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Abstract

Background: Long-chain non-coding RNA (lncRNA) is closely related to many biological activities. Since its
sequence structure is similar to that of messenger RNA (mRNA), it is difficult to distinguish between the two based
only on sequence biometrics. Therefore, it is particularly important to construct a model that can effectively identify
lncRNA and mRNA.

Results: First, the difference in the k-mer frequency distribution between lncRNA and mRNA sequences is
considered in this paper, and they are transformed into the k-mer frequency matrix. Moreover, k-mers with more
species are screened by relative entropy. The classification model of the lncRNA and mRNA sequences is then
proposed by inputting the k-mer frequency matrix and training the convolutional neural network. Finally, the optimal
k-mer combination of the classification model is determined and compared with other machine learning methods in
humans, mice and chickens. The results indicate that the proposed model has the highest classification accuracy.
Furthermore, the recognition ability of this model is verified to a single sequence.

Conclusion: We established a classification model for lncRNA and mRNA based on k-mers and the convolutional
neural network. The classification accuracy of the model with 1-mers, 2-mers and 3-mers was the highest, with an
accuracy of 0.9872 in humans, 0.8797 in mice and 0.9963 in chickens, which is better than those of the random forest,
logistic regression, decision tree and support vector machine.
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Background
Transcription of the genome includes messenger RNAs
(mRNAs), small (miRNAs, snRNAs) and non-coding
RNAs (ncRNAs) [1, 2]. LncRNA is a kind of noncoding
RNA with a length exceeding 200 nucleotides [3]. There
is a growing concern over the long non-coding RNA [4].
Current studies demonstrate that lncRNA sequences
primarily play a role in two aspects of the organism. On
one hand, they play a vital biological function in many
stages, such as transcription and regulation of life
processes. For example, lncRNAs can participate in the
regulation of gene expression levels at three levels,
epigenetic regulation, transcriptional regulation and

post-transcriptional regulation [5], and some lncRNAs
can bind to specific chromatin-related sites through
chromatin remodelling, resulting in the expression of si-
lenced related genes [6, 7]. On the other hand, lncRNAs
have direct or indirect links with some diseases in
humans, such as lung cancer, prostate cancer, Alzheimer’s
disease, Prader-Willi syndrome, agitation, etc. [4]. There-
fore, the identification and inclusion of lncRNAs will help
researchers to further research and explore their functions
at the molecular level [8].
However, thus far, only a small number of lncRNAs

have been included in the non-coding RNA-related data-
base. Additionally, in the existing database, only a small
number of lncRNA functions have been thoroughly
studied and annotated. Even more difficult is that func-
tional studies of the lncRNA sequence are based on the
premise that they can determine whether the sequence
is a lncRNA, which is the main difficulty in biological
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and information biology research. Since lncRNAs and
mRNAs have many similarities in sequence structure,
the task of identifying lncRNA sequences becomes more
challenging. Accordingly, how to design a model that
can accurately identify lncRNA and mRNA sequences
based on the large amount of sequence data obtained by
high-throughput sequencing will be an important bio-
logical research topic.
At present, research mainly classifies coding RNA and

non-coding RNA based on three aspects: first is the
discrimination by the length of the open reading frame
of the coding sequence and the non-coding sequence,
second is the discrimination by comparing the similarity
between the sequence and the known protein sequence
using the comparative genomics methods, and third is
the prediction by conservation of the RNA secondary
structure. However, each of these three methods has its
own merits and demerits, and it is difficult to acquire
accurate sequence classification results based on only
one of them. To solve this problem, some scholars have
constructed models and software for classifying mRNAs
and lncRNAs by extracting non-coding features in
lncRNA sequences. For example, the Bioinformatics
Center of Peking University had developed an online
lncRNA identification tool, CPC (Coding Potential Cal-
culator, CPC) [9], which has been widely used in many
fields, such as sequence alignment, disease research and
evolution analysis. Its principle is mainly to extract six
features, containing the ratio of the length of the open
reading frame to the sequence length, the integrity of
the open reading frame, the prediction reliability evalu-
ation score of the open reading frame, etc., train data by
placing those features into a support vector machine
(SVM), and develop a prediction model of non-coding
RNA. Sun et al. [10] proposed a method named CNCI
(Coding-Non-Coding Index, CNCI) based on Adjoining
Nucleotide Triplets (ANT). Its framework consisted of a
scoring matrix and classification model. First, the species
categories of the sample data were determined, and the
probability of occurrence of each pair of adjacent triplets
in the coding region, non-coding region and inter-gene
region was respectively counted to construct three ANT
probability matrices. Then, as the reference, the log-ratio
of the ANT probability matrix of the coding and non-
coding region were respectively calculated to obtain the
scoring matrix of the CNCI algorithm. Further, The
CNCI scoring matrix was used to determine the Most-
Like Coding Domain Sequence (MLCDS), and then five
different features were extracted from each MLCDS for
the classification. Dang [11] selected three characteristics
from the perspective of the open reading frame, three
characteristics of the integrated sequence secondary
structure and two characteristics of protein similarity
and summarized seven combinations of three types of

features. Her lncRNA prediction model could be suitable
for different data source.
The CSF prediction software proposed by Lin et al.

