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Abstract

Background: Biomedical named entity recognition (BioNER) is a fundamental and essential task for biomedical
literature mining, which affects the performance of downstream tasks. Most BioNER models rely on domain-specific
features or hand-crafted rules, but extracting features from massive data requires much time and human efforts. To
solve this, neural network models are used to automatically learn features. Recently, multi-task learning has been
applied successfully to neural network models of biomedical literature mining. For BioNER models, using multi-task
learning makes use of features from multiple datasets and improves the performance of models.

Results: In experiments, we compared our proposed model with other multi-task models and found our model
outperformed the others on datasets of gene, protein, disease categories. We also tested the performance of different
dataset pairs to find out the best partners of datasets. Besides, we explored and analyzed the influence of different
entity types by using sub-datasets. When dataset size was reduced, our model still produced positive results.

Conclusion: We propose a novel multi-task model for BioNER with the cross-sharing structure to improve the
performance of multi-task models. The cross-sharing structure in our model makes use of features from both datasets
in the training procedure. Detailed analysis about best partners of datasets and influence between entity categories
can provide guidance of choosing proper dataset pairs for multi-task training. Our implementation is available at
https://github.com/JogleLew/bioner-cross-sharing.
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Background
Biomedical named entity recognition (BioNER) aims at
annotating named entity mentions with their entity types
(e.g., genes, proteins [1], and diseases [2]) in the input
biomedical text. The outputs of model indicate not only
the locations of entity mentions but also their types.
BioNER models provide useful information for down-
stream tasks of biomedical literature mining, such as
entity relation extraction [3–5], and biomedical network
construction [6–8].
BioNER task requires to detect boundaries of biomed-

ical entities and predict their entity types. Most previous
systems treat the task as a sequence labeling problem.
Traditional neural network models for BioNER rely on
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features designed for each task. These BioNER models
use hand-crafted rules [9] and domain-specific features
[10], such as orthographic features, morphological fea-
tures [11–14]. The drawback of these neural network
models is that features are specially designed for each
dataset or each entity type in order to achieve good perfor-
mance; thus, features used in one BioNER model may not
work well in another. Recent studies showed that the neu-
ral network model is capable of feature generation work
without manual choosing. Some of these models use bi-
directional Long Short-Term Memory with Conditional
Random Field (BiLSTM-CRF) [15], and other models
have extra character-level CNN [16, 17] or character-level
LSTM [18, 19] to capture character features of entities.
Recently, multi-task learning (MTL) [20] has been

adopted successfully to applications of biomedical liter-
ature mining, such as drug discovery [21], entity linking
[22]. The multi-task model trains several datasets at the
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same time, and transfers domain information between
datasets. By sharing representations between the main
task and auxiliary task, the multi-task model improves
the performance on the main task. For MTL BioNER
models, the number of successful examples is growing.
Crichton et al. [23] uses convolution layer as the shared
part and fully connected layer as task-specific part. Wang
et al. [19] experiments shared character Bi-LSTM, shared
word Bi-LSTM, and shared both. Although the multi-task
model can optimize the performance of the main dataset,
using different combinations of training datasetsmay have
discrepancy performances. Some other models use spe-
cial methods to improve performance, such as adversarial
loss [24], label-aware MMD [25], Learn What to Share
Structure [26].
In this paper, we compare some different multi-task

models and propose our new model with the cross-
sharing structure for BioNER. No hand-crafted feature
is required in our model. The proposed model is based
on the BiLSTM-CNN-CRF model [16] which is a single-
task neural network model. In our model, shared Bi-
LSTM unit is used to learn the shared features, and
private Bi-LSTM units are for the task-specific features.
Besides, a cross-sharing structure helps to share infor-
mation between private units. We compare the proposed
model with other multi-task models [19, 24] on four main
datasets of different domains. We also discover the influ-
ence of dataset pairs and dataset size to the performance
of our proposed model. Results demonstrate that the pro-
posed model achieves good results. Our method provides
a novel structure of multi-task sharing in BioNER task and
improves the overall performance on BioNER datasets.

