
Chen BMC Bioinformatics          (2019) 20:459 
https://doi.org/10.1186/s12859-019-3030-z

RESEARCH ARTICLE Open Access

Multiple-level biomedical event trigger
recognition with transfer learning
Yifei Chen

Abstract

Background: Automatic extraction of biomedical events from literature is an important task in the understanding
biological systems, allowing for faster update of the latest discoveries automatically. Detecting trigger words which
indicate events is a critical step in the process of event extraction, because following steps depend on the recognized
triggers. The task in this study is to identify event triggers from the literature across multiple levels of biological
organization. In order to achieve high performances, the machine learning based approaches, such as neural
networks, must be trained on a dataset with plentiful annotations. However, annotations might be difficult to obtain
on the multiple levels, and annotated resources have so far mainly focused on the relations and processes at the
molecular level. In this work, we aim to apply transfer learning for multiple-level trigger recognition, in which a source
dataset with sufficient annotations on the molecular level is utilized to improve performance on a target domain with
insufficient annotations and more trigger types.

Results: We propose a generalized cross-domain neural network transfer learning architecture and approach, which
can share as much knowledge as possible between the source and target domains, especially when their label sets
overlap. In the experiments, MLEE corpus is used to train and test the proposed model to recognize the multiple-level
triggers as a target dataset. Two different corpora having the varying degrees of overlapping labels with MLEE from
the BioNLP’09 and BioNLP’11 Shared Tasks are used as source datasets, respectively. Regardless of the degree of
overlap, our proposed approach achieves recognition improvement. Moreover, its performance exceeds previously
reported results of other leading systems on the same MLEE corpus.

Conclusions: The proposed transfer learning method can further improve the performance compared with the
traditional method, when the labels of the source and target datasets overlap. The most essential reason is that our
approach has changed the way parameters are shared. The vertical sharing replaces the horizontal sharing, which
brings more sharable parameters. Hence, these more shared parameters between networks improve the performance
and generalization of the model on the target domain effectively.
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Background
Recently, as interest in biomedical research grows, an
overwhelming amount of literature has been published
online. As a result, there are incremental studies in
applying Text Mining (TM) techniques for automatic
recognizing and tracking of the new discoveries and the-
ories in these biomedical articles. These biomedical TM
applications include named entity (e.g. gene and protein
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mentions) recognition, relation (e.g. protein-protein inter-
actions) extraction between entities, and event (e.g. gene
transcriptions and regulations) extraction, etc [1–3].
Event extraction refers to automatically extracting struc-

tured representations of biomedical relations, functions
and processes from text [3]. Since the BioNLP’09 [4] and
BioNLP’11 [5] Shared Tasks, event extraction has become
a research focus. The structure of each event is defined as
an arbitrary number of participants to indicate functions
and processes on molecular level, such as “regulation” and
“phosphorylation”. When a certain protein regulates the
expression of a certain gene and its products are in turn
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involved in some phosphorylation processes, the “regula-
tion” and “phosphorylation” events come into being. Event
extraction task usually contains two main steps: identi-
fying the event triggers and then identifying the event
arguments according to the triggers [6]. Event trigger
recognition, aiming at detecting those expressions from
text that indicate certain events, is the first and crucial
step of event extraction. Event extraction performance
depends entirely on the recognized triggers. This point
was clearly shown by Björne et al. [7]. They found that
between using the gold standard and predicted triggers,
the performance declined by more than 20 points. Many
Machine Learning (ML) based methods, including Condi-
tional Random Field (CRF) [8, 9], Support VectorMachine
(SVM) [7, 10–13], and Deep Neural Network (DNN)
[14–16] models have been successfully applied to event
trigger recognition.
These machine learning based approaches rely on

large quantity and high quality annotated training data.
Their performance may deteriorate when certain training
instances are insufficient. However, acquiring manually
annotated datasets is both time consuming and costly.
Up to now, the manual annotations of biological events
mainly focus on genes and proteins. In the corpora of the
Shared Tasks of BioNLP’09, 9 types of frequently used
biomolecular events are annotated. Biomolecular events
involving proteins and genes are an important part of
the picture of biological systems, but still only a small
part. Hence, in order to obtain a more comprehensive
understanding of biological systems, the scope of event
extraction has been broadened frommolecular-level reac-
tions to cellular-, tissue- and organ-level effects, and to
organism-level outcomes [17]. It is not trivial to keep up
to date with the annotations of the expanding event types
across multiple levels. For example, in the MLEE corpus
[10] multiple levels of events from the molecular level to
the whole organism have been annotated. The number of
event types has been extended to 19. But at the same time,
the number of annotated instances for each event type has
been greatly reduced. Thus, it will be useful that the anno-
tated dataset from a related domain (such as biomolecular
event annotations from the BioNLP’09 corpus) can help
to alleviate the shortage of training data problem in the
target domain (such as multiple-level event recognition
from the MLEE corpus). Recently, transfer learning (TL)
techniques have been proposed to address this need [18].
The concept of transfer learning comes from the

observed fact that when learning in a new related domain,
humans can usually benefit from what they have learned
before [19]. This idea has been employed in data mining
and machine learning fields [20–22] as a transfer learn-
ing schema. Pan and Yang [18] define transfer learning as
using some knowledge learned from a source dataset to
perform a task on a target dataset. And, transfer learning

has been successfully applied tomany fields, including text
mining [23, 24].
Here, we focus on the research of transfer learning

for DNNs, due to their successful application in many
text mining tasks over the last few years. Ideally, transfer
learning can achieve higher performance by reducing the
amount of annotated data needed, and improving general-
ization of themodel on the target dataset. Normally, in the
setting of TM and Natural Language Processing (NLP),
according to the difference between the source and tar-
get datasets, transfer learning approaches of DNN mod-
els have three common categories: cross-lingual transfer,
cross-domain transfer and cross-task transfer. Due to dif-
ferent languages, cross-lingual transfer is mostly limited
to the use of additional language resources to trans-
fer knowledge [25, 26] between the source and target
datasets. It cannot extend to our biomedical event trigger
recognition applications across multiple levels.
Sharing the same language, both cross-domain and