[12] mainly aimed to identify lncRNAs by calculating the
frequency of codon substitution in the target sequence.
Based on the CSF model, the evolution information of
the alignment sequence was introduced, and they devel-
oped the Phylo CSF recognition model [13]. Wucher et
al. developed the FEELnc program, an lncRNA and
mRNA recognition tool, which was a random forest-
based classification model trained using features such as
open reading frames [2]. In 2014, Lertampaiporn et al.
developed a hybrid model based on logistic regression
and random forests to distinguish short non-coding
RNA sequences from lncRNA sequences. The model
synthesized five combined features, SCORE, which im-
proved the lncRNA classification performance [14].
To summarize, most of the available methods for iden-

tifying lncRNA among mRNA sequences are based on
the biological characteristics of the sequences. However,
the lncRNA sequence may contain some sequences that
can overlap with the coding regions of mRNAs [2].
Thus, the recognition of lncRNA sequences is more
complex than the recognition of mRNA sequences when
using existing methods. To avoid the use of sequence
biological characteristics to establish a classification
model of the sequence, Wei proposed an lncRNA and
mRNA classification model based on the k-mer [15].
This model used the maximum entropy algorithm to
screen k-mers and the support vector machine algorithm
for classification; however, it demonstrated great compu-
tational complexity and a high computational cost. In
addition, pre-processing of raw input data and sequence
features should be selected by domain-expert knowledge
and to fine-tune parameters to increase accuracy when
using conventional machine learning algorithms such as
support vector machines, logistic regression, decision
trees, SVM, NN, BNs, GAs, and HMMs, etc. [16]. There-
fore, we propose a model to effectively classify lncRNAs
and mRNAs, without relying on the sequencing quality
and biological structural characteristics of the sequence,
as well as avoiding a large number of calculations.
Since the Convolutional Neural Network (CNN) model

can self-learn the characteristics of the sequence through
continuous training without artificial intervention and effi-
ciently calculate large amounts of data, no domain-expert
knowledge or fine-tuning of parameters to increase accur-
acy are needed [17, 18]. It has been used to predict DNA-
protein binding sites [19] and to predict the specificity
of DNA and RNA binding proteins [20]. Zhang et al.,
developed two methods for predicting DNA-protein
binding using the High-Order Convolutional Neural Net-
work Architecture and Weakly Supervised Convolutional
Neural Network Architecture [21, 22]. Transcription
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factor prediction using ChIP-seq data [23] and CRISPR
guide RNA design [24] can also be finely conducted using
CNN. Whether CNN can be finely used in the classifica-
tion of lncRNAs and mRNAs is not known.
In this study, we intend to introduce the convolutional

neural network model to establish a classification model
of lncRNAs and mRNAs. The content of this paper is ar-
ranged as follows. First, the k-mer frequency information
for lncRNA and mRNA sequences is statistically ana-
lysed. Second, we construct the classification model of
lncRNA and mRNA sequences by convolutional neural
network taking the k-mer frequency matrix as input.
Third, we determine the optimal k-mer combination of
the model, compare it with those of other machine
learning methods and verify the recognition ability of
identifying a single sequence.

Results and discussion
Training data and testing data
We download human lncRNA sequence data and mRNA
sequence data from the GENCODE database, gencode.v
26. The 10,000 sequences data are randomly selected
from the two sample sets each time, i.e., 10,000 lncRNA
sequences and 10,000 mRNA sequences, of which 8000
sequences are selected as training samples and the
remaining 2000 sequences are used as test samples. We
perform 10 random selections to verify the contingency
impact of the randomly selected data training model.
The frequency means of 2-mers in the 10 sets of se-

quences are calculated, and the line graphs are shown in
Fig. 1a and b. In Fig. 1, the lncRNA mean line graphs in
the 10 sets of data almost coincide. Only the AA of the
first set of data is slightly different from the other
groups. The average AA frequency of the first set of data
is 0.069, the average AA frequency of the second, third,
fourth, sixth, eighth, ninth, and tenth sets of data is
0.067, while the fifth set is 0.068. It can be seen that the
difference between the data does not exceed 0.002, and
the error is small. From Fig. 1b, the mRNA means line
graphs in the 10 sets of data also show mostly overlap,
and only the four k-mers of AA, AT, GC, and GG dif-
fer. However, the data show that the extremes of the
frequency means of AA, AT, GC, and GG in the 10 sets
of data are approximately 0.0048, 0.0048, 0.0046, and
0.0036 respectively. Thus, the differences between are
not large. Therefore, the randomness of the data ex-
traction does not greatly affect the calculation results of
the model.

Determination of k-mer parameters of the lncRNA
classification model
First, the calculation is divided into two steps. In the first
step, lncRNA sequences ranging from 250 nt to 3500 nt
and mRNA sequences ranging from 200 nt to 4000 nt

are selected. The k-mer subsequence is extracted using
the k-mer algorithm. For the k-mers with larger values,
the relative entropy is used to select the features, and
the accuracy of the model before and after the screening
is compared. Finally, the frequency of the k-mer subse-
quence in each sequence is counted, and the frequency
matrix is constructed. In the second step, the convolu-
tional neural network model is trained using the con-
structed frequency matrix to obtain the classification
results of the model. When k is taken different values,
the results are compared to obtain the optimal classifica-
tion model parameters.

Determination of optimal k-mer combination in the
lncRNA classification model
Based on the statistical analysis, we randomly select 10,
000 lncRNA sequence data ranging from 250 nt to 3000
nt in the lncRNA dataset downloaded from the GEN-
CODE database, and we also randomly select 10,000
mRNA sequence data ranging from 200 nt to 4000 nt in
length.

Fig. 1 The 2-mer frequency mean line graph. a The 2-mer frequency
mean line graph of lncRNA. b The 2-mer frequency mean line graph
of mRNA
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Next, we build an lncRNA and mRNA classification
model. The first layer of the convolutional neural net-
work uses 32 convolution kernels of 3 × 3, selects the
Relu activation function, and the periphery of the k-mer
frequency matrix is padded with “0” to ensure a constant
size of the matrix before and after the convolution calcu-
lation. The second layer is still the convolutional layer,
with 64 convolution kernels of 3 × 3, and the activation
function is still the Relu function. The third layer is the
largest pooling layer, and the size of the pooling area is
2 × 2. The partial neuron connections with a probability
of 0.25 are omitted before the fully connected layer to
prevent overfitting. The last layer is the fully connected
layer. There are 128 neurons in the fully connected
layer. After the whole layer is connected, the probability
of connections between the omitted neurons is 0.5.
Finally, the SoftMax function is used to obtain the classi-
fication result. The loss function in the model training
process selects the cross entropy loss function, and the
optimizer is Adadelta.
To determine the most differential k-mers in lncRNA

