risk of developing obesity-related disease
[3]. A key reason may be failure to consider the intercon-
nected nature of the immune system, host microbiota and
metabolic interactions. Many functional studies have now
recognised the need for integrated analysis to overcome
the issue of redundancy [4, 5], whereby many biomarkers
have similar roles, rendering univariate analysis ineffective.
Recent technological advances that allow for multiple bio-
marker analysis are overcoming the limitations associated
with biological complexity to better understand the basis
of diseases. However, the interpretation and visualisation
of the significant amount of data generated from these
methods still poses a challenge [6].
Correlation-based network analysis (CNA) has recently

become a popular data-mining method as it allows com-
plexity reduction of multidimensional data while still
retaining the majority of information needed for interpret-
ation [6]. CNA provides the means to visualise disease-
related perturbations of molecular interactions to provide
insight into key underlying mechanisms that drive disease
development [7]. In biological network analysis, bio-
markers are represented as nodes and the links between
them as edges. A number of network properties have been
developed to allow interpretation of correlation networks
[6], including (a) node degree: the number of other nodes
to which a given node is significantly correlated, (b) be-
tweenness centrality: the measure of shortest paths be-
tween any two nodes that passes through the node in
question, and (c) network density: the ratio of existing
edges to the total number of possible edges in a network.
Using these properties, researchers can also detect highly
connected nodes, also known as hubs. These properties
were useful in many obesity studies which used CNA to
identify key hubs that differ between obese and healthy
weight individuals. Walley et al. used a network approach
to compare genes in subcutaneous adipose tissue of
obesity-discordant siblings [8]. The study found a third of
the transcripts to be differentially expressed between lean
and obese siblings, with obesity-associated neuronal
growth regulator 1 (NEGR1) acting as a central hub. A
later study by Wang et al. [9] also used network analysis
to identify significant genes between seven discordant
monozygotic twins. From this study, at least eight different
hub genes were identified. Both Walley et al. and Wang
et al. were able to detect central genes affected by obesity,
providing insight into future research looking to target

specific biomarkers for obesity treatment. However, these
studies are limited by their focus on specific areas of the
body. Considering obesity being a multifactorial disease
and the functional interdependencies of different systems
of the human body, a multi-analyte network should be uti-
lised instead.
Studies examining immune profiles [1] and gut micro-

bial composition [10] in obese individuals have found al-
terations in favour of pro-inflammatory biomarkers
when compared to their lean counterparts. A study by
Winer et al. has also found high pro-inflammatory to
anti-inflammatory biomarker ratios in obese individuals
that exacerbate chronic disease development [11]. How-
ever, studies have still struggled to find a profile of bio-
markers that distinguish individuals more at risk of
obesity-related diseases. Due to the multitude of molecu-
lar interactions affected by obesity, a holistic approach is
required to identify key biomarkers involved. The aim of
this study was to use CNA to compare anthropometric
measures, metabolic measures, immune cell abundance,
serum cytokine concentrations, and gut microbial com-
position to identify biomarker profiles that distinguish
obese with metabolic syndrome (MetS) from healthy
weight individuals.

Results
The molecular interactions associated with obesity were
analysed by comparing networks within obese with MetS
and healthy weight individuals through CNA. The char-
acteristics of participants from the two distinct groups
are described in Table 1. Significant differences were ob-
served in all the key demographic measures, except for
age, between the two groups. By design, the obese with
MetS group had values outside the healthy range for var-
iables that constitute the criteria for MetS [12]. Two
major markers of inflammation, CRP and ESR, were also
compared between the two groups, both of which were
higher in the obese with MetS group although the differ-
ence was not significant for ESR. As obesity has been de-
scribed as a state of chronic low-grade inflammation [3],
the higher levels of inflammatory markers observed in
the obese with MetS group was expected. The findings
from the exploratory univariate analysis justified the use
of other analytical methods to find possible underlying
interactions between inflammatory biomarkers.
A multi-level correlation network was built for the two