cross-task transfer learning modes can take advantage of
more relevance between source and target datasets. In
these two modes, parameters of DNN models are used to
transfer knowledge between source and target datasets.
Some parameters of one model learned from a source
dataset can be converted to initialize some parameters of
another related model for optimizing on a target dataset.
Usually, how many parameters can be shared depends
on the degree of the relevance of the source and target
datasets. Yang [27] examined the effects of transfer learn-
ing for deep hierarchical recurrent networks on several
different sequence labelling tasks, including the cross-
domain, cross-task and cross-lingual transfer learning
models. And it was reported that significant improvement
can be obtained. In the case of cross-domain transfer,
the datasets of two domains are consistent when their
label sets are identical or mappable to each other. Other-
wise, the datasets of two domains are inconsistent. If the
two domains are consistent, they can share the parame-
ters of all the layers between the source and target DNN
models. But, if they are inconsistent, the parameter shar-
ing is restricted to the fewer layers of the DNN models.
The cross-task transfer can be simply considered as the
case of the cross-domain transfer using inconsistent label
sets due to the fact that different tasks do not share the
same tags. Hence, the same parameter sharing strategy is
effective for them [27]. In the work of Meftah [28], both
cross-task and cross-domain (with inconsistent source
and target tags) transfer learning was implemented to
address the problem of the need in annotated data of
social media texts. And the validity and genericity of the
models were demonstrated on the Part-Of-Speech (POS)
tagging tasks. More studies on transfer learning have been
successfully performed in the NLP sequence labelling
tasks. Dong [29] proposed a multichannel DNN model to
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transfer knowledge cross-domain in Chinese social media.
In order to ensure the consistency of the source and target
domains, some tags are merged in their paper. The exper-
iments showed that the model achieved the best advanced
performance. Lee [24] used cross-domain transfer learn-
ing for Named Entity Recognition (NER) with consistent
tags, showing that transfer learning improved upon the
state-of-the-art results on a target dataset with a small
number of instances. Giorgi [30] demonstrated that trans-
ferring a DNN model significantly improved the latest
leading results for biomedical NER, when the source and
target domains are consistent.
Our aim in this study is to transfer the trigger recogni-

tion knowledge from the source molecular level domain
to the target multiple-level domain. This can be seen as
an exploratory step towards the more effective automatic
extraction of targets from a complex and multifarious
domain based on an available simple and singular domain.
This situation often occurs in certain fields when research
is extended from a familiar area to an unfamiliar and
broader area. For instance, after the 9 types of molecular
level event relationships between genes and proteins from
the biomedical literature have been studies, the research
focus will shift to other levels, and the event types will
be expanded. The source and target domains, event trig-
gers from different levels, are highly related. Under this
circumstance, their label sets may overlap more or less.
Nevertheless the annotations from the source and target
domains are inconsistent, because their label sets are not
identical and mappable. However, among all the above
transfer learning studies, there is no model designed to
solve how to share network parameters in the case of over-
lapping label sets. They just simplify the problem to the
case of having different label sets between the source and
target domains.
We present a new generalized transfer learning

approach based on a DNN model, which attempts to
share the knowledge to the extent possible between the
related source and target domains. The transfer learn-
ing approach is modified and generalized to share more
network parameters to improve trigger recognition per-
formance across multiple levels on the target domain. Our
approach mainly addresses transfer learning between the
domains with overlapping label sets. In this paper, a source
domain with plentiful annotations of biomolecular event
triggers (the BioNLP corpus) is used to improve perfor-
mance on a target domain of multiple-level event triggers
with fewer available annotations (the MLEE corpus). To
our knowledge, no reported research has applied transfer
learning to make the best use of overlapping label sets to
find the shared knowledge.
The rest of this paper is organized as follows. In

“Methods” section, detailed descriptions of the proposed
generalized transfer learning method and Multiple-Level

Trigger recogNizer (MLTrigNer) system are provided.
“Results” section describes the used biomedical cor-
pora, experimental settings, and all the experimental
results. And this is followed by the in-depth analysis in
“Discussion” section. We present the conclusions and
future work in “Conclusions” section.

Results
Corpus description
An in-depth investigation is carried out to compare
the performance of our proposed Multiple-Level event
Trigger recogNizer, MLTrigNer, which is built based on
the generalized cross-domain transfer learning BiLSTM-
CRF model. The dataset DataMLEE is used as the target
domain dataset. With varying degrees of label overlap-
ping, DataST09 and DataEPI11 are used as the source
domain datasets, respectively. Named entity and trigger
types annotated in these corpora are illustrated in Table 1.
In the trigger types of DataMLEE , the labels overlapped
with DataST09 are marked using ‘*’, and the labels over-
lapped with DataEPI11 are marked using ‘+’. We can see
that DataMLEE and DataST09 are highly related because
of the nine overlapping trigger labels. However, there are
some overlapping labels that have gone beyond themolec-
ular level inDataMLEE , which annotate events across mul-
tiple levels. For example, “Localization” is the event type
extracted from both cells and biomolecules in DataMLEE .
DataMLEE and DataEPI11 are loosely related with only two
overlapping trigger labels. More details of these datasets
are introduced in the following.

DataMLEE

The MLEE corpus [10] is used to train and test our
MLTrigNer on multiple-level trigger word identification
as a target dataset. The corpus is taken from 262 PubMed
abstracts focusing on tissue-level and organ-level pro-
cesses, which are highly related to certain organism-level
pathologies. In DataMLEE , 19 event types are chosen from
the GENIA ontology, which can be classified into four
groups: anatomical, molecular, general and planned. Our
task is to identify the correct trigger type of each event.
Hence, there are 20 tags in the target label set, including
a negative one. All the statistics in the training, develop-
ment and test sets are shown in Table 2.