and mRNA sequences and to maximize the accuracy of
the model k-mers, we select k-mers with different k
values. The established lncRNA and mRNA classification
models are used to learn autonomously. Finally, the clas-
sification accuracy, model accuracy, recall rate and F1
score of the classification model are compared when
different k values are compared.
We take a single k value, which is 3, 4, 5, and 6. The

specific results are shown in Table 1.
It can be seen from Table 1 that the classification ef-

fect of the model is different when different k values are
taken. As the k value increases, the number of k-mers
increases and the model accuracy generally increases.
However, when k = 5, then the accuracy of the classifica-
tion model is slightly lower than k = 4, but the difference
does not exceed 0.01, and the difference is not large.
When there are too many types of k-mers, the frequency
of each k-mer will also decrease, and even the frequency
of most k-mers will be 0, so each k-mer will carry less
difference information. When k is 6, the accuracy is the
highest, but it is only 0.7748. This classification is not
ideal, and its time complexity is the highest because it
requires 855 s to calculate a time of 1 epoch. However,
when k is equal to 3, the accuracy is only approximately

0.024 lower than it is with k = 6, but it takes only 5 s to
calculate 1 epoch. Therefore, we attempt to combine
these individual k-mers in pairs and analyse the results
to determine whether this attempt is reasonable. The
specific calculation results are shown in Table 2.
Since the time complexity is too high when k = 6, if

the combination calculation is performed, then the cal-
culation time will be unsatisfactory, only taking k to be
1, 2, 3, 4, and 5 in pairs. From Table 2, the recognition
accuracy of the classification model is significantly
improved when we combine the two k-mers, especially
the combination of k = 2 and k = 3, with an accuracy
reaching 0.9810. The second is a combination of k = 1
and k = 4 with an accuracy of 0.9600. The result can be
explained by the combination of k-mers, which is
equivalent to strengthening the k-mer information of
the sequence, after which the model can receive more
difference information through convolutional neural net-
work self-learning. However, Table 2 also reveals such
information. Although the combined information can
greatly improve the accuracy of model recognition, not
every combination of information can improve the rec-
ognition accuracy of the model compared with before
the combination. For example, when k = 5, as shown in
Table 1, the classification accuracy of the model is
0.7565, and when k = 1 and k = 5 are combined, the
accuracy is 0.4995, and the accuracy of the model is not
increased but decreased.
Although the combined k-mers can greatly improve

the accuracy of the classification model, this strategy also
consumes more computation time than the model of a
single k-mer. By comparison, the calculation time of the
classification model is proportional to the number of k-
mers. When the number of k-mers is larger, the calcula-
tion time consumed by the model is also greater. There
are 80 k-mers in the combination of k = 2 and k = 3, and
the calculation time consumed by 1 epoch is 9 s, which
is second only to the combination of k = 1 and k = 3. The
longest calculation time is the combination of k = 4 and
k = 5, which contains a total of 1280 k-mers. The calcula-
tion of 1 epoch requires 290 s. If 200 iterations are
obtained, it will take approximately 16 h to train the
model. It should be noted that the calculation time in
the combination of k = 1 and k = 3 is 4 s, which is faster
than the calculation time in k = 3 (5 s). This

Table 1 Model classification accuracy for individual k value

kvalue number of k-mers matrix form model accuracy precision rate(P) recall
rate(R)

F1score calculating time
(s/epoch)

3 64 8 × 8 0.7508 0.81 0.79 0.79 5

4 256 16 × 16 0.7610 0.85 0.83 0.83 20

5 1024 32 × 32 0.7565 0.93 0.92 0.92 95

6 4096 64 × 64 0.7748 0.87 0.85 0.84 855
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phenomenon is due to the presence of 68 k-mers in the
combination of k = 1 and k = 3, which is input as 4 × 17
matrix, and 2 × 2 convolution layer for feature extrac-
tion. When the number of 3-mers is 64, which is input
as 8 × 8 matrix, and, the convolution layer is 3 × 3 for
feature extraction. Then the calculation time for the
combination of k = 1 and k = 3 is faster than the calcula-
tion time for k = 3.
Based on the information presented in Table 2, the

combination of k = 2 and k = 3 provides the classification
model with the highest combination information. Fur-
thermore, the computational time cost of this combin-
ation is relatively low. Therefore, we attempt to combine
k = 2 and k = 3 with other k-mers and use more combin-
ation information to verify whether the combination of
k-mers of the three k values will further improve the
accuracy of the model based on the combination of the
two k values of k-mers. The specific calculation results
are shown in Table 3.
Based on Table 3, we find that the combination of k =

1, k = 2, and k = 3 can further improve the accuracy of
the model due to the combination of k-mers, and the
recognition accuracy of the model can reach 0.9872, as
shown in Table 3. More excitingly, the calculation time
is only 6 s, which is far less than that of other k-mer
combinations. Consequently, the k-mer combination of
k = 1, 2, 3 not only achieves the best model accuracy but
also has an accuracy rate and recall rate and F1 score of
1.00, which indicates that the classification effect of the
model is also excellent. Based on the above results, we
determine the k-mers that allow optimal construction of

the lncRNA and mRNA classification model, which is
the combination of 1-mers, 2-mers and 3-mers.