studied groups (Figs. 1 and 2). In the CNA, each node
represented a biomarker that had a strong correlation
with another biomarker in the same variable group,
denoted by a link between the two nodes based on a
Pearson correlation analysis. Correlations between bio-
markers from different variable groups was visually rep-
resented by a single line connecting the two variable
groups involved. The obese with MetS group produced a
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much denser network compared to the healthy network,
with the total number of edges being 369 and 299, re-
spectively. In addition, the obese with MetS network
found correlations between biomarkers within each vari-
able group as well as between each of the five variable
groups (Fig. 1). Interestingly, immune cells within the
healthy network were not found to be correlated with
two of the four other biomarker groups: anthropometric
measures and metabolic measures (Fig. 2). The high in-
terconnectivity of immune cells in the obese with MetS
network compared to the healthy network suggests im-
mune cells to be highly involved in obesity.
The lack of interaction in the healthy network between

three variable groups was compared to correlations
within the obese with MetS network. While the healthy
network found no correlation between biomarkers in the
immune cell abundance group and the anthropometric
measures group, the obese with MetS network found
age to be negatively correlated with Th2 cell abundance
(correlation coefficient [ρ] = − 0.74). Furthermore, there
was no correlation between biomarkers from the im-
mune cell abundance group with the metabolic measures
group. On the other hand, the obese with MetS network
found correlations between systolic blood pressure and
mast cell abundance (ρ = 0.71), absolute lymphocyte
count and macrophage abundance (ρ = − 0.73), absolute

lymphocyte count and neutrophil abundance (ρ = −
0.73), and high-density lipoprotein with T-helper cell
abundance (ρ = − 0.78).
The increased involvement of immune cells as obes-

ity develops is also supported by the large number of
correlations between immune cell biomarkers in the
obese with MetS network compared to the healthy
network. The obese with MetS network had higher
numbers of correlations, higher network density and
more biomarkers with high betweenness centrality
scores. As betweenness centrality measures the short-
est paths between two nodes that passes through the
particular node, it signifies how central the biomarker
is within a network. A biomarker with a high be-
tweenness centrality score is therefore considered to
be a hub in a network that will cause the biggest
change on a network if targeted. The obese with
MetS network saw 11 correlations between bio-
markers, a network density of 0.09 and 3 biomarkers
with a high betweenness centrality score of over 0.1
(Table 2). On the other hand, the healthy network
only had 7 correlations between biomarkers, a net-
work density of 0.06 and no biomarkers with a high
betweenness centrality score (Table 2). The three key
hubs of the obese with MetS network stem from the
biomarkers: Treg cells (betweenness centrality [BC] =

Table 1 Demographic characteristics and metabolic measures in obese with MetS (N = 11) and healthy weight (N = 12) males

