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Abstract

Background: In human genetic association studies with high-dimensional gene expression data, it has been well
known that statistical selection methods utilizing prior biological network knowledge such as genetic pathways and
signaling pathways can outperform other methods that ignore genetic network structures in terms of true positive
selection. In recent epigenetic research on case-control association studies, relatively many statistical methods have
been proposed to identify cancer-related CpG sites and their corresponding genes from high-dimensional DNA
methylation array data. However, most of existing methods are not designed to utilize genetic network information
although methylation levels between linked genes in the genetic networks tend to be highly correlated with each
other.

Results: We propose new approach that combines data dimension reduction techniques with network-based
regularization to identify outcome-related genes for analysis of high-dimensional DNA methylation data. In simulation
studies, we demonstrated that the proposed approach overwhelms other statistical methods that do not utilize
genetic network information in terms of true positive selection. We also applied it to the 450K DNA methylation array
data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA) project.

Conclusions: The proposed variable selection approach can utilize prior biological network information for analysis
of high-dimensional DNA methylation array data. It first captures gene level signals from multiple CpG sites using data
a dimension reduction technique and then performs network-based regularization based on biological network
graph information. It can select potentially cancer-related genes and genetic pathways that were missed by the
existing methods.
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Background
In human genetic association studies, statistical meth-
ods that can incorporate genetic network information
into association analysis have been widely used since
the seminal paper of Li and Li [1]. In Crohn’s dis-
ease association study, for instance, Chen et al. [2] have
demonstrated that neighboring genes within a genetic
pathway tend to have similar association patterns. Zhang
et al. [3] utilized human protein-protein interaction net-
work to identify gene expression features associated with
ovarian cancer. Kim et al. [4] developed a new prognostic
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scoring system for breast cancer patients based on six
large genetic network databases. Ren et al. [5] com-
bined the cell cycle pathway and p53 signaling pathway
to identify important genes for analysis of Type 2 dia-
betes mellitus. When genes are functionally related to
each other in a genetic network, statistical methods uti-
lizing prior biological network knowledge indeed out-
perform other methods that ignore the genetic network
structures.
In methodological research, network-based regulariza-

tion proposed by Li and Li [1, 6] have shown promis-
ing selection results for analysis of high-dimensional
gene expression data. It basically combines the l1-norm
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penalty and the squared l2-norm penalty with a Lapla-
cian matrix representing a graph structure among genes
so that both sparsity and smoothness among biologi-
cally linked genes can be induced. Although the origi-
nal network-based regularization was limited to a linear
regression model where an outcome variable is quanti-
tative, it has been extended to case-control association
study replacing a least square loss function by a nega-
tive logistic likelihood [5, 7]. A conditional logistic likeli-
hood and a partial Cox likelihood were also used for 1:1
matched case-control analysis and censored survival anal-
ysis, respectively [3, 8–10]. One noticeable advantage of
network-based regularization is computational efficiency
due to convex optimization. That is to say, variable selec-
tion can be conducted with relatively fast computational
speeds even for high-dimensional genomic data, as we
adopt one of the well-designed computational algorithms
such as cyclic coordinate descent and gradient descent
algorithms [11–14].
However, network-based regularization has beenmainly

applied to gene expression data where an individual gene
is considered as one predictor in a regression frame-
work. Suppose that we have gene expression data with
p genes. In a given biological graph where a node rep-
resents a gene and an edge represents a genetic link
between two genes, network-based regularization can
employ the p-dimensional Laplacian matrix to select
outcome-related genes based on the biological network
structure. In recent association studies on epigenetics,
relatively many statistical methods for analysis of high-
dimensional DNA methylation data have been proposed
to identify cancer-related CpG sites and their correspond-
ing genes [7, 8, 15–18]. But, most of these methods are
not designed to utilize genetic network information in
epigenome-wide association studies. Network-based reg-
ularization cannot be directly applied to high-dimensional
DNA methylation data because an individual CpG site
is considered as one predictor and one single gene
consists of multiple CpG sites. In other words, the
dimension of the Laplacian matrix representing a bio-
logical network does not match with that of DNA
methylation data.
In this article, we propose new approach that incor-

porates biological network information into case-control
association analysis with high-dimensional DNA methy-
lation data. The proposed approach combines one of data
dimension reduction techniques with network-based reg-
ularization to identify outcome-related genes, given a bio-
logical network. We considered four different dimension
reduction techniques, which are principal component
(PC), normalized principal component (nPC), supervised
principal component (sPC), and partial least square (PLS).
The proposed approach first captures gene-level sig-
nals from multiple CpG sites using one of dimension

reduction techniques and then regularizes them to per-
form gene selection based on the biological network. We
performed extensive simulation studies where the per-
formance of four dimension reduction techniques was
compared with each other, and the proposed approach
was also compared with other statistical methods that
ignore network information, including group lasso and
commonly used individual group-based tests. Finally, we
investigated the correlation patterns of high-dimensional
DNA methylation data from four breast invasive carci-
noma cancer subtypes, and found that DNA methylation
levels among linked genes in a biological network are
indeed highly correlated with each other. The proposed
approach was then applied to 450KDNAmethylation data
to identify potentially cancer-related genes and genetic
pathways, incorporating seven large genetic network
databases.