Determination of the optimal combination of k-mers for
the selected lncRNA classification model
In the calculation process, we find that when the k value
is greater than 4, that is, when it is 5 or 6 or more, a
considerable portion of the k-mers exhibits a frequency
of 0. The lack of most k-mer values may affect the rec-
ognition accuracy of the model, resulting in a low classi-
fication accuracy of the model. To verify this conjecture,
we use the relative entropy to filter the k-mers of k = 5
and k = 6. By sorting the information gains and selecting
the top 98% k-mers, the k-mers carrying more and less
difference information are filtered out. This method can
also effectively reduce the dimensions of the k-mer fre-
quency matrix.
As shown in Table 4, the k-mers of k = 5 are reduced

from the original 1024 k-mers to 115 after screening
with relative entropy. The 115 k-mers are constructed
with a matrix of 5 × 23. Finally, after screening with rela-
tive entropy, the 5-mers improve the model accuracy of
k = 5 from 0.7565 to 0.7820. Similarly, the 6-mers
screened by relative entropy show a reduction from the
original 4096 to 1045. Although the accuracy of the 6-
mers model is slightly improved from 0.7748 to 0.7790,
this improvement is almost negligible compared with be-
fore the relative entropy screening. Since the number of
k-mers reaches as high as 4096 in k = 6, the difference
information for the sequence becomes very fragmented.
Although the relative entropy screening retains 98% of

Table 2 Model classification accuracy rate of two k value combinations

kvalue number of k-mers matrix form model accuracy precision rate(P) recall rate(R) F1score calculating time (s/epoch)

1 + 3 68 17 × 4 0.9280 0.94 0.94 0.94 4

1 + 4 260 10 × 26 0.9600 0.98 0.98 0.98 32

1 + 5 1028 4 × 257 0.4995 0.50 0.50 0.36 43

2 + 3 80 8 × 10 0.9810 0.99 0.99 0.99 9

2 + 4 272 16 × 17 0.7838 0.87 0.86 0.86 37

2 + 5 1040 26 × 40 0.7672 0.91 0.90 0.90 180

3 + 4 320 16 × 20 0.7666 0.90 0.90 0.90 47

3 + 5 1088 32 × 34 0.7566 0.94 0.94 0.94 189

4 + 5 1280 32 × 40 0.7532 0.95 0.94 0.94 290

Table 3 Model classification accuracy rate of three k value combinations

kvalue number of k-mers matrix form model accuracy precision rate recall rate F1score calculating time
(s/epoch)

1 + 2 + 3 84 17 × 20 0.9872 1.00 1.00 1.00 6

2 + 3 + 4 336 12 × 28 0.9738 1.00 1.00 1.00 57

2 + 3 + 5 1104 24 × 46 0.9798 1.00 1.00 1.00 217
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the difference information, the latter part of the informa-
tion is abandoned. This may explain why the accuracy of
the model does not increase significantly.
To compare the classification accuracy of the k-mer

combination, we combine the 5-mers after the relative
entropy screening with the k-mers of k = 4. It is found
that the combined k-mer accuracy is only 0.6290, and
the accuracy of the model is not improved but reduced.
In addition, we combine the 5-mers after the relative en-
tropy screening with the k-mers of k = 2 and k = 3, and
we find that the accuracy of the model is improved to
0.9761, but it is still not the k-mer combination that
provides the best model classification.
Although the accuracy of the model is not very obvi-

ous after the relative entropy screening, according to the
information in Table 4, since the k-mers are screened by
relative entropy screening, the number of k-mers is re-
duced. The computation time of the model after relative
entropy screening is greatly reduced. In particular, the
combination of k = 4 and k = 5 reduces the calculation
time from 290 to 4 s, a reduction of more than 70 times.

Comparison of the model accuracy with four machine
learning methods
Based on previous analysis, when k-mers of k = 1, k = 2
and k = 3 are combined as input in the convolutional
neural network, the accuracy of the classification model
can be maximized. In the case of the 10-fold cross-valid-
ation calculation, the training set loss function value of
the convolutional neural network model averages 0.043,
and the average classification accuracy rate is 0.9872.
The average loss function of the verification set is
0.0431, and the average accuracy of the verification set is
0.9790. In the machine learning algorithm, such as the
random forest, logistic regression, decision tree, and sup-
port vector machine, to compare the superiority of the
convolutional neural network model in the classification
of lncRNA sequences and mRNA sequences, we use
these four algorithms to classify lncRNA and mRNA
sequences.
For these four machine learning algorithms, we use

the same training data set and verification data set as the
convolutional neural network model to train and verify
the model separately, and we compare the results with

the convolutional neural network model. The results are
shown in Table 5.
From Table 5, in terms of model accuracy, the model

accuracy of the convolutional neural network algorithm is
0.9872, which is far superior to those of other algorithms.
Followed by random forests, the classification accuracy is
0.8820. Again, the decision tree has a classification accur-
acy of 0.8030. The classification accuracy of the logistic
regression and support vector machine is the same at only
0.7020.
The precision rate (P), recall rate (R) and F1 score are

also shown in Table 5, all of which are superior to RF,
LR, DT, and SVM in CNN. The ROC curve (receiver
operating characteristic curve) of CNN, RF, LR, DT and
SVM is shown in Fig. 2, and AUC (Area Under Curve)
values are 1, 0.9689, 0.7807, 0.8009 and 0.7848 respect-
ively, which also indicates that CNN is better than other
methods.
We also use mouse and chicken data to compare the

superiority of the convolutional neural network model
(combined k-mers of k = 1, k = 2 and k = 3) in the classi-
fication of lncRNA sequences and mRNA sequences,
and the results are shown in Table 6 (mouse) and
Table 7 (chicken). CNN also has the highest model ac-
curacy compared with the others. The model accuracy
of the convolutional neural network algorithm is 0.8797
in mouse and 0.9963 in chicken.

Verification of the classification model in single lncRNA
sequence recognition
Our results are tested using 2000 mRNA sequences and
2000 lncRNA sequences selected from gencode.v 26
data. In addition, to verify whether the proposed classifi-
cation model is suitable for the identification of a single
sequence, we download a human lncRNA sequence in

Table 4 K-mers calculation results after KL screening

kvalue number of
k-mers

number of k-mers
after KL screening

original model
accuracy

model accuracy after
KL screening

calculation time of the
original model (s/epoch)

calculation time of KL
screening model (s/epoch)