Preliminaries
In this section, some basic concepts related to our multi-
task neural network are introduced.

Bi-directional long short-Termmemory (Bi-LSTM)
Long Short-TermMemory (LSTM) [27] is a special edition
of Recurrent neural network (RNN), and LSTM avoids
the gradient vanishing or exploding problems appearing
in RNN. A normal LSTM cell contains a input gate, a
output gate and a forget gate, and there are connections
between these gates. We denote X = {x1, x2, ..., xT } as the
series input of LSTM, where T is the sequence length of
input vector. The output of LSTM is a sequence of vector
H = {h1,h2, ...,hT }. The LSTM cell calculates ht via the
following calculation:

f t = σ(W f [ht−1, xt]+bf ) (1)
it = σ(W i[ht−1, xt]+bi) (2)
C̃t = tanh(WC[ht−1, xt]+bC) (3)
Ct = f t � Ct−1 + it � C̃t (4)

ot = σ(W o[ht−1, xt]+bo) (5)
ht = ot � tanh(Ct) (6)

In these equations, � denotes element-wise multiplica-
tion. σ and tanh are element-wise sigmoid function and
tanh function, respectively. f t , it , ot are the forget gate, the
input gate, and the output gate, respectively. C̃t indicates
some information from current input applied to cell state.
ht calculates the cell output by the input and current cell
state. W j, bj(j = f , i,C, o) are the trainable parameters.
The LSTM cell is designed to avoid the long-term depen-
dency problem, and it is capable of capturing information
for long periods.

Bi-LSTM is the two-direction version of LSTM. For
original LSTM, the cells take input in one direction, so ht
will capture some information only from previous LSTM
cells. In order to capture the information from the follow-
ing cells, another set of LSTM cells is used in Bi-LSTM.
As shown in Figure 1, the bi-directional long short-term
memory (Bi-LSTM) model contains two directions of
LSTM network, original direction and reversed direction.

−→
h t = LSTM

(−→
h t−1, xt

)
(7)

←−
h t = LSTM

(←−
h t+1, xt

)
(8)

ot = −→
h t ⊕ ←−

h t (9)

In these equations,
−→
h t and

←−
h t are the cells output of two

directions. ⊕ denotes vector concatenation. The vectors,−→
h t and

←−
h t , are concatenated as the final output. In this

way, ot keeps the information from previous and following
LSTM cells.

Fig. 1 Bi-LSTM Structure. The figure displays a part of Bi-LSTM
network. Input vectors are fed to two directions of LSTM, and the
output of two directions of LSTM is concatenated as the whole output
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Conditional random field (CRF)
Conditional Random Field (CRF) [28] is a condi-
tional probability distribution model and widely used in
sequence labeling tasks to generate new tag based on
recent tags. When a set of random variables are given
as input, CRF outputs another set of random variables
according to some rules. For example, in biomedical NER
task with IOB annotation, the tag after B-Gene can be I-
Gene rather than I-Disease. If the previous tag is B-Gene,
CRF would output I-Disease in a low probability to avoid
the error of mixing different types of tags. CRF has been
adopted in many state-of-art models to help to generate
meaningful and legal annotations.
Let the input of CRF is vector Z = (z1, z2, ..., zn), and

the generated output sequence is Ŷ = (ŷ1, ŷ2, ..., ŷn). For
BioNER task, the input zi can be a feature vector repre-
senting the ith word. CRF model describes the probability
of generating the whole label sequence based on Z, shown
as below:

p(Ŷ |Z;W , b) =
∏n

i=1 fi(ŷi−1, ŷi,Z)∑
y′∈φ(Z)

∏n
i=1 fi(y′

i−1, y′
i,Z)

(10)

In this equation, φ(Z) represents all of the possi-
ble label sequences for Z. The function fi(yj, yk ,Z) =
exp(W yj ,ykzi+byj ,yk ), where the weightW yj ,yk and the bias
byj ,yk are the trainable parameters corresponding to the
pair of labels (yj, yk).