Results
Simulation studies
In order to simulate methylation data where linked genes
within a biological network graph are correlated with
each other, a three-step process was conducted. In step
1, we made the p-dimensional covariance matrix from an
arbitrary graph based on a Gaussian graphical model. In
step 2, p latent variables were generated from two differ-
ent multivariate normal distributions that have the same
covariance but a different mean vector. In step 3, methy-
lation values for both neutral and outcome-related CpG
sites were simulated based on each of latent variables.
Specifically, we first created an arbitrary network graph

in Fig. 1 to mimic a biological network that contains
a hub gene plus many other genes with a few links.
We assumed that we have 10 disjointed network mod-
ules each of which consists of 100 genes correspond-
ing to the network in Fig. 1. That is, we have a total
of p = 1000 genes. In the first scenario, we further
assumed that only 45 genes in the first network mod-
ule are outcome-related and the remaining 9 network
modules do not include outcome-related genes. Figure 1
depicts these 45 colored genes out of 100 genes in the
first network module. They consist of one centered genes
with four groups of linked genes. We denote these four
groups of outcome-related genes as g1, g2, g3, and g4,
respectively.
The difference between 45 outcome-related genes and

the remaining 955 neutral genes were distinguished by
two different mean vectors between cases and controls.
The mean vector of the control group is fixed as 0,
while the mean vector of case group is defined as μ =
(μ1,μ2, . . . ,μp)T. For 995 neutral genes, we set μj = 0
so that there is no mean difference between cases and
controls. In contrast, if the j-th gene is one of the 45
outcome-related genes, μj is defined as
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Fig. 1 An example of a network module used in simulation studies. It has a total of 100 genes, where the colored 45 genes are assumed to be
outcome-related genes and consist of one centered gene plus four different groups of 11 genes

μj ∼
⎧
⎨

⎩

δ if centered gene
δ
3
√
dj if j ∈ g1 orj ∈ g3

− δ
3
√
dj if j ∈ g2 orj ∈ g4,

where δ is the strength of association signals and dj is the
total number of genetic links for the j-th gene. We set
δ = 1.5 so that |μj| ranges from 0.5 to 1.5. Note that in
our simulation a gene with more genetic links can have
stronger signals than a gene with less links. Also, genes
in the same network module can be either positively or
negatively associated with an outcome.
Next, we applied a Gaussian graphical model [19] to

generate a covariance matrix of 1000 genes, where the
linked genes are correlated with each other according to
the network structure in Fig. 1. The key assumption of the
Gaussian graphical model is that non-zero entries of an
inverse covariancematrix imply genetic links between two
genes [20, 21]. Therefore, the correlation between linked
genes are much higher than that of unlikend genes. In
our example, the inverse covariance matrix correspond-
ing to our 10 network modules is very sparse since the
number of links for an individual gene is at most 9. More
detailed procedure to generate a covariance matrix given
a network graph is described by [20]. Let us denote the
generated covariance matrix by �.

In our simulation, we assumed that the covariance is the
same between cases and controls while the mean vector is
different from each other. The p-dimensional latent vari-
able of the i-th individual zi was then simulated from two
different multivariate normal distributions such that

zi ∼
{
N(0,�) if the i-th individual is control
N(μ,�) if the i-th individual is case

where zi = (zi1, . . . , zip)T and zim represents the latent
value of the m-th gene of the i-th individual. Based on
these latent values, we finally generated methylation data
assuming each gene consists of 10 CpG sites. That is, we
additionally generated methylation values of 10 CpG sites
each gene so that our simulation data has a total of 10,000
CpG sites. The methylation value of the i-th individual
and the j-th CpG site in the m-th gene is denoted by x[m]

ij ,
which was generated from

x[m]
ij =

{
zim + εij, j = 1, . . . ,ω

ε̄ij, j = ω + 1, . . . , 10

where εij ∼ N(0, σ 2) and ε̄ij ∼ N
( 1
n

∑n
i=1 zim, σ 2). We

have two parameters to vary the simulation setting. The
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first one is ω that is the total number of CpG sites corre-
lated with the latent value. It essentially controls the num-
ber of causal/neutral CpG sites in the outcome-related
gene. The other one is an error variance, σ 2 which con-
trols the noise level of association signals. The sample size
was 200 consisting of 100 cases and 100 controls.
In the first comparison, we considered five regulariza-

tionmethods where fourmethods used the same network-
based regularization but combined with one of four
reduction techniques which are principal components
(Net+PC), normalized principal components (Net+nPC),
supervised principal components (Net+sPC), and par-
tial least squares (Net+PLS), respectively. As described in
“Materials and methods” section, each method first cap-
tures gene level signals from 10 CpG sites of individual
genes, and then applies the network-based regularization
utilizing the pre-specified network graph information in
Fig. 1. The other comparing method is group lasso which
performs gene selection without using genetic network
information [22, 23].
The selection performance of five methods were evalu-