5 1024 115 0.7565 0.782 95 s 4 s

6 4096 1045 0.7748 0.779 855 s 47 s

4 + 5 1280 112 0.7532 0.629 290 s 4 s

2 +
3 + 5

1104 195 0.9798 0.9761 217 s 27 s

Table 5 Five model effect comparison table in human

model model accuracy precision rate(P) recall rate(R) F1score

CNN 0.9872 0.9993 0.9955 0.9974

RF 0.8820 0.8949 0.8867 0.8925

LR 0.7020 0.7247 0.7183 0.7218

DT 0.8030 0.7873 0.7852 0.7869

SVM 0.7020 0.7245 0.7158 0.7179
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the NCBI database, which was discovered by Professor
Gasri-Plotnitsky, an Israeli professor at the University of
Barllan’s Institute of Life Sciences, and his team, and
published in Oncotarget magazine in 2017 [25]. This
lncRNA sequence is called GASL1. Professor Gasri-Plot-
nitsky’s research indicates that GASL1 expression
inhibits cell cycle progression, identifying it as novel
lncRNA modulator of cell cycle progression and cell
proliferation, and has a potential role in cancer. Simul-
taneously, if the expression level of GASL1 is low in liver
cancer patients, the survival rate may be worse.
Taking the GASL1 sequence as an example, we ver-

ify whether the classification model of the lncRNA
and mRNA sequences proposed in this paper can cor-
rectly classify the sequences. The frequencies of 1-
mers, 2-mers and 3-mers in the sequence are first
calculated, and the three k-mers are combined to-
gether for a total of 84 k-mers. Finally, the frequen-
cies of the 84 k-mers are constructed into a 7 × 12
matrix and convoluted. In the model constructed in
this paper, the classification label of lncRNA is 0, and
the classification label of mRNA is 1. To predict the
category to which the sequence belongs, the output
model is finally required to identify the category label
of the category to which the sequence belongs.
The final prediction result is “pre_label is 0”, that is,

the model recognizes the sequence as the lncRNA se-
quence, indicating that the model is correct for recogni-
tion of the sequence.

Conclusions
The main purpose of this paper is to construct a
model that can effectively classify lncRNA and
mRNA. First, based on the statistical analysis of the
sample sequence length and k-mer frequency distribu-
tion, the lncRNA and mRNA sequences in the model
training set are determined to range from 250 nt to
3500 nt and from 200 nt to 4000 nt, respectively, and
a k-mer frequency matrix is constructed. Then, using
the k-mer frequency matrix as input in the convolu-
tional neural network, a classification model of
lncRNAs and mRNAs is established and programmed
using Python. By calculating the classification accur-
acy of the frequency matrix of different k-mer combi-
nations, the classification accuracy of the model with
1-mers, 2-mers and 3-mers is highest with an accur-
acy of 0.9872. Comparing the established lncRNA and
mRNA classification models with random forest, lo-
gistic regression, decision tree and support vector ma-
chine analyses using the ROC curve, the model
classification effect is improved. Application of the
model is then examined: the correct classification re-
sult is obtained by identifying the known lncRNA se-
quence GASL1.
There remain many limitations to our research.

For example, in the statistical analysis of the k-mers
of lncRNA and mRNA sequences, only simple fre-
quency analysis was used, and no in-depth statistical
analysis was performed. In addition, when applying
extensions to sequences of different species, the k-
mer information difference between different species
was not analysed in depth, but the preliminary dis-
cussion is based on the calculation results. In the fu-
ture, we will conduct a systematic analysis of k-mer
information differences between different species. In
addition, as pointed out in [26] user-friendly and
publicly accessible web-servers represent the future
direction for developing practically more useful pre-
diction methods and computational tools. Actually,
many practically useful web-servers have significantly
increased the impacts of bioinformatics on medical
science [27], driving medicinal chemistry into an un-
precedented revolution [28], we shall make efforts in
our future work to provide a web-server for the pre-
diction method presented in this paper.

Table 6 Five model effect comparison table in mouse

model model accuracy precision rate(P) recall rate(R) F1score

CNN 0.8797 0.8960 0.8590 0.8771

RF 0.8120 0.8132 0.8130 0.8131

LR 0.7541 0.7454 0.7700 0.7575

DT 0.7001 0.6991 0.6977 0.6984

SVM 0.7528 0.7564 0.7476 0.7520

Table 7 Five model effect comparison table in chicken

model model accuracy precision rate(P) recall rate(R) F1score

CNN 0.9963 0.9943 0.9984 0.9963

RF 0.9302 0.9351 0.9245 0.9298

LR 0.8743 0.8902 0.8546 0.8720

DT 0.8227 0.8148 0.8315 0.8230

SVM 0.8724 0.8881 0.8538 0.8706

Fig. 2 ROC curve of CNN, RF, LR, DT and SVM
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Methods
Statistical analysis of k-mers of lncRNA and mRNA
sequences
The human lncRNAs and mRNAs data were downloaded
from the GENCODE database (Gencode.v26). The mouse
lncRNAs and mRNAs data were downloaded from the
GENCODE database (Genecode. VM21). The chicken
lncRNAs and mRNAs data were downloaded from the
Ensembl website database (5.0). Human data were used to
build a convolutional neural network model. Mouse and
chicken data were used to compare the superiority of the
convolutional neural network model using the built
model. The computed information used in this paper were
as follows: (1) Operating system, Windows 10, with an
InterCore I3–2365M processor, memory size, 6G; (2) Py-
thon 3.5 to run the CNN code.
Studies have shown that the k-mer frequency information

in lncRNA and mRNA sequences can reveal the distribu-
tion of various subsequences in biological sequences, to
measure the similarities and variances of sequences [29].
A k-mer refers to all possible subsequences of length k

in a DNA sequence, RNA sequence or amino acid
sequence. Figure 3 shows the process of examining a k-
mer in a sliding window mode in a sequence when k is
three, in which there are 21 3-mers, namely, GCC, CCA,
CAA, AAC, ACG, CGC, GCC, CCA, CAG, AGG, GGC,
GCC, CCG, CGA, GAC, ACC, CCA, CAG, AGT, GTT,
and TTC. Among them, GCC and CCA appear three
times, CAG appears twice, and the others appear once.
Similarly, we can count the k-mer frequency information
of lncRNA and mRNA sequences.
For a sequence, if the sequence length is m, then the