In the training procedure, we use the negative log-
likelihood function to calculate the loss function J and find
the optimal sequence y∗ by minimum the loss function.
The Viterbi algorithm is used to calculate the loss and the
optimal sequence.

J(W , b) = −
∑
i
log(p(Ŷ |Z;W , b)) (11)

y∗ = argmin
y∈φ(Z)

J(W , b) (12)

Methods
In this section, we introduce our baseline single-task
model and some multi-task models for BioNER tasks.

Baseline single-task model (STM)
We choose the model fromMa and Hovy [16] as our base-
line single-task model. Unlike the vanilla BiLSTM-CRF
model, this model uses an extra CNN layer to capture
character-level features. All the multi-task models in the
paper are implemented based on this single-task model;
thus, we choose it as our baseline model. The model
structure is shown in Fig. 2.
For simplicity, wt denotes word embedding of word t

and the ct denotes character embeddings of word t. The
shape of ct is dc by lc, where dc is the dimension of char-
acter embedding and lc is the count of characters in the
word.

Fig. 2 Single-task Model (STM). The input is a sentence from the BioNER dataset. The dotted rectangles represent words in a sentence, and the solid
rectangles represent Bi-LSTM cells. The circles represent CNN units, and the double circles represent CRF units. The tags in the double circles, e.g.,
“O”, “B-GENE”, are the output of the CRF layer
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In the embedding layer, the character representation rt
is calculated based on character embedding ct by CNN
to extract morphological information. The CNN scheme
we use is the same as Ma and Hovy [16]. The convolu-
tion has the filter size of dc by lf and padding length of
lf − 1, where lf is a hyperparameter. After the convolu-
tion calculation, the output is a new vector of shape dc by
(lc + lf − 1). Then max pooling is used to produce a vec-
tor of size dc as the final char representation rt . A dropout
layer is adopted at the input of CNN. Finally, word embed-
ding wt and character representation rt are concatenated
as xt .
After the embedding layer, resulting sequence of

embeddingsX = {x1, x2, ..., xn} are fed into Bi-LSTM layer
to get O = {o1, o2, ..., on}. Two dropout layers are applied
at the input and output of the Bi-LSTM layer. The Bi-
LSTM layer is used to extract information from the word
representation xt .
The top layer of the model is the CRF layer. This layer

takes output vectors O to predict label sequences. As
shown in Fig. 2, the word “28S” and the word “rRNA”
are predicted as B-Gene and I-Gene, respectively, which
suggests that the model recognizes the entity “28S rRNA”.

Fully-shared multi-task model (FS-MTM)
Our fully-shared multi-task model is based on MTM-
CW from Crichton et al. [23]. All the multi-task models
in this paper are designed for two datasets. If modifica-
tions applied, these models are suitable for three or more
datasets. The embedding layer, Bi-LSTM layer and CRF
layer in the multi-task models are the same as those in the
baseline single-task model.
In the fully-shared multi-task model, we use an embed-

ding layer and a Bi-LSTM layer as shared parts, and
two CRF layers for two datasets, as shown in Fig. 3.
When training and testing, word embeddings and charac-
ter embeddings are first fed to the embedding layer, and
then the Bi-LSTM layer takes the output of embedding
layer. In the end, the output of Bi-LSTM is fed to one of the
CRF layers. If source data is from dataset 1, CRF layer for
dataset 1 is activated with another CRF layer ignored, and
vice versa. In this model, Bi-LSTM captures all the fea-
tures of dataset 1 and 2, and CRF layer produces different
tags according to the input dataset.

Shared-private multi-task model (SP-MTM)
Our shared-private multi-task model is based on SP-
MTL from Liu et al. [24]. As shown in Fig. 4, there
are two private Bi-LSTMs for two tasks and one shared
Bi-LSTM. Word embeddings and character embeddings
are first fed to the embedding layer. Then the output
of the embedding layer is replicated and fed into shared
Bi-LSTM and corresponding private Bi-LSTM, according
to the source dataset. Finally, the output of shared and

Fig. 3 Fully-shared Multi-task Model (FS-MTM). The embedding layer
and the Bi-LSTM layer are shared by two datasets, and two CRF layer
are used for two datasets

private Bi-LSTMs are concatenated and fed into corre-
sponding CRF layer. In this model, shared Bi-LSTM and
private Bi-LSTM captures shared and task-independent
features, respectively. CRF layer produces different tags
based on task-related feature representations.