ated based on true positive rate (TPR) which is equivalent
to the number of selected genes among 45 outcome-
related genes divided by 45. Since the TPR result depends
on the total number of selected genes, we compared TPRs
of five methods when they selected the exact same num-
ber of genes. Note that false positive rates of five selection
methods in our simulation is inversely proportional to
TPR, because comparisons were made when the number
of outcome-related genes was fixed as 45 and the same
number of genes was selected by all methods. Therefore,
higher TPR clearly indicates a better method when five
methods select the exactly same number of genes. Each
method first computed selection probabilities of individ-
ual genes and then top 10, 20, . . . , 100 genes were ranked
by their selection probabilities. In Fig. 2, the averaged
TPRs of five methods over 100 simulation replications are
displayed along with different number of selected genes
when ω = 2, 4 or 8, and σ = 2.0, 2.5 or 3.0.
In Fig. 2, it is noticeable that group lasso shows the worst

selection performance in all of nine simulation settings.
This indicates that utilizing genetic network information
indeed improves selection performance whenmethylation
data are highly correlated among linked genes. Also, we
can see that combining with partial least square is not
appropriate since it has relatively lower TPR than combin-
ing with other dimension reduction techniques.When the
number of causal CpG sites in a gene is large (ω = 8), three
methods such as Net+PC, Net+nPC and Net+sPC have
almost the same TPR regardless of the size of the error
variance. However, TPRs of Net+nPC is better than those
of Net+PC and Net+sPC when the number of causal CpG
sites in a gene is less than 8. Particularly, Net+PC shows
very poor selection performance when ω = 2. Although

Net+sPC is much better than Net+PC, it has slightly lower
TPR than Net+nPC when ω = 2. It seems that Net+nPC
shows the best selection performance in all simulation set-
tings. Consequently, we can conclude that the normalized
principal component is the most appropriate feature to
represent multiple CpG sites from each gene, compared
with other dimension reduction techniques.
In the next comparison, we considered commonly used

gene-based hypothesis tests where each gene is tested one
at a time so the p-values of 1000 genes were simultane-
ously computed. Since results from hypothesis testing and
variable selection are difficult to directly compare with
each other, we ranked genes by p-values from each test
and selected a particular number of top ranked genes by
p-values like 10, 20, . . . , 100. The TPRs of these top ranked
genes were compared with those of genes ranked by selec-
tion probabilities from Net+nPC, which shows the best
selection performance among 5 regularization methods.
Since each gene consists of 10 CpG sites, we considered
four representative group-based tests such as two sample
t-test based on PCA, global test [24], SAM-GS [25], and
Hotelling’s T2 test [26]. In Fig. 3, the averaged TPRs of five
methods over 100 simulation replications are displayed
along with different number of selected genes when ω =
2, 4 or 8, and σ = 2.0, 2.5 or 3.0. In Fig. 3, we can see that
Net+nPC overwhelms four individual tests in all of nine
simulation settings. Since individual group tests also do
not utilize network graph information, they are not com-
parable with the proposed method. The numerical values
of TPRs of 4 individual tests and 5 regularization methods
are summarized in Table 1 when all methods selected top
50 genes.
In the second scenario of the simulation study, we

assumed that 48 genes among 1000 are outcome-related,
where 12 genes from each of four network modules
are only outcome-related. So, the remaining 6 modules
do not include outcome-related genes. Additional file 1
depicts 48 colored genes in the four network modules.
The outcome-related genes in each network module con-
sists of one centered gene with 11 linked genes. Similar to
the first scenario, we assumed that 24 genes in two mod-
ules are positively associated with an outcome, while the
remaining genes in the other modules are negatively asso-
ciated with an outcome. All other simulation settings such
as how to generate the mean vector and the covariance
matrix, data dimension and sample size were not changed.
The TPRs of the network-based regularization incorpo-
rated with nPC were also compared with those of four
other regularization methods and those of four individual
tests in Additional files 2 and 3, respectively. In this sce-
nario, the Net+nPC is still superior to all other methods
in terms of true positive rates of selected genes.
Finally, we generated another simulation data where

each gene includes a different number of CpG sites. That
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Fig. 2 The averaged true positive rates of the network-based regularization methods combined with four different dimension reduction techniques
such as principal components (Net+PC), normalized PC (Net+nPC), supervised PC (Net+sPC), partial least square (Net+PLS) and group lasso are
displayed along with different number of selected genes ranked by selection probability, when the number of causal CpG sites in an
outcome-related gene ω and the noise level σ have different values

is, we considered both big and small genes in this sim-
ulation while the first two scenarios assumed that all
genes have 10 CpG sites. The number of CpG sites each
gene was simulated from a Gamma distribution for all of
p = 1000 genes. We found that the distribution of the
number of CpG sites from our breast cancer data is similar
to a Gamma distribution. The histograms of the number
of CpG sites each gene for both simulation data gener-
ated from a Gamma distribution and breast cancer data
are displayed in Additional file 4. Since big genes can have
a greater number of causal CpG sites than small genes, we
assumed that 40% of CpG sites within 45 outcome-related
genes are causal sites and the error variance was fixed as
2.5. The TPRs of 4 individual tests and 5 regularization

methods are shown in Additional file 5. In this simulation,
Net+nPC still outperforms all other methods.