number of k-mer subsequence of length k has m-k + 1.
The sequence generally consists of four bases, A, T, C,
and G, and thus k-mers of length k have 4k possible
structures.
We randomly selected 5000 lncRNA sequence data

and 5000 mRNA sequence data from the human data,
and we counted the k-mer frequency information when
k = 1 and k = 3. As shown in Figs.4 and 5, when k = 1,
the higher the content of bases G and C, the higher is
the thermal stability of DNA molecules. When k = 2,
after analysing the preference of dinucleotides, the fre-
quency statistics of dinucleotides may represent certain
characteristics of different species in different environ-
ments. For example, CG may be a methyl-CpG island
and TA may be part of the TATA box. When k = 3, the
coding and non-coding region in the sequence can be

distinguished by counting the codon usage preference
consisting of three bases. Therefore, considering the sta-
tistics, we analysed the k-mer frequency of lncRNA and
mRNA sequence samples separately to discuss their
differences.
From Fig. 4, the average contents of the A, C, G, and

T bases in the lncRNA sequence were approximately
254 nt, 217 nt, 216 nt, and 240 nt, respectively, while the
mRNA sequence had A, C, G, and T base contents of
approximately 364 nt, 420 nt, 422 nt, and 343 nt, respect-
ively. Therefore, the contents of the four 1-mers in the
mRNA were higher than in the lncRNA. Furthermore, in
the lncRNA and mRNA sequences, the contents of C
and G bases were very similar, and the contents of A
and T base were equivalent. However, in the lncRNA se-
quence, the contents of C and G base were lower than
the contents of A and T base. While in the mRNA
sequence, the opposite was true.
When k is taken as three, the 3-mer fragments appear-

ing in the sequence are {AAA, AAT, AAC, AAG, ATA,
ATT, ATC, ATG,..., GGA, GGT, GGC, GGG}. Similarly,
the frequency information for each 3-mer segment of
each sequence in the sample sequence is counted in
turn, and the respective mean values are calculated to
estimate the frequency of occurrence of each 3-mer in
the lncRNA and mRNA sequences. The histogram of
the 3-mer frequency distribution in the mRNA and
lncRNA is plotted, as shown in Fig. 5a and b. As seen in
Fig. 5a and b, the frequency distribution of most 3-mer
subsequences in the mRNA sequence fluctuated sharply,
but the frequency of 3-mers of GCG, CGG, CGC, CGT,
CGA, TCG, and ACG was small, with only approxi-
mately 4 in each sequence. Moreover, the TGG, CAG,
CTG, CCA, CCT, GCC, and GGC segments were
enriched in the mRNA sequence, all with frequencies of
approximately 40. In the lncRNA sequence, the
frequency distribution of each 3-mer subsequence was
relatively stable, and most of them were distributed ap-
proximately 15 with little fluctuation. A few 3-mers had
a higher frequency, such as AAG, AGA, AGG, TGG,
CAG, CTG, CCA, CCT, GAA, and GGA, exceeding 20.
Moreover, only four 3-mers, ACG, TCG, CGA, and
CGT, had frequencies lower than 5.
By analysing the frequency distributions of 1-mers and

3-mers of lncRNA and mRNA sequences, the k-mer dis-
tributions of the two were found to have their own prefer-
ences. Therefore, we could use the k-mer frequency

Fig. 3 The 3-mer sliding window showing the process of taking a k-mer in sliding window mode in a sequence when k is three in which there
are 21 3-mers
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Fig. 4 The 1-mer frequency distribution histogram. The contents of the A, C, G, and T bases in the lncRNA sequence are approximately 254 nt,
217 nt, 216 nt, and 240 nt, respectively, while the mRNA sequence has A, C, G, and T base contents of approximately 364 nt, 420 nt, 422 nt, and
343 nt, respectively, when we randomly select 5000 lncRNA sequence data and 5000 mRNA sequence data

Fig. 5 The 3-mer distribution frequency diagram of mRNA and lncRNA. a The 32 3-mer distribution frequency diagram beginning with T and A,
and (b) the other 32 3-mer distribution frequency diagram beginning with G and C
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distribution information for the sequence as the difference
information between lncRNA and mRNA sequences.

The lncRNA and mRNA classification model based on the
convolutional neural network
In this paper, a convolutional neural network algorithm
was used to construct a model suitable for classifying
gene sequences based on the transformation of se-
quences into the k-mer frequency matrix. The model
framework is shown in Fig. 6.
As shown in Fig. 6, the lncRNA and mRNA classifica-

tion model includes the input part and the convolutional
neural network part. The input section contains the k-
mers extracted from the sequence and their construction
into a k-mer frequency matrix. The convolutional neural
network consists of two layers. First, in the k-mer fea-
ture extraction layer, the input of each neuron is con-
nected to the local acceptance domain of the previous
layer, and the local features are extracted. Once the local
feature is extracted, its positional relationship with other
k-mer features is also determined. The second is the k-
mer feature mapping layer. Each computing layer of the
network consists of multiple feature maps. Each feature

map is a plane, and the weights of all neurons on the
plane are equal. The k-mer feature mapping structure
uses the sigmoid function as the activation function of
the convolutional network so that the feature map has
displacement invariance. In addition, since all neurons
on a mapped surface share weights, the number of net-
work parameters is reduced. Each convolutional layer in
the convolutional neural network is followed by a com-
putational layer for local averaging and quadratic extrac-
tion of k-mer features. This unique two-feature
extraction structure reduces feature resolution.