DataST09
This corpus is taken from the Shared Task (ST) of BioNLP
challenge 2009 [4] and contains training and develop-
ment sets, including 950 abstracts from PubMed. It is
used to train our MLTrigNer as a source dataset. In
this corpus, 9 event types are chosen from the GENIA
ontology involving molecular-level entities and processes,
which can be categorized into 3 different groups: simple
events, binding events and regulation events. The training
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Table 1 Named entity and trigger types in DataMLEE , DataST09
and DataEPI11, respectively

Corpus Named entity type Trigger type

DataST09 Protein Gene expression*

Transcription*, Binding*

Protein catabolism*

Phosphorylation*

Localization*, Regulation*

Positive regulation*

Negative regulation*

DataEPI11 Protein Hydroxylation, Dehydroxylation

Phosphorylation+, Deglycosylation

Dephosphorylation+, Catalysis

Ubiquitination, Acetylation

Deubiquitination

DNA methylation

DNA demethylation

Glycosylation, Deacetylation

Methylation, Demethylation

DataMLEE Gene or gene product Cell proliferation, Planned process

Drug or compound Development, Binding*

Developing
anatomical structure

Blood vessel develop

Organ, Tissue Growth, Death, Regulation*

Immaterial anatomical
entity

Breakdown, Remodeling

Anatomical system Synthesis, Localization*

Organism, Cell Gene expression*

Pathological formation Transcription*

Organism subdivision Protein catabolism*

Multi-tissue structure Phosphorylation*+

Cellular component Dephosphorylation+

Organism substance Positive regulation*

Negative regulation*

In the trigger types of DataMLEE , the labels overlapped with DataST09 are marked
using ‘*’, and the labels overlapped with DataEPI11 are marked using ‘+’

Table 2 Statistics of documents, words and events in the dataset
DataMLEE , including the training set, the development set, and
the test set, respectively

Item Training Development Test

Document 131 44 87

Words 27,875 9610 19,103

Event 3296 1175 2206

and development sets are combined as a source domain
dataset DataST09. All of the detailed statistics of DataST09
are shown in Table 3.

DataEPI11
This corpus is taken from the Epigenetics and Post-
translational Modifications (EPI) task of BioNLP chal-
lenge 2011 [5] and contains training and development
sets, including 800 abstracts relating primarily to protein
modifications drawn from PubMed. It is also used to train
our MLTrigNer as a source dataset. In this corpus, 14
protein entity modification event types and their cataly-
sis are chosen. Hence there are 15 event types totally. The
training and development sets are combined as a source
domain dataset DataEPI11. All of the detailed statistics in
DataEPI11 are shown in Table 4. The number of anno-
tated events in DataEPI11 is less than that in the DataST09,
annotating the more event types.

Performance assessment
We measure the performance of the trigger recognition
system in terms of the F1 measure. The F1 is determined
by a combination of precision and recall. Precision is the
ratio of the number of correctly classified triggers within
a category to the total number of recognized ones. Recall
is the ratio of the number of correctly classified triggers
within a category to the total number of triggers. They are
defined as follows:

F1 − measure = 2Precision × Recall
Precision + Recall

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

where TP is the number of the triggers that are correctly
classified to a category, FP is the number of the triggers
that are misclassified to a category, and FN is the number
of the triggers misclassified to other categories.

Implementation details
All of the experiments described in the following are
implemented using the Tensorflow library [31]. Hyperpa-
rameters are tuned using the training and development
sets through cross-validation and then the final model

Table 3 Statistics of documents, words and events in the
training set, the development set and their combination as
DataST09, respectively

Item Training Development DataST09

Abstract 800 150 950

Words 176,146 33,937 210,083

Event 8597 1809 10,406
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Table 4 Statistics of documents, words and events in the
training set, the development set and their combination as
DataEPI11, respectively

Item Training Development DataEPI11

Abstract 600 200 800

Words 127,312 43,497 170,809

Event 1852 601 2453

is trained on the combined set of the optimal ones. We
tune the pre-trained word embedding vector Ew to 200
dimensions, character embedding vector Ec to 100 dimen-
sions, named entity type embedding vector Ee to 10 for
source domain while 50 dimensions for target domain,
POS embedding vector Ep to 50 dimensions, pre-trained
dependency tree-based word embedding vector Ed to 300
dimensions. Then, the BiLSTM layer with a hidden state
dimension of 300, and the fully-connected layer with 600
dimensions. In order to avoid overfitting, dropout with a
probability 0.5 is used before the input to the BiLSTM and
fully-connected layers.

Transfer learning performance
The effectiveness of our proposed is approach illustrated
based on the performance comparison of the three neural
network models described in “Methods” section. First, the
Basic Model A (Fig. 1) is trained only on the training and
development sets of DataMLEE (without transfer learning)
as a baseline measurement, and its results are shown in
the second column of Table 5. Then, DataST09 is used as
the source dataset in the transfer learning models. The TL
Model C (Fig. 2) and the MLTrigNer model (Fig. 3) are
jointly trained on DataST09 and the training and devel-
opment sets of the target dataset DataMLEE using differ-
ent transfer learning approaches, respectively. The three
models are tested on the test set of DataMLEE . The results
are shown in the third and forth columns of Table 5.
Among the models described in “Methods” section, the
TL Model B (Fig. 4) cannot be used in the trigger recog-
nition task since the domain-dependent input feature sets
are employed, which are inconsistent in the source and
target domains.
From the results of the Basic Models A and the TL

Model C, we can see that the transfer learning improves
the F1 measure 1.76%. Generalizing the transfer learn-
ing schema in the MLTrigNer Model improves the trigger
recognition performance a further 1.78%. This improve-
ment is due to the fact that in our approach, more
parameters are transferred from the source network to
the target one than usual, signifying more effective knowl-
edge sharing. It is worth noting there are improvements
in both precision and recall, which refers to the abil-
ity of the MLTrigNer to identify more positive triggers.