Obese with Mets (n = 11) Healthy weight (n = 12) P-value*

Demographic variables

Age (Years) 47.74 ± 8.52 40.98 ± 12.36 0.1

BMI (kg/m2) 35.25 ± 3.57 23.05 ± 1.30 < 0.001

Waist (cm) 177.82 ± 10.31 82.71 ± 5.03 < 0.001

Fat Mass (%) 34.2 ± 2.30 20.48 ± 2.52 < 0.001

Muscle Mass (%) 26.3 ± 2.09 36.27 ± 2.87 < 0.001

Visceral Fat 16.64 ± 3.53 5.75 ± 1.45 < 0.001

Metabolic variables

MetS 3.55 ± 0.69 0.17 ± 0.39 < 0.001

SBP (mmHg) 144.55 ± 13.37 122 ± 4.78 < 0.001

DBP (mmHg) 96.91 ± 9.98 76.58 ± 6.49 < 0.001

Triglycerides (mmol/L) 2.18 ± 0.50 1.10 ± 0.62 < 0.001

Cholesterol (mmol/L) 5.58 ± 1.01 5.08 ± 1.15 0.24

HDL (mmol/L) 1.13 ± 0.18 1.54 ± 0.34 < 0.001

LDL (mmol/L) 3.46 ± 0.87 3.03 ± 0.88 0.22

HbA1c (%) 5.36 ± 0.43 5.23 ± 0.26 0.42

Glucose (mmol/L) 5.74 ± 0.71 5.20 ± 0.33 0.04

CRP (mg/L) 1.77 ± 0.86 0.95 ± 1.04 0.01

ESR (mm/hr) 6.18 ± 4.62 3.58 ± 0.90 0.27

MetS: scored out of a maximum of five based on presence of five defined metabolic syndrome features
BMI Body mass index, BP Blood pressure, MetS Metabolic syndrome, HDL High-density lipoprotein, LDL Low-density lipoprotein, HbA1c Haemoglobin A1c, CRP C-
reactive protein, ESR Erythrocyte sedimentation rate
*P value is based on an unpaired t-test using log-transformed data
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0.22), neutrophils (BC = 0.20) and cytotoxic cells
(BC = 0.15).
Within the immune cell abundance variable group, Treg

cell abundance was correlated with neutrophil abundance
(ρ = 0.73), cytotoxic cell abundance (ρ = − 0.73) and T cell
abundance (ρ = − 0.74); neutrophil abundance was corre-
lated with macrophage abundance (ρ = 0.80) and NK cell
abundance (ρ = 0.74), and cytotoxic cell abundance was
correlated with Th1 cell abundance (ρ = 0.78), T cell
abundance (ρ = 0.77) and CD8+ T cell abundance (ρ =
0.74). Additionally, Treg cell abundance was correlated
with MIP-1β concentration (ρ = 0.71) from the serum
cytokine group while neutrophil abundance was correlated
with a number of biomarkers from the gut microbial
group, including: Escherichia/Shigella abundance (ρ =
0.74), Akkermansia abundance (ρ = 0.71), Anaerostipes

abundance (ρ = 0.72), Blautia abundance (ρ = 0.78), Flavo-
nifractor abundance (ρ = 0.73), and Holdemania abun-
dance (ρ = 0.70). These correlations may be considered for
intervention studies looking to reduce the prevalence of
obesity-related diseases.
An unpaired t-test was also performed on the same

dataset (Table 3) and the results were compared to that
of the CNA. For the immune cell abundance variable
group, the only significant difference found between
the healthy weight and obese with MetS groups was in
mast cell (P = 0.02) and T-helper cell abundance (P =
0.04). Mast cell abundance was negatively correlated
with T-helper cell abundance, with no correlations with
any other immune cells for either of the two bio-
markers. Compared to the t-test, the CNA was able to
reveal more detailed information on the differences

Fig. 1 Multi-level CNA constructed for obese with MetS participants. AUSDRISK: Australian type 2 diabetes risk; WHR: waist-hip ratio; BMI: body
mass index; X.fat: percentage fat mass; X.musc: percentage muscle mass; RMR: resting metabolic rate; SBP: systolic blood pressure; DBP: diastolic
blood pressure; MetS: metabolic syndrome; Chol: cholesterol; LDL: low-density lipoprotein; HDL: high-density lipoprotein; HCT: haematocrit; RCC:
red cell count; ESR: erythrocyte sedimentation rate; PLT: platelet; BASO: basophil; CRP: C-reactive protein; LYMPHO: lymphocyte; NK cells: natural
killer cells; DC: dendritic cells; Treg: T-regulatory cells; Th1 cells: T-helper 1 cells; VEGF: vascular endothelial growth factor; IL-: interleukin; IP10:
interferon gamma-induced protein 10; PDGF: platelet-derived growth factor; IFN.g: interferon gamma; TNFa: tumour necrosis factor alpha; GCSF:
granulocyte-colony stimulating factor; MIP1a: macrophage inflammatory protein 1 alpha; MIP1b: macrophage inflammatory protein 1 beta
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between obese with MetS and healthy weight individ-
uals, demonstrating the importance of using multivari-
ate analysis rather than univariate.