Construction of the k-mer frequency matrix
The k-mer frequency of each sequence is first normal-
ized and converted to a frequency. Then, according to
the application of the convolutional neural network in
image recognition, the k-mer frequency of each se-
quence is constructed into a matrix form of the same
size as the input of the model. Finally, the convolutional
neural network is used to autonomously learn the differ-
ence between the two sequences of k-mer frequency in-
formation to achieve the purpose of classifying and

Fig. 6 The lncRNA recognition model calculation flow chart. The lncRNA and mRNA classification model includes the input part and
convolutional neural network part
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identifying lncRNAs and mRNAs. The specific process is
as follows:

Step 1: The k-mer frequency information for each
sequence is counted. In this paper, the sequence is
traversed in the order of A, T, C, and G, and finally the
frequency of each 4-mer is counted;
Step 2: Normalize the frequency of each k-mer in the
sequence in each sequence. That is, the frequency
pi(i = n, n = 4k) of all k-mers in each sequence is
obtained, and the sum of the frequencies of k-mers in
each sequence is 1;
Step 3: The frequencies of all k-mers in each sequence
are constructed into a matrix form A × B(A × B = 4k), and
the elements in the matrix are arranged horizontally in
the order of the k-mer. For example, when k is 4, the
constructed matrix is 16 × 16.

K-mer screening based on relative entropy
When the value of k increases, the k-mer types with a
length k in the sequence increase exponentially. If k is
large, the average frequency of each k-mer will be less.
Numerous k-mers have a frequency of zero. To reduce
the complexity of the data calculation, we used relative
entropy to screen k-mers.
Let plnc be the frequency distribution of the k-mer in

the lncRNA sequence and pm be the frequency distribu-
tion of the k-mer in the mRNA sequence. The relative
entropy of plnc and pm is then

D p ln c; pmð Þ ¼
X4k

i¼1
p ln c ið Þ ln

p ln c ið Þ
pm ið Þ ; k∈ 1; n½ �; i∈ i; 4k

� �
;

ð1Þ

If plnc = pm, then D(plnc, pm) = 0, which indicates that
the k-mer frequency distribution of the lncRNA se-
quence does not differ from the frequency distribution
of the mRNA. If there is a difference in the k-mer fre-
quency distribution between lncRNA and mRNA, then
the value of D(plnc, pm) will be greater than zero. Con-
currently, the smaller the value of D(plnc, pm) is, the
smaller will be the difference in the k-mer frequency dis-
tribution between lncRNA and mRNA. Otherwise, the
larger the value of D(plnc, pm) is, the greater will be the
difference in the k-mer frequency distribution between
lncRNA and mRNA. To screen out k-mers that increase
the difference information, set

dλ ¼ p ln c ið Þ ln
p ln c ið Þ
pm ið Þ ; λ∈ i; 4k

� �
; ð2Þ

Sorting dλ in descending order obtains

R ¼
Pn

λ¼1dλ

D p ln c; pmð Þ ; n∈ 1; 4k
� �

: ð3Þ

R reflects the target ratio of the extracted information
of k-mers. The λ corresponding to R from 1 to 4k is se-
quentially calculated. If set R ≥ 98%, then calculate λ =ϖ,
and the first ϖ k-mers are the filtered k-mers.
Specific steps are as follows:

Step 1: The sum of each k-mer in the lncRNA sample
sequence and the mRNA sample sequence is separately
determined. Then, the frequency of each k-mer in it is
counted. Finally, the frequency values of the 4k kinds of k-
mers in the sample are obtained. For example, when k= 4,
the total frequency of 256 4-mers in the lncRNA and
mRNA sample sequences are respectively counted, then the
frequency value of each 4-mer is counted, and finally, 256
kinds of 4-mers are obtained. The sum of the frequency
values of the 256 4-mers is 1 for the frequency values in the
two sample sequences, respectively. The results of this step
calculation are plnc and pm in the formula (1).
Step 2: According to the frequency value of each k-mer
in the two sequences obtained in step 1, the relative
entropy, that is, the value of D(plnc, pm), is calculated
according to the formula (1). Then, R is calculated
according to the value of D(plnc, pm) in formula (3), and
finally, λ is taken as the value of when R ≥ 98%. Now
according to the descending order of dλ, the first ϖ k-
mers are the filtered k-mers.
Step 3: The lncRNA and mRNA are separately counted
based on the frequency of the k-mers screened in step
2, and then the k-mers frequency is constructed in the
form of a matrix with reference to the steps of data
input processing.

Convolution calculation of the k-mer frequency matrix
The convolution calculation is used to strengthen the im-
portant features in the k-mer frequency matrix and weaken
the influence of irrelevant k-mer features in this paper.
Taking k = 3 as an example, 64 k-mers can be ex-

tracted from an lncRNA sequence. According to the k-
mer frequency, the lncRNA sequence can be constructed
into an 8 × 8 k-mer frequency matrix M,

M ¼

0:0059 0:0102 0:0117 0:0190 0:0059 0:0029 0:0059 0:0102
0:0088 0:0073 0:0220 0:0059 0:0220 0:0146 0:0234 0:0146
0:0044 0:0044 0:0088 0:0088 0:0073 0:0102 0:0176 0:0161
0:0132 0:0176 0:0322 0:0117 0:0117 0:0220 0:0249 0:0146
0:0161 0:0044 0:0102 0:0337 0:0088 0:0264 0:0293 0:0264
0:0278 0:0439 0:0366 0:0190 0:0044 0:0132 0:0190 0:0102
0:0205 0:0073 0:0117 0:0176 0:0044 0:0117 0:0220 0:0190
0:0161 0:0220 0:0366 0:0102 0:0146 0:0073 0:0176 0:0161

2
66666666664

3
77777777775

:

ð4Þ
The convolution calculation is performed by taking

Eq. (4) as input and randomly setting a convolution ker-
nel of 3 × 3 ,
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Kernel ¼
1 0 1
0 1 0
1 0 0

2
4

3
5: ð5Þ

The convolution calculation is actually a process of
weighted summation. The calculation format is usually

Xl
j ¼ f

X
i¼M j

Xl−1
i � Kernellij þ Bl

0
@

1
A; ð6Þ

where f is the activation function of the neurons in the
layer, and l indicates the number of layers in the net-
work. The kernel is the convolution kernel, Mj is a local
area of the input object, and B represents the offset of
each layer.
In Eq. (5), the convolution kernel has nine parameters.