Adversarial multi-task model (ADV-MTM)
As shown in Fig. 5, our adversarial multi-task model is
based on the adversarial shared-private model from Liu

Fig. 4 Shared-private Multi-task Model (SP-MTM). The embedding
layer and shared Bi-LSTM are shared by two datasets. Two CRF layer
and two private Bi-LSTMs are used for two datasets
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Fig. 5 Adversarial Multi-task Model (ADV-MTM). The embedding layer and shared Bi-LSTM are shared by two datasets. Two CRF layer and two
private Bi-LSTMs are used for two datasets. Three kinds of losses are marked on the figure

et al. [24]. The basic network structure of the adversar-
ial multi-task model is the same as the shared-private
multi-task model, but the calculation of loss is different.
We deem the current data as d, and source datasets

are D1,D2. Ltask is the task loss calculated by CRF layer.
shown as Eq. 13.

Ltask =
{
Ltask1, d ∈ D1;
Ltask2, d ∈ D2.

(13)

Ldiff is calculated by the output of shared Bi-LSTM and
private Bi-LSTM. Ldiff describes the similarity of these
two output vectors. Minimizing Ldiff encourages shared
and private Bi-LSTM to extract different features of input.
Ldiff is calculated as Eq. 14:

Ldiff =
∑
k=1,2

||S	Pk||2F (14)

where S is the output of shared Bi-LSTM andPk is the out-
put of private Bi-LSTM of dataset k. || · ||2F is the squared
Frobenius norm.
Ladv is task adversarial loss. The shared Bi-LSTM can be

regarded as generative model G which produce vector to
hide the information of source dataset, and we use a dis-
criminative model D to identify the source dataset against
generative model G. Discriminative model D is shown as
Eq. 15:

D(skT , θD) = softmax
(
WskT + b

)
(15)

where skT is the output of shared Bi-LSTM of dataset k
at time T . W and b are trainable parameters. And the
adversarial loss function is:

Ladv = −max
θG

(
min
θD

( K∑
k=1

dk
i log

[
D

(
E

(
xk

))]))

(16)

Discriminativemodel D is able to recognize source dataset
by task-dependent features, and generative model G
tends to keep common features to confuse discriminative
model D; therefore, minimizing Ladv encourages shared
Bi-LSTM to keep more shared features of two datasets.
The final loss is the weighted sum of these three kinds

of losses.

L = Ltask + αLadv + βLdiff (17)

where α and β are hyperparameters.
Grid search can be used to find the optimized hyperpa-

rameters α and β . By using the gradient reversal layer [29]
before the discriminative model, the whole network can
be trained with backpropagation.

Multi-task model with cross-sharing structure (CS-MTM)
In this section, we introduce our multi-task model with
cross-sharing structure. This model captures features
from both datasets and takes advantage of all the feature
representations.
As shown in Fig. 6, the word embeddings and charac-

ter embeddings of the input sentence are first fed to the
embedding layer. The structure of the embedding layer
is the same as that in the baseline single-task model.
The embedding layer captures the information in word
embeddings and character embeddings. The output of the
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Fig. 6 Cross-sharing Multi-task Model (CS-MTM). The embedding layer and shared Bi-LSTM are shared by two datasets. Gated interaction unit is
used to adjust the output of private Bi-LSTMs. P1, P2: Output of private Bi-LSTMs. S: Output of the shared Bi-LSTM. G1,G2: Output of the gated
interaction unit

embedding layer is the word representations, which can
be used in the Bi-LSTM layers.
After the embedding layer, the word representations

are replicated as the input of shared Bi-LSTM and both
private Bi-LSTMs. P1,P2 denote the output of two pri-
vate Bi-LSTMs. S denotes the output of shared Bi-LSTM.
Intuitively, the private Bi-LSTMs are used to capture
task-independent features; thus, P1,P2 are the feature rep-
resentations of dataset 1 and 2. The shared Bi-LSTM
captures the common features from both datasets and S is
the representation of common features.
In our previous SP-MTM and ADV-MTM, either P1