Discussion
Many systems of the body have been reported in the lit-
erature as being dysregulated in obesity and subsequently

increasing the risk of chronic disease development. Due to
the complexity of the human body, integrated networks
are necessary to better understand the intricate interac-
tions between biomarkers involved in obesity-related dis-
eases. CNA was performed on various datasets obtained
from 11 obese men with MetS and 12 healthy weight
men. Datasets included were: anthropometric measures,
metabolic measures, immune cell abundance, serum cyto-
kine concentrations, and gut microbial composition. Until
recently, functional studies in obesity have had conflicting
outcomes due to the issue of redundancy and functional
interdependencies between biomarkers across different
body systems. The aim of this study was to compare the
networks constructed for the two studied groups and
identify key biomarker interactions that may characterise
obesity and related diseases.

Table 2 Main properties of the obese with MetS (Fig. 1) and
healthy weight networks (Fig. 2)

Network Total number
of edges

Network
density

Number
of hubs

Obese with
MetS

11 0.09 3

Healthy weight 7 0.06 0

Fig. 2 Multi-level CNA constructed for healthy weight (b) participants. AUSDRISK: Australian type 2 diabetes risk; WHR: waist-hip ratio; BMI: body
mass index; X.fat: percentage fat mass; X.musc: percentage muscle mass; RMR: resting metabolic rate; SBP: systolic blood pressure; DBP: diastolic
blood pressure; MetS: metabolic syndrome; Chol: cholesterol; LDL: low-density lipoprotein; HDL: high-density lipoprotein; HCT: haematocrit; RCC:
red cell count; ESR: erythrocyte sedimentation rate; PLT: platelet; BASO: basophil; CRP: C-reactive protein; LYMPHO: lymphocyte; NK cells: natural
killer cells; DC: dendritic cells; Treg: T-regulatory cells; Th1 cells: T-helper 1 cells; VEGF: vascular endothelial growth factor; IL-: interleukin; IP10:
interferon gamma-induced protein 10; PDGF: platelet-derived growth factor; IFN.g: interferon gamma; TNFa: tumour necrosis factor alpha; GCSF:
granulocyte-colony stimulating factor; MIP1a: macrophage inflammatory protein 1 alpha; MIP1b: macrophage inflammatory protein 1 beta
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When comparing the networks constructed for each
group, the obese with MetS group had a denser overall net-
work than the healthy weight group. The differences in the
number of correlations suggest the obese with MetS net-
work displayed a more complex connectivity compared to
the healthy weight group. The concept of a more complex
network confirms the paradigm that obesity is associated
with an alteration of multiple parameters across a broad
range of biological systems. The interconnected nature of
different body systems calls for the need to utilise inte-
grated analytical approaches to deconstruct the complexity
of the biological dysregulation in obesity. Through this ap-
proach, biomarkers that may be central for investigation in
future studies may be identified. The correlation network
analysis used in this study supports the use of cluster-based
analysis to better understand obesity-related diseases.
In the obese with MetS network, biomarkers of each

individual variable group were found to be correlated
with other biomarkers from their own group as well as
other variable groups. On the other hand, immune cell
biomarkers in the healthy weight network were not
shown to be correlated with biomarkers from two other
variable groups: anthropometric measures and metabolic
measures. The contrast between correlations in the
obese with MetS and healthy weight networks suggest
immune cells to be heavily perturbed in obesity. Both
human and animal studies have reported on obesity-
related changes in the immune cell abundance and activ-
ity which were linked with the development of chronic
diseases [13–16]. The similarity in findings between the
current study and previous literature suggests CNA to

be a reliable analytical method which can be used in
studies looking at diseases with complex aetiology.
Further comparisons between the two networks in rela-

