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Abstract

Background: Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more
effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed,
with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for
improvement in prediction performance.

Results: In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The
proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity
profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known
drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the
prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the
dimensions of each profile. Our model showed better performance than the existing methods, and identified a
number of novel DDIs that are supported by medical databases or existing research.

Conclusions: We present a novel deep learning model for more accurate prediction of DDIs and their effects,
which may assist in future research to discover novel DDIs and their pharmacological effects.
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Background
Combination drug therapies are becoming a promising
approach for several diseases including cancer, hyperten-
sion, asthma and AIDS, since they can increase drug
efficacy, decrease drug toxicity or reduce drug resistance
[1]. However, the combination of drugs may result in in-
teractions between drugs (drug-drug interactions, DDIs),
which are a major cause of adverse drug events (ADEs)
[2, 3]. It is estimated that DDIs are associated with 30%
of all reported ADEs [4]. In addition, ADEs due to
critical DDIs have led to the withdrawal of drugs from
the market [5]. Therefore, precise prediction of the effect
of DDIs is important for safer and improved prescription
to patients.

DDIs can be identified with in vivo models using
high-throughput screening [6]. However, the price of
such procedures is relatively high, and testing large
numbers of drug combinations is not practical [7]. To
reduce the number of possible drug combinations,
numerous computational approaches have been pro-
posed [8–15].
In some of these computational approaches, drug-

target networks are constructed, and DDIs are
detected by measuring the strength of network con-
nections [13], or by identifying drug pairs that share
drug targets or drug pathways using the random walk
algorithm [14].
Other major categories of these computational ap-

proaches are based on the structural and side effect
similarities of drug pairs. For example, Gottlieb et al.
proposed the Inferring Drug Interactions (INDI)
method, which predicts novel DDIs from chemical and
side effect similarities of known DDIs [8], and Vilar et
al. used similarities of fingerprints, target genes, and side
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effects of drug pairs [9, 10]. Cheng et al. constructed fea-
tures from Simplified Molecular-Input Line-Entry Sys-
tem (SMILES) data and side effect similarity of drug
pairs, and applied support vector machines to predict
DDIs [11]. Zhang et al. constructed a network of drugs
based on structural and side effect similarities, and ap-
plied a label propagation algorithm to identify DDIs
[12]. Recently, Ryu et al. proposed DeepDDI, a computa-
tional framework that calculates structural similarity
profiles (SSP) of DDIs, reduces features using principal
component analysis (PCA), and feeds them to the
feed-forward deep neural network [15]. The platform
generated 86 labeled pharmacological DDI effects, so

DeepDDI is basically a multi-classification (multi-label
classification) model.
To increase the classification accuracy in the present

study, we proposed a novel deep learning based model
that uses additional features from target genes and their
known functions. We constructed target similarity pro-
files (TSP) and Gene Ontology (GO) term similarity pro-
files (GSP), as well as SSP. Because the input size is too
large when combining TSP, GSP, and SSP, we used an
autoencoder [16] to reduce the feature. Our autoencoder
model is trained to minimize the difference between input
and output, and at the same time, trained to minimize the
error of prediction of DDI labels. Our model showed

Fig. 1 Overview of the prediction model

Fig. 2 Comparison with different data combinations
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improved classification accuracy, and we were able to
identify novel DDIs with their pharmacological effects.

Results
We developed a novel deep learning model to predict
pharmacological effects of DDIs. This model uses an auto-
encoder to reduce the dimensions of three similarity pro-
files of drug pairs, and uses a deep feed-forward network
that predicts DDI type from reduced similarity profiles.
Three similarity profiles are calculated using the chemical
structures (SSP), target genes (TSP), and target genes’

biological/molecular function (GSP) of known drug pairs.
The entire process is depicted in Fig. 1, and detailed
descriptions are provided in the methods section.
To train our model, we downloaded 396,454 known

DDIs of 177 types, and SMILES and target gene infor-
mation for drugs from DrugBank [17]. Functional Inter-
action (FI) networks were downloaded from BioGrid
[18]. FI networks are composed of 22,032 genes. The
GO database was downloaded from the Gene Ontology
Consortium [19, 20]. The GO database is composed of
45,106 GO terms, and we used 29,692 GO terms in

Fig. 3 Cost curve of a different autoencoders and b deep feed-forward neural networks for different similarity profiles

Fig. 4 Comparison with different machine learning models
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biological processes. Drugs with no target gene informa-
tion were excluded, and DDI types with fewer than five
DDIs were excluded. Finally, 188,258 DDIs of 106 types
(Additional file 1: Table S1) and 1597 drugs were used
for the experiments.
Our model was learned using different combinations

of SSP, TSP, and GSP. The accuracy, macro precision,
macro recall, micro precision, micro recall, and the area
under the Precision/Recall curve (AUPRC) were calcu-
lated using 5-fold cross-validation. These performance
metrics are as follows:

Accuracy ¼ 1
n

Xn

i¼1

xi ¼ 1 if yi≥0:5
0 otherwise

�

Macro recall ¼ 1
l

Xl

i¼1

TPi

TPi þ FNi

Macro precision ¼ 1
l

Xl

i¼1

TPi

TPi þ FPi

Micro recall ¼
Pl

i¼1TPiPl
i¼1TPi þ FNi

Micro precision ¼
Pl

i¼1TPiPl
i¼1TPi þ FPi

where n and l indicate number of samples and DDI
types respectively, yi is a predicted value of true DDI
type in the DrugBank database of sample i, and TP, TN,
FP and FN are true positive, true negative, false positive
and false negative, respectively.
Figure 2 shows that incorporating TSP and GSP in-

creases the classification accuracy. The tests using GSP
and TSP only, and those using both GSP and TSP, did
not generate good classification accuracy (< 0.5). We
were also able to observe that TSP and GSP increase
classification accuracy in terms of AUPRC. Figure 3
shows cost curves for an autoencoder and deep feed-for-
ward networks, and it can be observed that while the
deep feed-forward networks for TSP and GSP converge,
the costs are relatively large. Although GSP and TSP are
not good single similarity measures, they increased the
prediction performance using SSP.
We can see that SSP using the autoencoder (yellow in

Fig. 2) generates superior results to those of SSP using
PCA [15] in Figs. 4 and 5. We can also confirm that the
proposed model shows better performance than baseline
methods such as SVM or Random Forest. The hyper-pa-
rameters for SVM and Random Forest are provided in

Fig. 5 Precision/Recall curves of machine learning models

Table 1 Hyper-parameters of Random Forest and SVM

Random Forest SVM

Criterion Minimum samples leaf Minimum samples split Number of estimators C Loss Maximum iteration Penalty

Gini impurity 1 2 10 1 Square of the hinge loss 1000 L2
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Table 1. For the proposed model and that of Ryu et al.
[15] in Figs. 2, 4, and 5, the number of features was re-
duced to 200 using the autoencoder or PCA, and the
features for SVM and Random Forest were not reduced.
To observe the performance of each method more

specifically, we compared the results for each DDI type.
Greater or the same classification accuracy was observed
for 101 out of 106 DDI types in two cases using the pro-
posed model (Figs. 6 and 7).

Discussions
Among the true positive predictions in the 5-fold cross-
validation results, we selected drug pairs with a pre-
dicted value of other DDI type (not the ground truth
from Drugbank v5.1.1) greater than or equal to 0.5, and
provided these in Additional file 1: Table S2. Among 580
such drug pairs, 86 (14.8%) drug pairs were supported
by other databases or existing studies. Among the 86
drug pairs that were supported, we show 12 drug pairs
with prediction score > 0.8 in Table 2. The types of the
first three DDIs in Table 2 were 100, 100, and 76 in

DrugBank v5.1.1, but they were updated to 86, 86, and
18 in DrugBank v5.1.2, and our prediction scores were
very high for these three DDIs.
Our work has two potential limitations. First, DDIs in

DrugBank are mostly inferred pharmacokinetic interac-
tions, so the DDIs predicted by the proposed model, as
well as their clinical consequences should be validated.
Second, the optimal values for the hyper-parameters
such as learning rate, number of hidden units/layers,
and drop-out rate were obtained by iterative experi-
ments for our setting, so the experimental results can be
changed for different settings including different dataset
version or experimental environment. We recommend
that potential users of the proposed model identify their
own optimal hyper-parameters through cross-validation.

Conclusion
In this study, we propose a novel deep learning model
for more accurate prediction of the pharmacological ef-
fects of DDIs. The proposed model is trained using three
similarity profiles, SSP, TSP, and GSP, of each drug.

Fig. 6 Accuracies of methods for each DDI types
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Those similarity profiles are reduced using autoencoders
and fed into a deep feed-forward network to predict the
type of each DDI. The proposed model showed im-
proved classification accuracy over existing models. We
found that GSP and TSP can increase the prediction
performance. We also predicted new effects of numer-
ous DDIs, many of which were supported by a number
of databases or previous studies.

Methods
Similarity measures
We used three similarity measures using three profiles,
structural similarity profile (SSP), target gene similarity
profile (TSP), and Gene Ontology (GO) term similarity
profile (GSP).
SSP for drug A is a vector of structural similarity

values between A and the rest of the drugs. A structural
similarity between two drugs is a Tanimoto coefficient
[24] between their binary vectors (fingerprints) con-
verted from their SMILES [25]. SSP of drug A can be

represented as SSPA = {SSAA, SSAB, SSAC,…}, where SSAx
is the Tanimoto coefficient between drug A and X.
TSP for drug A is a vector of target gene similarity

values between A and the rest of the drugs. A target
gene similarity between drugs A and B is calculated with
the following formula:

TSAB ¼ f x; yð Þ∈GA � GBj j d x; yð Þ≤ tAg j
j x; yð Þ∈GA � GBf g j

tA ¼ max d x; yð Þf j x; y∈GAg
where GA and GB are target genes for drug A and B, and
d (x, y) is a distance between genes x and y in the FI net-
work. In short, a target gene similarity between drugs A
and B is the ratio of gene pairs that have a shorter dis-
tance than the maximum distance tA. TSP of drug A can
be represented as TSPA = {TSAA,TSAB,TSAC,…}.
Calculation of GSP is the same as that of TSP, ex-

cept that gene and FI network are substituted with
GO term and GO graph, respectively. GSP of drug A
can be represented as GSPA = {GSAA,GSAB,GSAC,…},

Fig. 7 AUPRC of methods for each DDI types
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where GSAB is similar to TSAB. The length of SSP,
TSP, and GSP of a drug is 1597, which is same as the
number of all drugs.

Model for prediction of DDI type
The model for prediction of DDI type is composed of
three autoencoders and one deep feed-forward network.
The autoencoders are used to reduce the dimensions of
SSP, TSP, and GSP. Three autoencoders are homoge-
neous, and have input and output layers of which the
size is 3194 (= 1597 × 2), and 3 hidden layers of which
the sizes are 1000, 200, and 1000, respectively. The re-
duced profile pairs are concatenated and fed to the deep
feed-forward network. The deep feed-forward network
has an input layer of size 600; 6 hidden layers of size
2000; and an output layer of size 106, which is same as
the number of DDI types.
The batch size of input is 256, and the learning rates

of the autoencoder and feed-forward network are 0.001
and 0.0001, respectively. The activation functions for the
autoencoder and feed-forward network are sigmoid and
ReLU [26]. We used sigmoid for the activation function
for the output layer of the feed-forward network. The
number of epochs is 850, and we used Adam for the
feed-forward network and RMSprop for the autoencoder
as an optimizer [27]. To avoid overfitting, we applied

dropout with a drop rate of 0.3 and batch normalization
for the feed-forward network and autoencoders.
For each epoch, three autoencoders are independently

trained to minimize the difference of input and output.
Then the feed-forward network is trained with the re-
duced profile pairs as input. The training is performed
to minimize the sum of costs from the three autoenco-
ders and the feed-forward network. Therefore, the auto-
encoders are trained twice, and encode profiles so as to
predict the DDI type more accurately.

Additional file

Additional file 1: Table S1. DDI types. Table S2. Prediction of DDI
(prediction score ≥ 0.5). (XLSX 59 kb)
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Table 2 Predicted DDI types of drug pairs

Drug A Drug B DDI type
(Drugbank v5.1.1)a

Score
(Drugbank v5.1.1)

DDI type
(new prediction)a

Score
(new prediction)

Reference

Amodiaquine Pyrimethamine 100 0.999999762 86 0.999997854 DrugBank v 5.1.2

Amodiaquine Cholecalciferol 100 0.99999392 86 0.996211529 DrugBank v 5.1.2

Betrixaban Rivaroxaban 76 0.518932223 18 0.989234567 DrugBank v 5.1.2

Disopyramide Asenapine 24 0.775597036 72 0.984019518 https://www.pdr.net

Nefazodone Amoxapine 19 0.581683695 56 0.907319307 https://online.epocrates.com

Ulipristal Pentobarbital 99 0.999979138 104 0.902777851 https://www.pdr.net

Fingolimod Dronedarone 22 0.547105849 14 0.881702363 [21]

Trazodone Methylene blue 56 0.697363019 96 0.879396319 https://www.pdr.net

Fluorouracil Metronidazole 100 0.782166064 102 0.864007413 https://www.drugs.com

Tacrolimus Escitalopram 86 0.511624634 14 0.851550758 [22, 21]

Tacrolimus Citalopram 86 0.511636794 14 0.851546466 [22, 23]

Methadone Escitalopram 86 0.537029743 14 0.849954724 [22, 21]
a 14: DRUG_A may increase the QTc-prolonging activities of DRUG_B
18: DRUG_A may increase the anticoagulant activities of DRUG_B
19: DRUG_A may increase the antihypertensive activities of DRUG_B
22: DRUG_A may increase the arrhythmogenic activities of DRUG_B
24: DRUG_A may increase the bradycardic activities of DRUG_B
56: DRUG_A may increase the serotonergic activities of DRUG_B
72: The risk or severity of QTc prolongation can be increased when DRUG_A is combined with DRUG_B
76: The risk or severity of bleeding can be increased when DRUG_A is combined with DRUG_B
86: The risk or severity of hypotension can be increased when DRUG_A is combined with DRUG_B
96: The risk or severity of serotonin syndrome can be increased when DRUG_A is combined with DRUG_B
99: The serum concentration of DRUG_A can be decreased when it is combined with DRUG_B
100: The serum concentration of DRUG_A can be increased when it is combined with DRUG_B
102: The serum concentration of the active metabolites of DRUG_A can be increased when DRUG_A is used in combination with DRUG_B
104: The therapeutic efficacy of DRUG_A can be decreased when used in combination with DRUG_B
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