or P2 is calculated depending on source dataset. In this
way, only feature representation of source dataset is calcu-
lated, but the other feature representation which may still
be useful is not calculated. In multi-task learning, using
information from other datasets to improve the perfor-
mance of origin dataset is the main idea, so both P1 and
P2 are used in this model.
The gated interaction unit then takes P1,P2 as input and

produces a mixed feature representation. G1,G2 denote
the output of gated interaction unit for two datasets.
Eq. 18 and (19) show how gated interaction unit works.

G1 = P1 � σ(W 2→1P2 + b2→1) (18)
G2 = P2 � σ(W 1→2P1 + b1→2) (19)

where � is element-wise multiplication, σ is a sigmoidal
function, and W 1→2,W 2→1, b1→2, b2→1 are trainable
parameters.
We deem the current data as d, and source datasets are

D1,D2. The final output of gated interaction unit G is
determined by the source dataset, shown as Eq. 20.

G =
{
G1, d ∈ D1;
G2, d ∈ D2.

(20)

In the gated interaction unit, two private feature rep-
resentations P1,P2 share feature information with each
other. When training, four trainable parameters are
adjusting to learning what to share between two repre-
sentations. For dataset 1, P2 contains the information
of features from dataset 2, and these features are task-
independent and cannot be used directly to improve the
performance of dataset 1; otherwise, these features should
be captured by shared Bi-LSTM. The operation in gated
interaction unit provides an indirect way to make use of
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the information in P2. In this way, both feature represen-
tations P1,P2 are used to produce a new mixed feature
representation.
Before the CRF layer, output vectors of gated interac-

tion unit and shared Bi-LSTM are concatenated, shown as
Eq. 21.

V = G ⊕ S (21)

In this way, information of shared feature representation
and private feature representation is combined and fed to
the CRF layer. CRF layer produces predicted tags based on
V .

Experiment settings
In this section, we introduce our datasets, evaluation
metrics, and training details.

Datasets
We conduct experiments on several BioNER datasets
from Crichton et al. [23]. The detailed information about
the datasets used in our experiments is listed in Table 1.
We use datasets with IOB format. These datasets are
available to the open, and you can access https://github.
com/cambridgeltl/MTL-Bioinformatics-2016 to get these
datasets.
As these datasets use various BioNER tags to mark out

entities, we divide them into six categories: Cell, Chem-
ical, Disease, Gene, Protein and Species. For the entity
types column in Table 1, BioNER tags are counted accord-
ing to these six categories. In different datasets, BioNER
tags belonging to the same category may vary. For exam-
ple, in Gene categories, B-GENE/I-GENE tags are used
in BC2GM dataset, while B-DNA/I-DNA are in JNLPBA
dataset. In our experiments, tags are kept as they are
rather than changed to be the same.

Table 1 Biomedical NER datasets used in the experiments

Dataset Size Entity types & counts

BC2GM 20,131 sentences Gene (24,583)

Ex-PTM 3,653 sentences Protein (4,698)

NCBI-disease 7,287 sentences Disease (6,881)

Linnaeus 23,155 sentences Species (4,263)

JNLPBA 24,806 sentences Cell (12,969), Gene
(10,589), Protein (35,336)

BC5CDR 13,938 sentences Chemical (15,935), Disease
(12,852)

BioNLP09 11,356 sentences Protein (14,963)

BioNLP11ID 5,178 sentences Chemical (973), Protein
(6,551), Species (3,471)

BioNLP13PC 5,051 sentences Cell (1,013), Chemical
(3,989), Gene (10,891)

In our multi-task models, two datasets are used in the
training procedure. We focus on one dataset and try to
optimize the performance on it. This dataset is called the
main dataset, and the other is called the auxiliary dataset.
By observation, we find that some datasets contain enti-
ties from just one category, while some others from
multiple categories. In order to diminish the influence
between different entity categories, we prefer datasets
which contain entities from one category to be main
datasets. In our experiments, BC2GM, Ex-PTM, NCBI-
disease, and Linnaeus are chosen as main datasets, and
auxiliary datasets are picked from JNLPBA, BioNLP09,
BioNLP11ID, BioNLP13PC, and BC5CDR. The perfor-
mance of the main datasets is recorded in experimental
results.