Analysis of breast cancer data
We applied the proposed method to the case-control type
of 450K DNA methylation datasets of four subtypes of
breast invasive carcinoma (BRCA) from TCGA project
[18, 27]. We conducted standard quality control steps
where sites on sex chromosomes, sites with missing values
and sites overlap with known single nucleotide polymor-
phisms were first removed out and type I/II probe bias was
then corrected using the ’wateRmelon’ package. After pre-
processing, the dataset ended up with 317,487 CpG sites
over 19,296 genes for 59 independent normal samples
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Fig. 3 The averaged true positive rates of the network-based regularization method combined with normalized principal component (Net+nPC),
two sample t-test using PCA (T-test), global test (GT), SAM-GS and Hotelling’s T2 test (HT) are displayed along with different number of selected
genes ranked by selection probability for Net+nPC and p-values for four individual tests, when the number of causal CPG sites in an
outcome-related gene ω and the noise level σ have different values

and 187 tumor samples which contain 31 samples for the
Basal-like subtype, 12 for the Her2 subtype, 99 for the
LumA subtype and 45 for the LumB subtype. Therefore,
we could conduct four different case-control association
studies where tumor samples from four different sub-
types were regarded as a case group and the same normal
samples were considered as a control group. In order to
utilize biological network information, we employed an
R package ‘graphite’ which combined 7 genetic network
databases from Biocarta, HumnaCyc, KEGG, NCI, Pan-
ther, Reactome, and SPIKE. We found that only 9236
linked genes in the package are matched with genes in our
BRCA dataset.

Canonical correlation analysis
In our simulation study, we have demonstrated that
network-based regularization utilizing network graph
information can drastically improve true positive selec-
tion when correlation of linked genes is indeed higher
than that of unlinked genes. Therefore, we first investi-
gated the correlation of 9236 linked genes from BRCA
dataset before conducting association analysis. From
the incorporated biological network databases, we have
207,475 genetic links (edges) among 9236 genes. Since the
number of CpG sites each gene ranges from 1 to 466,
we computed the canonical correlation coefficient (CCC)
between two linked genes which contain multivariate
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Table 1 The averaged true positive rates of 4 individual tests and 5 different regularization methods when each method selected top
50 genes

ω = 2 ω = 4 ω = 8

Method σ = 2.0 σ = 2.5 σ = 3.0 σ = 2.0 σ = 2.5 σ = 3.0 σ = 2.0 σ = 2.5 σ = 3.0

T-test 0.5595 0.4243 0.3043 0.7016 0.6263 0.5167 0.7767 0.7376 0.6689
GT 0.4662 0.3538 0.2738 0.6492 0.5176 0.4414 0.7557 0.6698 0.6002
SAM-GS 0.4452 0.3405 0.2548 0.6358 0.5186 0.4318 0.7529 0.6765 0.5964
HT 0.3519 0.2700 0.2310 0.4566 0.4118 0.3394 0.5420 0.4847 0.4351
group lasso 0.4644 0.3536 0.2842 0.6089 0.4959 0.4272 0.6697 0.6374 0.5487
Net+PLS 0.6592 0.4963 0.3969 0.8106 0.7020 0.6148 0.8733 0.7910 0.7322
Net+PC 0.6136 0.4078 0.2777 0.9141 0.8276 0.6762 0.9504 0.9145 0.8801
Net+sPC 0.7592 0.5663 0.3862 0.9066 0.8283 0.7004 0.9547 0.9310 0.8644
Net+nPC 0.8148 0.6376 0.4338 0.9276 0.8456 0.7455 0.9504 0.9103 0.8760

DNA methylation levels. Canonical correlation is a way
of measuring the linear relationship between two multi-
dimensional variables [28]. It essentially finds two sets
of basis vectors such that the correlations between two
projections of the multi-dimensional variables onto these
basis vectors are mutually maximized. For each subtype,
we obtained CCC of 207,475 paired genes. The sample
mean of CCC is 0.8501 for the Basal subtype, 0.8841 for
the Her2 subtype, 0.7747 for the LumA subtype and 0.84
for the LumB subtype.
In order to determine statistical significance of relation-

ship between biologically linked genes and their canonical
correlation, we performed a permutation test for each
subtype. The total number of all possible pairs among
p = 9236 genes can be computed as p(p − 1)/2 =
42,647,230. So, we randomly chose 207,475 pairs among
42,647,230 and computed the samplemean of CCC for the
selected 207,475 pairs. This process was repeatedK times.
Let us denote the sample mean of CCC for the k-th per-
muted pairs by ck , the permutation p-value can then be
computed as