tion to immune cell abundance revealed more correlations
in the obese with MetS network compared to the healthy
weight network, with 11 and 7 correlations, respectively.
Within the correlations in the obese with MetS network,
there were three biomarkers with high betweenness cen-
trality scores. Betweenness centrality is a measure of the
number of shortest paths between two other biomarkers
that passes through the biomarker in question. A high
betweenness centrality score would therefore suggest the
biomarker to be the centre of a key hub within the
network. The three central biomarkers were: Treg cell
abundance, neutrophil abundance and cytotoxic T cell
abundance. The correlations found in our study that con-
stitute these hubs have shown positive correlations be-
tween pro-inflammatory biomarkers, such as between
neutrophils and macrophages, and negative correlations
between pro-inflammatory and anti-inflammatory bio-
markers, including Treg cells and cytotoxic cells. These
correlations are consistent with the findings from earlier
studies which have reported a dysregulation in the im-
mune system of obese individuals, resulting in a high pro-
inflammatory-to-anti-inflammatory biomarker ratio [11].
All biomarkers have connections with a number of other
biomarkers and therefore the recognition of key hubs is
crucial in identifying biomarker profiles that characterise
obesity-related diseases.
While correlation networks are particularly useful in

discovering correlations between biomarkers and key hubs

Table 3 Immune cell abundance measures in obese with MetS (N = 11) and healthy weight (N = 12) males

Immune cells Obese with Mets (n = 11) Healthy weight (n = 12) P-value*

Mast cells 3.55 ± 0.68 4.22 ± 0.65 0.02

sNK cells 7.34 ± 0.29 7.26 ± 0.43 0.56

CD8 T cells 6.98 ± 0.53 7.07 ± 0.41 0.64

DC 2.02 ± 0.55 1.7 ± 0.63 0.24

Treg 3.8 ± 0.34 3.89 ± 0.5 0.72

CD45 12.44 ± 0.26 12.33 ± 0.24 0.31

Macrophages 8.89 ± 0.25 8.84 ± 0.23 0.62

T cells 8.88 ± 0.17 8.93 ± 0.18 0.49

Neutrophils 11.01 ± 0.37 10.96 ± 0.33 0.73

Cytotoxic cells 9.34 ± 0.57 9.3 ± 0.51 0.89

Th1 cells 5.49 ± 0.49 5.37 ± 0.66 0.56

Normal mucosa 3.36 ± 0.47 3.25 ± 0.39 0.60

T-helper cells 8.22 ± 0.14 8.32 ± 0.07 0.04

B cells 7.04 ± 0.7 7.12 ± 0.69 0.78

Th2 cells 3.36 ± 0.34 3.9 ± 0.96 0.11

CD4 activated 2.24 ± 0.59 2.1 ± 0.53 0.61

*P value is based on an unpaired t-test using log-transformed data
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of a system, unpaired t-tests reveal very little in compari-
son. Performed on the same immune cell abundance data,
an unpaired t-test between the obese with MetS and
healthy weight group only observed significant differences
in mast cell and T-helper cell abundances. Both mast cell
and T-helper cell abundances were higher in the healthy
weight group. In a study by Liu et al., mast cells contrib-
uted to obesity by producing pro-inflammatory cytokines
[14]. Therefore, mast cell abundance is expected to be
higher in the obese with MetS group, inconsistent with
the findings from the current study. Additionally, neither
mast cell nor T-helper cell abundance were present in any
of the three key hubs found in the obese with MetS net-
work, suggesting the findings from the t-test to be unin-
formative. The clear distinction between the results of the
correlation network and t-test is attributable to the inabil-
ity of linear causality models to account for the complexity
of human body systems.
Using correlation networks, the current study also found

many interesting relationships, such as a positive correl-
ation between pro-inflammatory neutrophils and anti-
inflammatory Tregs. As obese individuals typically have a
high pro-inflammatory-to-anti-inflammatory ratio, this
finding was unexpected. A possible explanation for this re-
lationship is suggested in a study by Mishalian et al. who
observed the ability of neutrophils to recruit Tregs, exacer-
bating the impairment of the immune system in disease
[17]. Without the use of CNA, a finding that is pertinent in
better understanding this multi-factorial disease would be
missed in a simple t-test. Relationships between bio-
markers, such as neutrophils and Tregs, are important in
intervention research which may consider targeting both
biomarkers for an exacerbated effect.
Both Treg and neutrophil abundances were also corre-