Fig. 1 The network architecture of Basic Model A: the BiLSTM-CRF
model, having a Embedding layer, a BiLSTM layer, a Fully-connected
layer and a CRF layer

Higher precision and recall signify identification of more
potential biomedical events during the subsequent pro-
cessing phase, which is important for the ultimate event
extraction application. Compared with the TL Model C,
beside “Negative regulation” and “Localization”, the F1
values of the other trigger types overlapping with the
source dataset are improved. Among these overlapping
labels, some of them have gone beyond themolecular level
in DataMLEE to annotate events across multiple levels.
Moreover, the F1 values of the 7 non-overlapping trigger
types are also improved, except for “Growth”, “Dephos-
phorylation” and “Planned process”. Hence, our pro-
posed approach can improve the recognition performance
across multiple levels through transfer more knowledge
from a single level domain.
Then, DataEPI11 is used as the source dataset alter-

natively. Basic Model A (Fig. 1) was also trained only
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Table 5 Detailed results achieved by the proposed MLTrigNer Model, Basic Model A and TL Model C on DataMLEE

Trigger type
Basic Model A TL Model C MLTrigNer Model

P R F1 P R F1 P R F1

Cell proliferation 85.37 81.40 83.33 80.95 79.07 80.00 81.40 81.40 81.40

Development 66.37 76.53 71.09 76.29 75.51 75.90 78.00 79.59 78.79

Blood vessel develop 97.33 94.19 95.74 97.98 93.87 95.88 100.0 94.52 97.18

Growth 96.00 85.71 90.57 90.74 87.50 89.09 92.31 85.71 88.89

Death 73.68 75.68 74.67 67.39 83.78 74.70 69.57 86.49 77.11

Breakdown 82.35 63.64 71.79 75.00 68.18 71.43 87.50 63.64 73.68

Remodeling 71.43 50.00 58.82 55.55 50.00 52.63 85.71 66.67 75.00

Synthesis 50.00 25.00 33.33 0.0 0.0 0.0 100.0 100.0 100.0

Gene expression 91.67 83.33 87.30 91.80 84.85 88.19 94.44 90.15 92.25

Transcription 0.0 0.0 0.0 50.00 16.67 25.00 100.0 66.67 80.00

Protein Catabolism 0.0 0.0 0.0 0.0 0.0 0.0 100.0 60.00 75.00

Phosphorylation 75.00 100.0 85.71 60.00 100.0 75.00 75.00 100.0 85.71

Dephosphorylation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Localization 78.83 81.20 80.00 82.09 82.71 82.40 82.17 79.70 80.92

Binding 86.96 70.18 77.67 83.02 77.19 80.00 91.49 75.43 82.69

Regulation 59.80 58.93 59.37 60.27 63.77 61.97 61.71 66.18 63.87

Positive regulation 80.88 81.90 81.39 84.82 81.59 83.17 84.81 85.07 84.94

Negative regulation 84.73 65.71 74.02 80.75 78.78 79.75 78.96 75.10 76.99

Planned process 78.69 48.98 60.38 74.15 55.61 63.56 78.76 58.67 67.25

TOTAL 81.63 74.26 77.77 81.52 77.66 79.53 83.31 79.40 81.31

The Basic Model A is trained only on the training and development sets of DataMLEE without transfer learning. The TL Model C and the MLTrigNer model are jointly trained on
the source dataset DataST09 and the training and development sets of the target dataset DataMLEE using different transfer learning approaches, respectively. The three
models are tested on the test set of DataMLEE . In the results of MLTrigNer Model, the improved F1 values are marked in bold

on the training and development sets of DataMLEE
(without transfer learning) as a baseline measure-
ment, and its results are shown in the second col-
umn of Table 6. The TL Model C (Fig. 2) and the
MLTrigNer Model (Fig. 3) are then jointly trained on
the source dataset DataEPI11 and the training and devel-
opment sets of the target dataset DataMLEE using dif-
ferent transfer learning approaches. The results are
shown in the third and forth columns of Table 6,
respectively. The three models are tested on the test
set of DataMLEE .
From the results of the Basic Model A and the TL

Model C, we can see that the transfer learning improves
the F1 measure 0.87%. The MLTrigNer Model improves
the performance a further 1.04%, and the improvements
are also both in precision and recall. Using DataEPI11
as the source dataset, the MLTrigNer Model brings less
performance improvement. This is due to the decreased
correlation between the source and target domains. In
the transfer learning models, less parameters can be
transferred from the source to the target networks.

However, our MLTrigNer Model still can improve the
performance further compared with the basic trans-
fer learning approach. Hence, our proposed method is
effective when the overlapping is more or less. Com-
pared with the TL Model C, the recognition perfor-
mance of the overlapping trigger “Phosphorylation” is not
improved, and its F1 measure is 100.0 in both models,
which cannot be improved further. Moreover, the per-
formance of the 13 non-overlapping trigger types are all
improved.

MLTrigNer compared with other trigger recognition
systems
We compare the performance of the proposed transfer
learning based trigger recognition system, MLTrigNer,
with other leading systems on the same DataNMLEE
dataset. Since DataST09 as the source dataset shows the
better performance from the results in Tables 5 and 6,
we utilized DataST09 to train the MLTrigNer Model as
the source dataset. The detailed F1 measure results are
illustrated in Table 7.
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Fig. 2 The network architecture of TL Model C: Transfer learning BiLSTM-CRF model with the different feature and label sets, having Embedding
layers, BiLSTM layers, Fully-connected layers and CRF layers for the source and target networks, respectively. The parameters can be transferred in
the Embedding layers only

Pyysalo et al. [10] defined an SVM-based classifier with
rich hand-crafted features to recognize triggers in the
text. Zhou et al. [13] also defined an SVM-based classifier
with word embeddings and hand-crafted features. Nie
et al. [14] proposed a word embedding-assisted neural
network model to model semantic and syntactic infor-
mation in event trigger identification (the results were
converted to 19 categories). Wang et al. [15] defined a
window-based convolution neural network (CNN) clas-
sifier. Rahul et al. [16] proposed a method that uses a
recurrent neural network (RNN) to extract higher-level
sentence features in trigger identification.
From Table 7, we can draw two conclusions. First, our

generalized transfer learning approach achieves the best
result on the dataset DataMLEE , which indicates that our
MLTrigNer can still improve the performance of biomedi-
cal trigger word recognition. Second, from Table 5, the TL
Model C achieves competitive results compared to these
leading systems, which means that the improvement of
our generalized transfer learning approach is achieved on
a relatively strong basis.