p-value =
K∑

k=1

I(ck > c∗) + 1
K + 1

,

where c∗ is the sample mean of CCC from the original
gene pairs. We fixed the total number of permutation
as K = 100,000 for all subtypes. After 100,000 permuta-
tions, we computed both mink ck and maxk ck for each
subtype. In other words, the mean of CCC of permuted
pairs ranges from 0.8243 to 0.8271 for the Basal subtype,
from 0.8665 to 0.8691 for the Her2 subtype, from 0.7497
to 0.7527 for the LumA subtype and from 0.8185 to 0.8215
for the LumB subtype. Since maxk ck is less than c∗ for
all of four subtypes, their permutation p-values are less
than 10-6. The histograms of the sample mean of CCC for
the permuted pairs and the original pairs are displayed in
Additional file 6.
The total number of ways to choose 207,475 pairs

among 42,647,230 is exceedingly large (approximately

10569,756). Although the number of permutation of
100,000 is an extremely small number compared with
this value, the mean value of CCC for any permuta-
tion sets failed to exceed the mean of CCC for the
original pairs. Therefore, we are certain that the cor-
relations of DNA methylation levels among biologi-
cally linked genes are relatively high, compared with
the correlations between randomly chosen gene pairs
where only 0.0486% pairs are biologically linked with
each other. For this reason, the network-based regu-
larization method that can utilize the information of
207,475 genetic pairs should be applied to the BRCA
dataset.

Genetic association analysis
Although our BRCA dataset has a total number of 19,296
genes, only 9236 genes are matched with the seven incor-
porated genetic network databases. So, we performed
two different analysis. The first analysis includes only the
matched 9236 genes where all genes have at least one
genetic link. The second analysis includes all of 19,296
genes where 10,060 genes are isolated genes. We applied
the network-based regularization method using three
data dimension reduction techniques such as Net+PC,
Net+nPC and Net+sPC for each BRCA subtype, since
these three methods showed relatively strong true posi-
tive selection performance in our simulation studies. For
each subtype of both analysis, we selected top 100 genes
by selection probabilities of three methods. The number
of overlapped genes in the first analysis are summarized
in the Venn diagrams in Fig. 4. The result of the second
analysis are summarized in the Venn diagrams in Addi-
tional file 7. We focused on these overlapped genes in the
top 100 list selected by all of three methods. The number
of overlapped genes are 10 for the Basal subtype, 19 for
the Her2 subtype, 11 for the LumA subtype, and 7 for the
LumB subtype in the first analysis, and they are 9 for the
Basal subtype, 21 for the Her2 subtype, 10 for the LumA
subtype, and 9 for the LumB subtype in the second anal-
ysis. These gene names and their selection probabilities
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Fig. 4 The top ranked 100 genes selected by the network-based regularization method combined with principal components (PC), normalized
principal components (nPC), and supervised principal components (sPC) are summarized in the Venn diagrams for each of four breast invasive
carcinoma subtypes. This analysis includes only 9236 biologically linked genes

are displayed in Additional file 8 for the first analysis and
Additional file 9 for the second analysis.
For the Basal subtype, we identified a total of 14

genes from the first and second analysis, where 6 genes
have been reported to be associated with cancers. Genes
MIR124-2 [29], PBX1 [30], SKI [31], GHSR [32] and
RBPMS [33] were reported to be associated with breast
cancer, and a gene CYP19A1 [34] was reported to be be
associated with endometrial cancer. For the Her2 sub-
type, 34 genes were selected by three methods from both
analysis. Among them, 12 genes were reported to be asso-
ciated with cancers. Four genes AQP1 [35], LFNG [36],
RASSF2 [37] and WWP2 [38] were reported to be asso-
ciated with breast cancer. Three genes C1orf114 [39],
PRAC [40] and SPP2 [41] were reported to be associ-
ated with prostate cancer. OPRM1 [42] and GNG7 [43]
were reported to be associated with oesophageal can-
cer and pancreatic cancer, respectively. Genes SLC2A2
[44], TNC1 [45] and MIR518A2 [46] were reported to
be associated with lung cancer, gastric cancer and col-
orectal cancer, respectively. For the LumA subtype, a total
of 18 genes were selected by three methods from both
analysis, where 8 genes were reported to be associated
with cancers. Genes SIAH2 [47], CDH5 [48] and HS3ST2
[49] were reported to be associated with breast cancer.
Genes WNT11 [50] and THPO [51] were reported to
be associated with ovarian cancer and colorectal cancer,
respectively. Genes C1orf114 [39], CA3 [52] and KRT4
[53] were reported to be associated with prostate cancer,
hepatocellular carcinoma and esophageal squamous cell
carcinoma, respectively. For the LumB type, we identified
13 genes from both analysis. Among them, 5 genes were
reported to be associated with cancers. Genes AHCYL2
[54] and PSPN [55] were reported to be associated with
lung cancer. MSI2 [56], MACC1 [57] and TAGLN [58]