lated with biomarkers outside of the immune cell abun-
dance variable group. Treg cell abundance was positively
correlated with serum MIP-1β concentration, consistent
with the findings of Patterson et al., whereby stimulated
Tregs produced MIP-1β to assist with T cell migration [18].
Our study also found neutrophils to be associated with a
number of gut microbes which is also consistent with earl-
ier studies [19–22]. Neutrophil abundance was positively
correlated with gut microbes belonging to neutrophil-
associated microbiomes [23]: Firmicutes (Anaerostipes,
Blautia, Flavonifractor and Holdemania) and Proteobac-
teria (Escherichia/Shigella) phyla. The correlations between
biomarkers from different variable groups demonstrates the
complexity of interactions between physiological systems
and the importance of utilising multi-analyte networks
when analysing diseases with complex aetiology.
The differences in results obtained in univariate and

multivariate analysis highlights the biggest advantage to
using CNA in high-throughput studies. Multivariate ana-
lysis allows researchers to consider underlying

connections between biomarkers, both within the same or
across different variable groups. A simple comparison of
biomarker levels between groups does not have the ability
to recognise key hubs within a network which may be tar-
geted for future intervention studies. Multivariate analysis
has the means to overcome the limitation of redundancy
among biomarkers which has limited the ability of func-
tional research to identify key biomarkers in obesity-
related disease. Other advantages to using multivariate
CNA includes its ease of use and interpretability. The use
of correlation networks should therefore be considered for
exploratory analysis, rather than unpaired t-test, prior to
the use of more complex analytical tools.
The limitations of this study have also been recognised,

in particular the small sample size that was used. As a
pilot study, the current work was exploratory and utilised
high correlation coefficient cut-offs rather than p-values
to define important results. Another limitation is the small
number of molecular markers included in the analysis.
While many obesity studies examined markers within adi-
pose tissue, the current study performed analysis on per-
ipheral blood to examine systemic rather than peripheral
immune dysregulation. Additionally, the current study did
not consider the effects of participant ethnicity in genetic
analysis which may result in false positive findings. How-
ever, from the known participant ethnicities, 70% were
Caucasian, 0.04% were Hispanic and the remaining were
unknown. Despite these limitations, the study was still
able to gather a multitude of results that supports further
research with larger sample sizes and datasets.

Conclusion
Our study found that obesity with MetS is associated
with a more densely connected and therefore complex
interaction between inflammatory, gut microbial and
metabolism in comparison to that observed in healthy
weight individuals. Further analysis revealed immune
cells to be highly involved in obesity, with three key hubs
in the obese with MetS network that consisted of Treg,
neutrophils and cytotoxic cell abundance. The results
from the network analysis were much more informative
compared to a t-test, suggesting it to be a better choice
as an exploratory analytical tool. Our findings demon-
strate the need for integrated analysis of multidimen-
sional data to identify specific and multiple interactions
between biomarkers that may be targeted for treatment
strategies.

Methods
Study design and ethics
A correlation-based network analysis was performed on
anthropometric measures, metabolic measures, immune
gene expression, serum cytokine concentrations and gut
microbial composition collected from 12 healthy weight
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men and 11 obese men with MetS, defined as per the
Adult Treatment Panel III criteria [12] (Three or more
of the following risk factors: (1) abdominal obesity: ≥30
kg/m2 BMI or > 94 cm waist circumference; (2) high
blood pressure: ≥130/≥85 mmHg; (3) high triglycerides:
≥1.7 mmol/L; (4) low HDL cholesterol: ≤1mmol/L; (5)
high fasting plasma glucose: ≥6.1 mmol/L or ≥ 6.5%
HbA1c). All participants were aged between 18 and 65
years without a history of medical conditions known to
affect the immune system, including: cancer, Crohn’s
disease, liver disease, and irritable bowel syndrome. Add-
itionally, participants were excluded if they used any
immune-modulating medications or supplements, such
as: non-steroidal anti-inflammatory drugs (NSAIDs), fish
oil and probiotics. Ethics for this study was approved by
the Griffith University Human Research Ethics Commit-
tee (MED 18.15.HREC) and all participants provided
written informed consent prior to their involvement in
the study.