The k-mer frequency matrix in Eq. (4) and the convolu-
tion kernel are convoluted by the calculation method of
Eq. (6). Bl is set as 0. The specific calculation process is
as shown in Eq. (7).

feature map ¼

0:0059�1 0:0102�0 0:0117�1 0:0190 0:0059 0:0029 0:0059 0:0102
0:0088�0 0:0073�1 0:0220�0 0:0059 0:0220 0:0146 0:0234 0:0146
0:0044�1 0:0044�0 0:0088�0 0:0088 0:0073 0:0102 0:0176 0:0161
0:0132 0:0176 0:0322 0:0117 0:0117 0:0220 0:0249 0:0146
0:0161 0:0044 0:0102 0:0337 0:0088 0:0264 0:0293 0:0264
0:0278 0:0439 0:0366 0:0190 0:0044 0:0132 0:0190 0:0102
0:0205 0:0073 0:0117 0:0176 0:0044 0:0117 0:0220 0:0190
0:0161 0:0220 0:0366 0:0102 0:0146 0:0073 0:0176 0:0161

2
66666666664

3
77777777775

¼

0:0293 0:0556 0:0323 0:0527 0:0337 0:0467
0:0484 0:0396 0:0850 0:0495 0:0673 0:0688
0:0469 0:0498 0:0480 0:0644 0:0657 0:0776
0:0776 0:0834 0:1142 0:0615 0:0674 0:0791
0:0907 0:0820 0:0497 0:0821 0:0557 0:0835
0:0878 0:0966 0:0952 0:0468 0:0497 0:0527

2
6666664

3
7777775

ð7Þ

The first element of the feature map in Eq. (7) is the
weighted sum of the first 3 × 3 local element value of the
input matrix M and the corresponding element of the
convolution kernel. Similarly, the second element is the
weighted sum of the second 3 × 3 local element value
and the corresponding element of the convolution
kernel. Finally, a 6 × 6 size of the output matrix feature
map is obtained.
The convolutional neural network of this model

has two convolutional layers. The first convolutional
layer uses 32 convolution kernels, and the second
convolutional layer uses 64 convolution kernels. The
size of each convolution kernel is 3 × 3, and the
horizontal and vertical steps are 1. The border is
filled with 0 in the samepadding to ensure that the
size of the matrix remains the same as before convo-
lution, i.e., the k-mer frequency matrix M after
samepadding is

Oj ¼

0 0 0 0 0 0 0 0
0 0:0293 0:0556 0:0323 0:0527 0:0337 0:0467 0
0 0:0484 0:0396 0:0850 0:0495 0:0673 0:0688 0
0 0:0469 0:0498 0:0480 0:0644 0:0657 0:0776 0
0 0:0776 0:0834 0:1142 0:0615 0:0674 0:0791 0
0 0:0907 0:0820 0:0497 0:0821 0:0557 0:0835 0
0 0:0878 0:0966 0:0952 0:0468 0:0497 0:0527 0
0 0 0 0 0 0 0 0

2
66666666664

3
77777777775

:

ð8Þ

Pooling calculation of the convolution kernel output
matrix
The pooling method adopted in this paper is the max
pooling, which aims to reduce and compress the k-mer
characteristics, as well as the calculation amount. The
model has only one pooling layer. After the second
convolutional layer, the window sliding calculation is
performed in a step size of 2.
For Eq. (8), the maximum value of the first 2 × 2 block

of matrix Oj is 0.0293. The final result of the pooled cal-
culation of matrix Oj is

S j ¼
0:0293 0:0556 0:0527 0:0467
0:0484 0:0850 0:0673 0:0776
0:0907 0:1142 0:0821 0:0835
0:0878 0:0966 0:0497 0:0527

2
664

3
775: ð9Þ

Since 64 k-mer matrices of 6 × 6 were obtained after
the second convolutional layer and the size of the pool-
ing window was 2 × 2, the number of rows and columns
of the matrix became half the original, representing 64
k-mer 3 × 3 matrices.

Fully connected neural network based on SoftMax
function
In order to prevent over-fitting and improve the
generalization ability of the model, we reduce the con-
nection of some neurons with a certain probability, so
that some neurons in each training are not activated.
After the pooling layer, the connection between the out-
put neurons of the pooling layer and the neurons of the
full connective layer was reduced with a probability of
0.25. The output matrix of the pooling layer is flattened
and expanded to connect 128 neurons in the full con-
nection layer. The activation function is still Relu
function.
We used the SoftMax function to activate the output

of the fully connected network in the model. The for-
mula of the SoftMax function is

f z j
� � ¼ ez jPn

i¼1e
zi
: ð10Þ

From Eq. (10), if zj is greater than the other z, the
value of the function f(zj) approaches 1, and otherwise it
approaches 0. Therefore, when the value of f(zj) is 1, the
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input sequence of this model is judged to be an lncRNA
sequence, and when the value of f(zj) is 0, the input
sequence is a mRNA sequence.
The Adadelta optimizer is used to train the gradient

descent in the training process, and the cross-entropy
loss function is used as the loss function.

Setting of the evaluation index in the classification model
The indicator for evaluating the performance of a classi-
fication model is generally the classification accuracy,
which is also known as the model accuracy. Commonly
used evaluation indicators for the two-category problem
are precision and recall. In this paper, the positive class
was the lncRNA sequence, and the mRNA sequence was
the negative class. The predictions of the classifier on
the test data set were either correct or incorrect. The
total number of occurrences in the four cases was re-
corded as follows:
TP——The positive class is predicted as the positive

class number;
FN——The positive class is predicted as the negative

class number;
FP——The negative class is predicted as the positive

class number;
TN——The negative class is predicted as the negative

class number.
The precision rate is defined as

P ¼ TP
TP þ FP

; ð11Þ

The recall rate is defined as

R ¼ TP
TP þ FN

: ð12Þ

In addition, the F1 score is the harmonic mean of the
precision rate and the recall rate, i.e.,

2
F1

¼ 1
P
þ 1
R
; ð13Þ

F1 ¼ 2TP
2TP þ FP þ FN

; ð14Þ

If both the precision and recall rates are high, then F1
will be high [30].
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