were reported to be associated with ovarian cancer, col-
orectal cancer and esophageal cancer, respectively.
Next, for each subtype we constructed the subnetwork

of top ranked 100 genes selected by the network-based
regularization combined with the normalized principal
component based on the seven incorporated biological
network databases. Figure 5 displays only linked genes
among top ranked 100 genes, where 43 genes for the
Basal subtype, 41 genes for the Her2 subtype, 37 genes
for the LumA subtype and 26 genes for the LumB sub-
type have genetic links. In the Basal subtype, the sub-
network contains 6 liked genes (CTBP2, DTX3, MAML3,
NOTCH2, PTCRA and RBPJL) from Notch signaling
pathway on the KEGG database. Also, it contains 6
linked genes (AP1M1, AP1S1, ARRB1, CLTC, CLTCL1
and EGFR) from both Membrane trafficking and Vesicle-
mediated transport pathways on the Reactome database.
In the Her2 subtype, the subnetwork contains 13 linked
genes (GNAL, GNG7, GPSM1, OPRM1, OR10J3, OR10J5,
OR2L8, OR6K2, OR8B4, OR8S1, OR9A4, P2RY6 and
PDE4D) from G protein-coupled receptors (GPCRs) sig-
naling pathway on the Reactome database. In the LumA
subtype, the subnetwork also contains 5 linked genes
(ADORA3, CHRM2, GNG12, LPAR6 and NPFFR1) from
G protein-coupled receptors (GPCRs) signaling pathway
on the Reactome database. In the LumB subtype, the
subnetwork contains 7 linked genes (FBXL22, KLHL21,
KLHL25, SIAH2, UBE2O, UBR2 and ZNRF2) from Adap-
tive immune system, Antigen processing: Ubiquitination
& Proteasome degradation and Class I MHC mediated
antigen processing & presentation pathways on the Reac-
tome database. The proposed approach was able to iden-
tify potentially cancer-related genetic pathways as well as
cancer-related genes, utilizing the incorporated 7 genetic-
network databases.
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Fig. 5 Subnetworks of the seven incorporated biological network databases among top ranked 100 genes selected by the network-based
regularization method combined with normalized principal components are displayed for each of four breast invasive carcinoma subtypes. Isolated
genes are not shown

Conclusions
In this article, we have proposed new variable selection
approach to utilize prior biological network informa-
tion for analysis of high-dimensional DNA methylation
array data. Most of existing statistical methods for case-
control association studies with DNA methylation data
are not designed to use prior biological network infor-
mation such as genetic pathways and signaling pathways,
although DNA methylation levels between biologically
linked genes are highly correlated with each other. The
proposed approach is first to capture gene level signals
from multiple CpG sites using a dimension reduction
technique like normalized principal components and then

to perform network-based regularization based on biolog-
ical network graph information. In our simulation studies,
we demonstrated that the proposed selection approach
outperforms other statistical methods that ignore genetic
network structures in terms of true positive rates. We also
applied it to breast cancer data consisting of 450K DNA
methylation array data, where the proposed approach was
able to select potentially cancer-related genes and genetic
pathways.
In our simulation and data analysis, we applied four

different dimension reduction techniques. Surprisingly,
we found that selection performance of four techniques
were quite different from each other even if the same
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network-based regularization method was performed. In
particular, the number of overlapped genes in top 100
lists created by different reduction techniques is rela-
tively small in analysis of breast cancer data. This result
indicates that gene-level features of four different reduc-
tion techniques are generated in quite a different way.
Specifically, both supervised principal components and
partial least squares aim to find features that associ-
ated with a phenotype outcome, where the former selects
significant CpG sites while the later weights estimated
regression coefficients. Although both principal compo-
nents and normalized principal components find features
that have the largest variance, normalizing makes a dif-
ference between two components. Based on true positive
selection in simulation studies, we concluded that the
normalized principal component is the most appropriate
among four techniques for dimension reduction of high-
dimensional DNA methylation data. However, we believe
that selection performance of network-based regulariza-
tion can be improved if we can generate new gene-level
features that include more CpG site-level information.
One practical issue in the application of the proposed

approach to high-dimensional DNAmethylation data is to
determine which existing biological networks to use and
how to account for their uncertainty. Although we incor-
porated seven biological network databases to apply our
breast cancer data, we could focus on the specified bio-
logical networks such as the known cancer-related genetic
pathways and the large-scale protein-protein interaction
network. However, many genes can be unnecessarily
excluded in the analysis if we limit to genes within par-
ticular genetic pathways. In our example, we had only
9236 genes matched with our incorporated biological net-
work databases among 19,296 genes. Since research on
genetic network is steadily growing and biological net-
work databases are periodically updated, the proposed
approach will be more useful to precisely identify cancer-
related genes and genetic pathways in the near future.
The proposed approach can perform both pathway-

level and gene-level selection. However, DNAmethylation
data consists of three layers which are pathways, genes and
CpG sites. There currently exist no methods that simulta-
neously perform three level selection, i.e., cancer-related
pathways, outcome-related genes within the selected
pathways, causal CpG sites within the selected genes.
Most of existing statistical methods for case-control asso-
ciation studies are designed to select only causal CpG
sites, only outcome-related genes or both. We think that
development of new statistical model that can capture
all of three level signals is next stage for analysis of
DNA methylation data. Although the proposed approach
has a limitation to select causal CpG within outcome-
related genes, we suggested new paradigm to perform
both pathway-level and gene-level selection in DNA

methylation analysis. So, we believe that the proposed
approach can be extended to the model that performs
three level selection in the future.