Sample collection and analysis
Fasting blood samples were collected for analysis of
metabolic (lipids, glucose, glycated haemoglobin
[HbA1c]) and inflammatory (C-reactive protein [CRP],
erythrocyte sedimentation rate [ESR], circulating cyto-
kines) measures. In addition, RNA was isolated and ana-
lysed using an immune profiling panel of 770 genes
(nCounter® PanCancer Immune Profiling Panel, Nano-
String Technologies, Washington, USA) to estimate the
abundance of different immune cells, including mast
cells, neutrophils and different T cell subsets. Faecal
samples were also collected and microbial compositional
sequencing was undertaken via 16S rRNA sequencing
and taxonomic classification.

Correlation-based network analysis
To compare key demographic measures of obese with
MetS and healthy weight participants, an unpaired t-test
was used and measures were expressed as mean ± stand-
ard deviation. Differences in measures were considered
significant if the p-value was less than 0.05. The dataset
was split into five different variable groups: anthropo-
metric measures, metabolic measures, immune cell
abundance, serum cytokine concentrations, and gut mi-
crobial composition.
Correlation networks were constructed by firstly calcu-

lating the Pearson correlation coefficient (ρ) for each
biomarker with all other biomarkers in the five variable
groups. A Pearson correlation coefficient threshold was
set at | ± 0.7|. Two biomarkers with a correlation coeffi-
cient greater than the threshold will be considered as
having a strong correlation, visually represented by a link
between the two nodes (Fig. 3). Biomarkers that had a
strong correlation with another biomarker appeared in
the CNA. Strong correlations between biomarkers of dif-
ferent variable groups were indicated by a single line
connecting the two variable groups involved, regardless
of the total number of correlations found. Nodes of bio-
markers without strong correlations with any other bio-
marker were not included in the CNA. Due to the small
sample size, the Pearson correlation coefficient threshold
required for a correlation to be considered significant
was set very high rather than using a significance level.
A complete case correlation analysis was conducted,
meaning that biomarkers with missing data were ex-
cluded from the network analysis.
All the variables involved in the correlation analysis

were continuous variables. Node degree and betweenness
centrality was calculated for each node in the correlation
network and network density was computed for each

Fig. 3 Example of a multi-analyte network constructed in the current study. If two biomarkers within a variable group has a ρ value greater than
the initial ρ0 threshold specified, the two biomarkers will be connected by a line. Biomarkers without correlations with another biomarker, or with
ρ values smaller than ρ0, will not appear in the network. If one or more biomarker from one variable group is correlated with one or more
biomarker from another variable group with a ρ value greater than ρ0, a single line will connect the two variable groups, regardless of the actual
number of correlations present
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variable group. The node degree is the number of strong
correlations a particular node has with other biomarkers.
Different node sizes in the network visually demonstrate
the degree of each node, with a bigger sized node repre-
senting a greater node degree. Betweenness centrality
scores describe the number of shortest paths between any
two biomarkers that passes through the node in question.
Nodes with higher betweenness centrality scores are more
well-connected within the network and therefore are con-
sidered to be drivers of the network. As each variable
group has different numbers of nodes, it is difficult to
compare betweenness centrality scores across variable
groups. Instead, the essentiality of nodes in a network was
determined by a high node degree and a high ranking of
betweenness centrality score within their respective vari-
able groups. The variable groups from the obese with
MetS and healthy networks were compared based on net-
work density, which is the ratio of existing connections to
the total number of possible connections within a net-
work. The higher the network density, the more connec-
tions there are in the network.
All the statistical analyses and network analyses were

carried out with custom R (R Development Core Team,
R Foundation for Statistical Computing, Vienna, Austria)
scripts. To avoid computational issues that may occur
with a large sample size, the code was developed into
multiple modules. Each type of analysis, for example
Pearson correlation coefficient calculation or network
visualisation, had its own module.
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