Evaluation metrics
We use the training set and the development set to train
the model, and report the performance on the test set. We
deem each predicted tag is correct only if it is the same as
the ground-truth tag. We calculate macro-averaged preci-
sion, recall, F1 scores of main dataset, and these scores are
recorded as final dataset scores.

Training details
Word embeddings We use pre-trained word vectors of
GloVe model, and the pre-trained corpus is Wikipedia
2014 + Gigaword 5 (6B tokens, 400K vocab). The dimen-
sion of word vectors is 100.
Character embeddings The dimension of character

embeddings dc is 30. Number of filters in CNN is 30. lf in
the CNN is set to 3.
Bi-LSTM layers Bi-LSTM in our model uses the same

hyperparameters, including Bi-LSTM in baseline single-
task model, and shared/private Bi-LSTM in multi-task
models. We set the dimension of hidden vectors to 256.
For Bi-LSTM layers in all of our models, we use a lin-
ear unit to reshape hidden vectors to 128-dimensional
vector as output. The dropout rate of all the dropout
layers is 0.5.
CRF layers We use Linear-chain CRF to train and test.

The Viterbi algorithm is used in the training procedure.
Training settings Our training procedure contains

80 epochs. Parameter optimization is performed with
RMSprop. The decay rate of RMSProp is set to 0.95, and
momentum is set to 0. Batch size is set to 16. Learning rate
is 0.001 at initial, and decay at the end of every epoch at
the rate of 3%. Besides, We use gradient clipping to limit
max L2 norm of the gradients to 5.0 in order to avoid
gradient exploding.
MTM training When performing multi-task training,

batches of data from 2 datasets train in turns. To be spe-
cific, a batch of data from dataset 1 is used to train, then a
batch of data from dataset 2 is used to train, this procedure

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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is regarded as a turn. In one turn, two batches of data are
randomly picked from their source datasets. In an epoch,
the number of turns is set to the number of batches in the
main dataset. In this case, we ensure the main dataset to
be fully trained.
Grid search For the adversarial multi-task model, grid

search is used to find the hyperparameters α and β . We
try out α from {0, 0.1, 0.01}, and β from {0, 0.01, 0.001}. An
extra gradient reverse layer is applied before the task dis-
criminator unit in order to train the model with gradient
descent.

Results
In this section, we display and analyze the experiment
results, and compare our proposed model with related
ones.

Performance comparison
We compare the baseline single-task model (STM) and
other multi-task models (MTM). The results are shown in
Table 2. It shows the performance (precision, recall, F1) of
different models on four target datasets. The bold number
in one row indicates the best F1 score for the dataset.
FS-MTM achieves better performance than STM on

BC2GM and Ex-PTM datasets but degrades on other two
datasets. FS-MTM uses the most basic multi-task struc-
ture, and the only shared Bi-LSTM may not separate
task-specific features for each task.
SP-MTM improves the performance comparing to FS-

MTM and STM, also achieves higher F1 score than base-
line STM on all of four main datasets. Intuitively, the
private Bi-LSTMs are added and capable of capturing
task-specific features.