Discussion
Transfer performance analysis on highly related domains
We conduct an in-depth study and detailed comparison
on the highly related domains of DataST09 and DataMLEE

to show the learning ability of our proposed approach. In
our study, there are two datasets with the different over-
lapping degrees of the labels used as source domains to
transfer knowledge, respectively. Between them,DataST09
is highly related with the target domain. Its trigger types
are nested in those of the target domain dataset from
Table 1. Hence, we can simply put the DataST09 and
the training and development sets of DataMLEE together
to train the BiLSTM-CRF model without transfer learn-
ing (Basic Model A), and then the model is tested on
the test set of DataMLEE . Its performance is shown in
Table 8 in the line of “Basic Model A (DataMLEE +
DataST09)”. For the purpose of comparison, in the line of
“Basic Model A (DataMLEE)”, the performance of Basic
Model A trained on the training and development sets
of DataMLEE and tested on the test set of DataMLEE
is listed. And in the last line, the performance of our
MLTrigNer Model is shown, which uses DataST09 and
DataMLEE as the source and target datasets, respectively.
From the results we can see that the performance even
declines when just simplymixing nested datasets together.
On the other hand, the performance can be improved
using our transfer learning approach. In the process
of trigger recognition, the shared knowledge brought
by the transfer learning is more important than the
data itself.
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Fig. 3 The network architecture of Generalized TL Model D: Our proposed generalized transfer learning BiLSTM-CRF model for Multiple-Level
Trigger recogNizer, MLTrigNer. It has Embedding layers, BiLSTM layers, Fully-connected layers and CRF layers for the source and target networks,
respectively. The parameters can be transferred in all the Embedding layers, the BiLSTM layers and Fully-connected layers

Ratio effect analysis on source data
It is important to analyze the effect of the ratio of source
domain data. First, we use DataST09 as the source dataset,
which is more than 3.6 times the size of the target domain
dataset. We keep the size of target data unchanged, and
gradually change the size of source data. The changes
in the MLTrigNer Model results are shown as a curve
in Fig. 5, with the source ratio as 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% and 100%. We can see that F1
first goes up continuously as the source data is added.
Then it reaches a maximum of 81.31 when the source
ratio is 80%. Finally, it trends downwards even as more
source data is added, reaching 80.46 with 100% data in
DataST09. The results verify that more data from source
domain does not always lead to better performance in
target domain. In our study, the optimal source/target
ratio is about 2.9 : 1 when maximum performance
achieved in DataMLEE . In order to optimize the perfor-
mance of the model under different datasets, we set the
ratio of source domain data to be one of the impor-
tant hyperparameters of the MLTrigNer model, which
is tuned on the training and development sets using
cross-validation.

Then, we use DataEPI11 as the source dataset alter-
natively, which is about 3.1 times the size of the target
domain dataset. We also keep the size of the target data
unchanged, and gradually change the size of the source
data. The changes in the MLTrigNer Model results are
shown as a curve in Fig. 6, with the source ratio as 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. Sim-
ilar trends are found in the Figs. 5 and 6. The values of
F1 measure first goes up continuously as source training
data is added, and reaches a maximum of 79.68 when the
source ratio is 90%. Then, it trends downwards even as
more source data is added, reaching 79.45 with 100% data
inDataEPI11. After tuned on the training and development
sets using cross-validation, the optimal source/target ratio
is about 2.7 : 1 when maximum performance achieved in
DataMLEE .

Error analysis
From the metrics in Tables 5 and 6 we can notice
that the results of the trigger type “Dephosphorylation”
are all zeroes regardless of the models. From a more
detailed list of types and sizes of trigger words of the
DataMLEE in Table 9, we can see that there are only 6
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Fig. 4 The network architecture of TL Model B: Transfer learning BiLSTM-CRF model with the different label sets, having Embedding layers, BiLSTM
layers, Fully-connected layers and CRF layers for the source and target networks, respectively. The parameters can be transferred in the Embedding
layers and the BiLSTM layers

“Dephosphorylation” instances in the DataMLEE . Without
adequate training instances, the recognition results of the
Basic Model A and TL Model C are very poor. More-
over, with our transfer learning approach, its recognition
results of the MLTrigNer model are still zeroes under
the situation that “Dephosphorylation” is an overlapping
trigger type. This is a limitation of our transfer learning
approach that it cannot transfer enough knowledge from
other triggers for labelling the rare trigger types.

Conclusions
In this paper we develop a novel transfer learning
approach for multiple-level event trigger recognition
based on a DNN model. We design a more general trans-
fer learning approach to set the cross-domain transfer,
which can share as much knowledge as possible between
the source and target datasets, particularly encompass-
ing the case of overlapping label sets. In the experi-
ments, the source datasets having varying degrees of
overlapping labels with the target dataset are utilized
to verify the effectiveness of our proposed MLTrigNer
model. Compared with the basic transfer learning model,

our approach improves the performance on the tar-
get domain further. Moreover, its performance exceeds
other leading trigger recognition systems on the same
MLEE corpus. Hence this study contributes to the effec-
tive recognition of biomedical trigger words from text
across multiple levels. Through analysis, it is found that
there are three essential factors mattering to our cross-
domain transfer learning approach: the degree of over-
lapping of the source and target domains; the number
of sharable parameters in each layer of a network; and
an appropriate size of the source and target datasets.
In the future work, more source datasets from different
biomedical event levels with varying degrees of overlap-
ping label tags can be utilized together to improve the
performance further.