Materials andmethods
Let us denote the methylation values of the m-th gene by
Xm = (x1, x2, . . . , xkm)T, where xj = (x1j, x2j, . . . , xnj)T
is the n-dimensional vector representing the methylation
levels of the j-th CpG site for n individuals, and km is
the total number of CpG sites in the m-th gene. Note
that some small genes can have only 1 CpG site while
big genes have hundreds of CpG sites. The total num-
ber of CpG sites is

∑p
m=1 km when we consider p genes

in the analysis. Without loss of generality, we assume
that Xm is a mean-centered matrix, i.e,

∑n
i=1 xij = 0

for all j = 1, . . . , km. Here, we focus on a case-control
association study, so the outcome yi = 1 if the i-th
individual is a case while yi = 0 if the i-th individual
is a control.

Dimension reduction techniques
Principal component analysis (PCA) is one of the most
popular dimension reduction techniques. It aims to find
weighted linear combinations of original predictors. The
first PC of them-th gene can be written as

zPCm = Xmθ ,

where the weight vector θ = (θ1, . . . , θkm)T is estimated
so that zPCm can have the largest variance subject to the
constraint that ‖θ‖22 = 1, where ‖·2‖ is a l2 norm. This is
equivalent to the first eigenvector of the covariancematrix
of Xm. We also define the first normalized PC (nPC) of the
m-th gene as

znPCm = 1√
e
zPCm ,

where e is the first eigenvalue of the covariance matrix of
Xm. The nPC is frequently used in analysis of signal pro-
cessing, which is also known as a whitening process [59].
Projecting DNA methylation levels onto the principal
components can remove the second-order linear corre-
lations and perform dimension reduction by discarding
dimensions with low variances. In addition to decorrela-
tion, the nPC normalizes the variance in each dimension
so that all dimensions have unit variance. Geometrically,
this makes the data to be rotationally symmetric just like
a sphere. Therefore, ‖znPCm ‖2 = 1.
While both PC and nPC can be extracted without using

a phenotype outcome, supervised PC (sPC) [60, 61] and
partial least square (PLS) [62] capture a gene level signal
based on phenotypic associations with DNA methylation
levels. The sPC first investigates an association strength
between individual CpG sites and a phenotype outcome.
It then selects CpG sites whose association signals are
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greater than an optimally chosen threshold. Finally, PCA
is applied to the selected CpG sites. Similar to PC, the first
component of sPC can be written as

zsPCm = X̃mθ ,

where X̃m = (x1, x2, . . . , xqm)T and θ = (θ1, . . . , θqm)T

if qm CpG sites in the m-th gene are selected. The PLS
basically finds the best orthogonal linear combinations
of DNA methylation levels for predicting a phenotype
outcome. Similar to sPC, it first estimates a regression
coefficient of simple logistic regression between a CpG
site and a phenotype outcome. Let us denote the regres-
sion coefficient of the j-th CpG site by γ̂j and then the
coefficient vector γ̂ = (γ̂1, γ̂2, . . . , γ̂km)T. Next, the weight
vector is computed as normalizing the coefficient vector
which is divided by the squared l2-norm of the coefficient
vector, i.e., θ = γ̂ /‖γ̂ ‖2. Then, the first component of PLS
can be defined as

zPLSm = Xmθ

θTθ
.

Using the first component from one of these four
dimension reduction techniques, methylation levels at
the km-dimensional CpG sites of the m-th gene can
be replaced by one-dimensional feature. Consequently,
∑p

m=1 km CpG sites are reduced down to p gene-level fea-
tures as we apply dimension reduction to each of genes.
These features can be matched with the p-dimensional
Laplacian matrix representing a network structure. Let us
denote the feature of the i-individual and the m-th gene
by zim and zi = (zi1, . . . , zip)T. As a result, each fea-
ture can play the role of predictors in the network-based
regularization. In simulation study, the network-based
regularization methods based on the features generated
from four different dimension reduction techniques are
compared with each other.