Methods
In this section, we introduce our proposed transfer learn-
ing approach. Our solution for trigger recognition is based
on a Bidirectional LSTM-CRFmodel (BiLSTM-CRF) [32],
which uses a deep neural network, Long Short Term
Memory (LSTM) [33], to extract higher-level abstract
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Table 6 Detailed results achieved by the proposed MLTrigNer Model, Basic Model A and TL Model C on DataMLEE

Trigger type
Basic Model A TL Model C MLTrigNer Model

P R F1 P R F1 P R F1

Cell proliferation 85.37 81.40 83.33 83.33 81.40 82.35 81.40 81.40 81.40

Development 66.37 76.53 71.09 74.51 77.55 76.00 78.35 77.55 77.95

Blood vessel develop 97.33 94.19 95.74 98.64 93.87 96.20 98.99 94.84 96.87

Growth 96.00 85.71 90.57 88.89 85.71 87.27 92.45 87.50 89.91

Death 73.68 75.68 74.67 66.67 81.08 73.17 66.67 81.08 73.17

Breakdown 82.35 63.64 71.79 73.68 63.64 68.29 87.50 63.64 73.68

Remodeling 71.43 50.00 58.82 75.00 30.00 42.86 66.67 40.00 50.00

Synthesis 50.00 25.00 33.33 33.33 25.00 28.57 20.00 25.00 22.22

Gene expression 91.67 83.33 87.30 85.51 89.39 87.41 89.05 92.42 90.71

Transcription 0.0 0.0 0.0 50.00 16.67 25.00 100.0 16.67 28.57

Protein Catabolism 0.0 0.0 0.0 0.0 0.0 0.0 33.33 20.00 25.00

Phosphorylation 75.00 100.0 85.71 100.0 100.0 100.0 100.0 100.0 100.0

Dephosphorylation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Localization 78.83 81.20 80.00 77.14 81.20 79.12 82.17 79.70 80.92

Binding 86.96 70.18 77.67 83.02 77.19 80.00 79.25 73.68 76.36

Regulation 59.80 58.93 59.37 65.13 61.65 63.34 65.17 63.29 64.22

Positive regulation 80.88 81.90 81.39 81.11 82.91 82.00 81.96 82.22 82.09

Negative regulation 84.73 65.71 74.02 77.18 75.61 76.39 80.72 73.47 76.92

Planned process 78.69 48.98 60.38 66.86 57.65 61.92 71.07 57.65 63.66

TOTAL 81.63 74.26 77.77 79.69 77.62 78.64 81.76 77.71 79.68

The Basic Model A is trained only on the training and development sets of DataMLEE without transfer learning. The TL Model C and the MLTrigNer model are jointly trained on
the source dataset DataEPI11 and the training and development sets of the target dataset DataMLEE using different transfer learning approaches, respectively. The three
models are tested on the test set of DataMLEE . In the results of MLTrigNer Model, the improved F1 values are marked in bold

features to train a CRF [34]. We design a transfer learning
approach to allow for joint training with a source dataset,
which uses an input feature set and a output label set that
overlap with the target dataset, respectively.
We first introduce and describe the architecture of the

BiLSTM-CRFmodel as BasicModel A.We then introduce
the cross-domain transfer learning BiLSTM-CRF model
with inconsistent label sets as TL Model B, and in addic-
tion with inconsistent input feature sets as TL Model C.

Table 7 Detailed performance results achieved by the proposed
MLTrigNer and the other leading trigger recognition systems,
respectively

Trigger Recognition System Precision Recall F1-Measure

Our MLTrigNer system 83.31 79.40 81.31

SVM-based System [10] 81.44 69.48 75.67

SVM-based System [13] 75.56 81.29 78.32

Neural Network based System [14] 71.04 84.60 77.23

CNN-based System [15] 80.67 76.76 78.67

RNN-based System [16] 79.78 78.45 79.11

In these results, the best F1 value of our MLTrigNer system is marked in bold

Finally, our proposed generalized transfer learning model,
Generalized TLModel D, is described in detail. The differ-
ent architectures of the four models are shown in Figs. 1,
4, 2 and 3, respectively.

Basic model a: biLSTM-CRFmodel
We present our trigger recognition task based on the
BiLSTM-CRF model as Basic Model A, whose architec-
ture is shown in Fig. 1. In Basic Model A, θs denote all the

Table 8 Detailed performance results on highly related domains
with different training modes, including the Basic Model A
(trained on the training and development sets of DataMLEE ), the
Basic Model A (trained on the combination of DataST09 and the
training and development sets of DataMLEE ), and our MLTrigNer
Model (using DataMLEE as the target dataset and DataST09 as the
source dataset)

Trigger Recognition System Precision Recall F1-Measure

Basic Model A (DataMLEE ) 81.63 74.26 77.77

Basic Model A (DataMLEE + DataST09) 78.78 73.92 76.28

Our MLTrigNer Model (DataMLEE + DataST09) 83.31 79.40 81.31

In these results, the best F1 value of our MLTrigNer model is marked in bold
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Fig. 5 The ratio effect of source domain data DataST09 to our transfer learning model, MLTrigNer, with the ratio as 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90% and 100%

trainable parameters in each network layer. This model
detects trigger words and annotates their types, and its
performance servers as the baseline. For a given input sen-
tence {word1,word2, ...,wordn}, the aim of trigger recogni-
tion is to output a tag sequence {tag1, tag2, ..., tagn}, where
wordi is a word (or a token) in the sentence and tagi
denotes its corresponding type label. The value of tagi
belongs to the label set, which is a biomedical event type
or negative if it does not indicate any event. The BiLSTM-
CRF model feeds a set of features for an input embed-
ding layer (with parameters θEmb), extracts higher-level
abstract features in subsequence BiLSTM (with parame-
ters θLSTM) and fully-connected (with parameters θF ) lay-
ers, and trains a CRF layer for the final sequence labelling.
The main layers of the BiLSTM-CRF model for trigger
recognition are described below.

Embedding layer
In order to express both syntactic and semantic informa-
tion in input sentences, besides each word, wordi, we also

extract other four features from character, POS, named
entity type and dependency parse tree. Through lookup
tables, the embedding layer converts each input feature
into one of the following representation vectors:

1 Word embedding vector Ew: Each word in an input
sentence is mapped to a word embedding vector,
which contains semantic information from its linear
contexts. In this paper, we use a pre-trained word
lookup table LTw learned from PubMed articles
using the word2vec model [35].

2 Character embedding vector Ec: We use an extra
LSTM network to extract the orthographic
information from the sequence of characters in each
input word. Its parameters LTc are weights and biases
of the LSTM, which are initialized randomly and
trained to output a character-level embedding vector.

3 POS embedding vector Ep: We train a POS lookup
table LTp to extend the word embedding. It maps the
POS tag of each word in an input sentence to a POS

Fig. 6 The ratio effect of source domain data DataEPI11 to our transfer learning model, MLTrigNer, with the ratio as 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90% and 100%
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Table 9 List of types and sizes of trigger words in the DataMLEE ,
where “Dephosphorylation” is a rare trigger type

Trigger type size in DataMLEE

Anatomical Cell proliferation 133

Development 316

Blood vessel develop 855

Growth 169

Death 97

Breakdown 69

Remodeling 33

Molecular Synthesis 17

Gene expression 435

Transcription 37

Protein catabolism 26

Phosphorylation 33

Dephosphorylation 6

General Localization 450

Binding 184

Regulation 773

Positive regulation 1327

Negative regulation 921

Planned Planned process 643

embedding vector, which extracts syntactic
information from the input word. LTp is initialized
randomly and trained to obtain a mapping lookup
table.

4 Named entity type embedding vector Ee: We train a
lookup table LTe to map named entity type of each
word in an input sentence to an embedding vector to
extract domain-dependent information. The named
entities were provided by the task data. LTe is
initialized randomly and trained to output a mapping
lookup table.

5 Dependency tree-based word embedding vector Ed :
In order to extend features from linear word contexts
to non-linear syntactic contexts, each word from an
input sentence is mapped to a dependency tree-based
word embedding vector, which contains rich
non-linear functional and syntactic information. We
use a pre-trained word lookup table LTd learned from
English Wikipedia using the skip-gram model [36].

In the embedding layer, trainable parameter set can be
expressed as θEmb = {LTc, LTp, LTe}.
BiLSTM layer
This layer takes a concatenation of the output embed-
ding vectors of the previous embedding layer as input,

xi =[Ewi ;Eci ;E
p
i ;Eei ;Edi ]. Due to the ability to learn long-

distance dependencies in a sequence through designed
memory cells, LSTM is a powerful tool for sequence
labelling tasks [33]. Suppose that an input sequence to
a LSTM layer is {x1, x2, ..., xT }, and it yields an output
sequence of {h1, h2, ..., hT } by employing the following
implementation strategy during training [32], where both
sequences have the same length T :

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (4)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf ) (5)

ct = ftct−1 + ittanh(Wxcxt + Whchl−1 + bc) (6)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (7)

ht = ottanh(ct) (8)

where σ denotes the logistic sigmoid function, tanh is
the hyperbolic tangent activation function, and all weights
(W s) and biases (bs) make up the parameter set (θLSTM)
of the LSTM layer. More details about the LSTM can be
referred to in [32]. In sequence labelling tasks, it is better
to be able to process both the past (from the left side) and
the future (from the right side) context dependencies in
the sequence. Therefore, another commonly used version
of the LSTM is employed, called the Bidirectional LSTM
(BiLSTM) [32, 37]. In the BiLSTM, for each word the for-
ward LSTM captures the features from the left side and
the backward LSTM captures the features from the right
side. Each word effectively encodes information about the
whole sentence.

Fully-Connected layer
The output of the BiLSTM layer at each time step t,
obtained by concatenating the outputs of the forward and
backward LSTMs ht =[ hFt ; hBt ], is mapped to a linear
and fully-connected network layer using ReLU activation
functions as follows:

yt = max(0,Wtht + bt) (9)

where all weights (W s) and biases (bs) make up the param-
eter set (θF ) of the fully-connected layer.

CRF layer
On the top of the fully-connected layer, a final CRF layer
generates a sequence of labels for corresponding words.
The CRF layer can learn the strong dependencies across
output labels and come into the most likely sequence of
the predicted tags [38].
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Transfer learning approach
The goal of cross-domain transfer in this study is to
learn a sequence labelling model for triggers which trans-
fers knowledge from a source domain to a related target
domain.

TLmodel b
When the label sets of the source and target domains
are inconsistent, including overlapping, it is treated as the
case of the domains having completely different label sets
in the basic idea of transfer learning. In this situation, the
architecture of TL Model B is an extension of the basic
BiLSTM-CRF model. And the source and target domains
share the same input feature sets in the model. The TL
Model B in Fig. 4 gives an overview of how to trans-
fer parameters (θs) of each neural network layer between
both datasets within a certain range.
Let s and t represent the source domain and the tar-

get domain, respectively. And the parameter sets of each
model layer l are θ ls and θ lt for the source and tar-
get domains, including the embedding layers (θEmd

s and
θEmd
t ), the BiLSTM layers (θLSTMs and θLSTMt ), and the
fully-connected layers (θFs and θFt ). The transfer learning
process consists of learning the parameters (θEmd

s , θLSTMs
and θFs ) of a neural network on a source dataset, then
transferring a part of them to another neural network and
optimizing parameters (θEmd

t , θLSTMt and θFt ) on a target
dataset. In TL Model B, without the same label sets, only
the parameters of the embedding and BiLSTM layers can
be transferred and shared, as illustrated below:

θEmd
s = θEmd

s,shared , θ
Emd
t = θEmd

t,shared,with θEmd
s,shared → θEmd

t,shared
(10)

θLSTMs = θLSTMs,shared , θ
LSTM
t = θLSTMt,shared ,with θLSTMs,shared → θLSTMt,shared

(11)

where the subscript shared means the parameters that
can be shared and transferred between the source and
target domains. After training on the source domain, all
the embedding and BiLSTM layer parameters, θEmd

s and
θLSTMs , are mapped to initialize the parameters of the cor-
responding layers on the target dataset, θEmd

t and θLSTMt .
Hence we have θEmd

s,shared → θEmd
t,shared and θLSTMs,shared → θLSTMt,shared .

It also means that the parameters of the fully-connected
layer, θFs and θFt , should be trained separately because of
the inconsistent label sets.