Network-based regularization
The penalized logistic likelihood using network-based
regularization can be written as

− 1
n

n∑

i=1
[ yi log p(zi) + (1 − yi) log(1 − p(zi)]

+ λα‖β‖1 + λ(1 − α)βTSTLSβ ,

(1)

where ‖·‖1 is a l1 norm, β = (β1, . . . ,βp)T is the p-
dimensional coefficient vector and

p(zi) = exp
(
β0 + zTi β

)

1 + exp
(
β0 + zTi β

)

is the probability that the i-th individual is a case. The
tuning parameter λ controls sparsity of the network-
based regularization, α ∈[ 0, 1] is a mixing proportion
between lasso and graph-constrained penalties. The diag-
onal matrix S = diag(s1, . . . , sp), su ∈ {−1, 1} has the

estimated signs of regression coefficients on its diagonal
entries, which can be obtained from ordinary regres-
sion for p < n, and ridge regression for p ≥ n. It
has been demonstrated that the matrix S can accommo-
date the problem of failure of local smoothness between
linked genes, where two adjacent risk genes have opposite
effects on a phenotype outcome when the corresponding
regression coefficients have different signs [6].
In the penalized likelihood (1), the p-dimensional Lapla-

cian matrix L = {luv} represents a graph structure when
the network information among genes is provided. It is
defined as

luv=
⎧
⎨

⎩

1 if u = v anddu �= 0
−(dudv)−

1
2 if u and v are linked with each other

0 otherwise,

where du is the total number of genetic links of the u-
th gene. This Laplacian penalty is a combination of the
l1 penalty and squared l2 penalty on degree-scaled differ-
ences of coefficients between linked genes. It induces both
sparsity and smoothness with respect to the correlated or
linked structure of the regression coefficients. It has been
shown that a desirable grouping effect can be reached by
specifying genetic links among genes in the model [1, 6].
Once we fill out the Laplacian matrix based on genetic

network information, we can estimate an intercept param-
eter β0 and the coefficient vector β , as minimizing the
penalized likelihood (1) for fixed values of α and λ. This
is considered as a convex optimization problem. There
are relatively many statistical softwares for convex opti-
mization of lasso-type penalty functions [8, 13, 27, 63–67].
Most of them provide the pathwise solutions to β0 and β

for fixed values of α and λ. However, a practical problem
is how to pick up the optimal tuning parameters α and
λ. Although a cross-validation method is most commonly
applied to find the optimal tuning parameters, its selec-
tion result is not stable because cross-validation is based
on random split samples. Inconsistent choice of the tuning
parameters leads to have either too small number of true
positives or too many false positives since they essentially
control the number of selected genes.

Selection probability
As a solution to the tuning parameter problem in reg-
ularization, Meinshausen and Bühlmann [68] originally
proposed to compute selection probability of individ-
ual variables from repeated half-sample resampling. They
demonstrated that selection probability can produce very
stable selection result, compared with variable selec-
tion using cross-validation. For this reason, it has been
widely used for genetic association studies with high-
dimensional data [7, 8, 27, 69, 70].
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Let Is be the s-th random subsample that has a size of
	n/2
 without replacement, where 	x
 is the largest inte-
ger not greater than x. If a balanced design between cases
and controls is desirable, we can randomly choose 	n1/2

cases and 	n2/2
 controls among n samples, where n1
and n2 are the number of cases and the number of con-
trols, respectively. For each α, the pathwise solutions to
regression coefficients (β0,β) based on the subsamples of
(zi, yi)i∈Is can be obtained using one of the softwares for
convex optimization. We applied an R package ‘pclogit’
[8]. Let us denote the j-th estimated regression coefficient
for fixed values of α and λ by β̂j(Is;α, λ). Next, we need to
count the total number of β̂j(Is;α, λ) �= 0 for s = 1, . . . , S
where S is the total number of resampling. Finally, the
selection probability of the j-th gene is computed by

SPj = max
α,λ

1
S

S∑

s=1
I
(
β̂j(Is;α, λ) �= 0

)
,

where I(·) is an indicator function. We fixed S = 100 for
simulation study and S = 500 for real data analysis.

One of the great advantages of selection probability is
that we do not need to select the optimal tuning parame-
ters α and λ. We first set a fine grid value of α between 0
and 1 and then the pathwise solutions to β̂0 and β̂ along
with different λ values can be computed for each α. Next,
we compare selection probability for each (α, λ) and then
just pick up the largest selection probability over all (α, λ).
After we compute the selection probability of all p genes,
we can prioritize genes from the largest selection proba-
bility to the smallest selection probability. A flowchart in
Fig. 6 summarizes the entire procedure of the proposed
network-based regularization combined with dimension
reduction techniques.
Finally, we recommend to select a particular number of

top-ranked genes rather than using the threshold of selec-
tion probability since selection probability is a relative
measurement. Its magnitude depends on the numerical
values of tuning parameters α and λ. Actually, selec-
tion result depends on λ rather than α since λ controls
sparsity, i.e., the number of nonzero coefficients. α can
affect the numerical values of nonzero coefficients, but
computation of selection probability is based only on
either selected or not selected. Indeed, overall selection

Fig. 6 A flowchart of the proposed network-based regularization method combined with four different dimension reduction techniques
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probabilities of individual genes tend to be decreasing as
λ values are increasing, regardless of the numerical value
of α. However, ranking of genes based on their selection
probabilities is rarely changed for different values of α and
λ. Therefore, we can use only a few α values to reduce
computational time, while the number of λ for each α is
fixed.
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