TLmodel c
When with their own domain-dependent features, such
as named entity type, the input feature sets of the source
and target domains are inconsistent. The BiLSTM lay-
ers will have the different parameter dimensions and

structures due to the different feature sets. Hence, the
parameters of this layer cannot be shared neither. In
this situation, the only parameters that can be trans-
ferred are from the embedding layer as shown in Eq. 12.
More specifically, the shared parameters are those lookup
tables trained for domain-independent features, θs,shared =
{TLw,TLc,TLp,TLd}, where TLw and TLd are pre-trained.
The TL Model C in Fig. 2 gives an overview of how to
transfer the parameters between the neural network layers
of both datasets.

θEmd
s ⊃ θEmd

s,shared , θ
Emd
t ⊃ θEmd

t,shared ,with θEmd
s,shared → θEmd

t,shared
(12)

Generalized tLmodel d (MLTrigNer): our transfer learning
approach
This study uses the corpus with biomolecular trigger
annotations as the source domain dataset and the corpus
with multiple-level biomedical event triggers as the tar-
get domain dataset. Because of their inconsistent input
feature and output label sets, we just can choose the TL
Model C shown in Fig. 2 to build a trigger recognizer,
without sharing the parameters of the fully-connected and
BiLSTM layers. This ignores the information hidden in
the overlapping features and labels. It is known in transfer
learning that the more parameters are shared, the better
generalization can be achieved in the target domain. For
this purpose, we propose a generalized transfer learning
architecture and approach to share as many parameters
as possible to explore the transferability of each layer in a
neural network, especially when the feature and label sets
are overlapping.
As we discussed that parameters stand for the abstract

features learned from a neural network. In the basic
transfer learning architectures, TL Model B and C, the
parameters are chosen to be transferred according to
the network layers horizontally. When the label sets of
the source and target domains are consistent, parame-
ters from the upper (fully-connected) and middle (BiL-
STM) layers can be transferred. Otherwise, when the label
sets are inconsistent, the parameters of the whole upper
layer closest to the output are discarded in TL Model B.
Moreover, when the source and the target domains have
inconsistent extracted feature sets, the parameters of the
whole middle layer should be discarded in TL Model C.
After careful study of the lower (embedding) layer of TL
Model C, we find out that all these parameters learned
from the source domain can be split into two parts: a
source-specific part and a source-target-shared part. Cor-
respondingly, the parameters of the target domain also
can be split into two parts: a target-specific part and a
source-target-shared part. This kind of divide is vertical
within a network layer, and the source-target-shared part
of the parameters can transfer the information carried by
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the overlapping of feature and label sets in the middle
and upper layers. The main benefit is that we can include
more domain-dependent features in the lower layer. For
instance, in our trigger recognition task, there is a dif-
ferent and richer named entity type feature set in the
target domain.
Figure 3 shows how we generalize the basic transfer

learning approach to share as many parameters as possi-
ble. As mentioned, the parameters are split into two parts,
domain-specific and domain-shared parameters:

θ ls = θ ls,speccific + θ ls,shared , θ
l
t = θ lt,speccific + θ lt,shared (13)

where θ ls,shared and θ lt,shared are the parameters shared and
mapped through the transfer learning in each layer l, and
the domain specific parameters θ ls,specific and θ lt,specific are
trained for each domain exclusively.
The degree of parameters to be transferred from the

source network to the target network is determined
according to the overlapping degrees of the input fea-
ture and output label sets between the source and target
domains. Figure 3 shows the parameter sharing situa-
tion of the MLTrigNer. In general, suppose {xl1, xl2, ..., xlj , ...}
are the inputs of each layer l, {yl1, yl2, ..., ylj , ...} are the
outputs, and parameters θ of this layer are all weights
(Wls) and biases (bls). Since parameters can be divided
into the domain-shared and domain-specific parts, their
connected inputs and outputs can also be divided
accordingly.
For the middle layers, such as the BiLSTM layers, of the

source and target networks in Fig. 3, they have domain-
specific and shared inputs of feature embedding vectors
as [ xlspecific, x

l
shared]. Hence the corresponding domain-

specific and shared connection weights for each output
ylj are [Wl

j,specific,W
l
j,shared], and each output ylj has its own

bias blj . The shared parameters in Eq. 13, θ ls,shared and
θ lt,shared , are {Wl

shared , b
l}. We can obtain each output ylj as

follows:

ylj = active_function
([(

Wl
j,specific

)T
,
(
Wl

j,shared

)T]
[
xlspecific
xlshared

]
+ blj

) (14)

For the upper layers, such as the fully-connected
layers, of the source and target networks in Fig. 3,
they have domain-specific and shared label outputs
as [ ylspecific, y

l
shared]. Hence the domain-specific and

shared parameters for the corresponding outputs are
{Wl

j,specific, b
l
j,specific} and {Wl

j,shared , b
l
j,shared}, respectively.

The shared parameters in Eq. 13, θ ls,shared and θ lt,shared ,

are {Wl
shared , b

l
shared}. We can obtain each domain-specific

output ylj,specific and shared output ylj,share as follows:

ylj,specific = active_function
((

Wl
j,specific

)T
x + blj,specific

)
(15)

ylj,shared = active_function
((

Wl
j,shared

)T
x + blj,shared

)
(16)

If the feature sets are the exactly same on both domains,
there are no source-specific and target-specific parts of
the parameters for the BiLSTM layers, θLSTMs,specific = ∅,
θLSTMt,specific = ∅. Moreover, under this circumstance, if the
label sets are completely different from each other on
both domains, there are no source-target-shared param-
eters for the fully-connected layer, θFs,shared = θFt,shared =
∅, which is the TL Model B. On the other hand, if the
label sets and the feature sets are inconsistent, we have
θLSTMs,shared = θLSTMt,shared = ∅ and θFs,shared = θFt,shared = ∅, which
is the TL Model C.
The training takes place over the following three main

phases. First, the network is trained on the dataset from
the source domain. Both θ ls,specific and θ ls,shared are learned.
Then the shared parameters of each layer are transferred
to the target domain, θ ls,shared → θ lt,shared , to initialize
the corresponding parts of the target model parameters.
Finally, the network is trained on the dataset from the
target domain. Both θ lt,specific and θ lt,shared are tuned and
optimized.
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