We observe that both the ADV-MTM and CS-MTM
improve the performance of STM, and especially CS-
MTM achieves higher F1 score than baseline STM
on all of four datasets. On BC2GM dataset, improve-
ments of ADV-MTM are marginal compared with STM.
Besides, CS-MTM outperforms ADV-MTM in F1 score
on BC2GM, Ex-PTM, and NCBI-disease datasets. Com-
paring the structure of ADV-MTM and CS-MTM to
SP-MTM, it indicates that the adversarial loss calcula-
tion and cross-sharing structure could help to improve the
performance.
According to the precision and recall score of datasets,

CS-MTM tends to produce a higher recall score, and
ADV-MTM tends to improve the precision score. Intu-
itively, minimizing the adversarial loss in ADV-MTM
helps to separate shared features and task-specific features
and reduce the number of false positives. Unlike ADV-
MTM, gated interaction unit in CS-MTM makes use of
both feature representations, resulting in less number of
false negatives.
When training, we find that the performance of ADV-

MTM is not very stable, and the adversarial model uses
more epochs to converge. This model has limited perfor-
mance improvement comparing to SP-MTM and exposes
the weakness of GAN.
We list the trainable parameter number of each model

in Table 3. In the table, the parameter numbers of STM
and FS-MTM are close, and SP-MTM, ADV-MTM, CS-
MTM have more parameters. We can conclude that the
gated interaction unit in CS-MTMhas only a few parame-
ters but improves the overall performance. It suggests that
our performance improvement is not just based on the
increase in the huge amount of parameters.

Table 2 Model Performance Comparison

Baseline Single-task
Model (STM)

Fully-shared
Multi-task Model
(FS-MTM)

Shared-private
Multi-task Model
(SP-MTM)

Adversarial Multi-task
Model (ADV-MTM)

Cross-sharing
Multi-task Model
(CS-MTM)

BC2GM Precision 84.00 83.34 84.51 83.66 83.12

Recall 83.82 84.75 84.17 84.05 85.74

F1 83.91 84.04 84.34 83.85 84.41

Ex-PTM Precision 70.83 72.56 70.45 76.60 74.73

Recall 64.12 70.46 70.03 67.43 69.56

F1 67.31 71.49 70.24 71.72 72.05

NCBI-disease Precision 88.45 84.39 87.11 86.02 86.59

Recall 83.78 86.61 85.49 86.86 86.42

F1 86.05 85.49 86.29 86.44 86.50

Linnaeus Precision 92.86 92.66 93.00 93.74 89.81

Recall 67.62 66.76 73.86 73.81 76.12

F1 78.25 77.60 82.33 82.59 82.40

Bold: the best F1 score for the dataset
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Table 3 Parameter numbers of all models

Model Number

STM 3.68M

FS-MTM 3.68M

SP-MTM 5.41M

ADV-MTM 5.41M

CS-MTM 5.44M

Performance with different auxiliary datasets
Different dataset pairs could produce different results in
multi-task learning. We try out all the combinations of
one main dataset and one auxiliary dataset. The results
are shown in Table 4. The numbers in the table are the F1
scores of dataset pairs. BC2GM, Ex-PTM, NCBI-disease,
and Linnaeus are the main dataset that we focus on. The
bold number in one row indicates the best F1 score for
the dataset. The ↑ / ↓ indicates the positive/negative
improvement comparing to STM.
From experiment results, JNLPBA is the best part-

ner for BC2GM, and BC5CDR, BioNLP09 are helpful to
BC2GM. All these five auxiliary datasets are helpful to
Ex-PTM, but the best partner of Ex-PTM is BioNLP09.
As for NCBI-disease, BioNLP09 is the best partner, and
JNLPBA is also helpful. Auxiliary datasets except JNLPBA
and BioNLP13PC are helpful to Linnaeus, and BC5CDR
improves its performance significantly.
In auxiliary datasets, JNLPBA is of the biggest size, and

BioNLP13PC is the smallest. Using JNLPBA as the auxil-
iary dataset still degrades on Linnaeus dataset, while using
BioNLP13PC as the auxiliary dataset in this experiment
improves the performance on Ex-PTM. For these five
auxiliary datasets, we cannot observe a tendency of per-
formance increasing or decreasing with the size of dataset
changing. This phenomenon indicates that the size of the
dataset is not the major factor of performance. If aux-
iliary dataset lacks beneficial information for the main
dataset, the performance of multi-task model would be
unfavorable.
BC2GM contains gene tags, and its best partner

JNLPBA also contains gene tags. The situation is simi-
lar for Ex-PTM and BioNLP09. It could indicate that the
dataset pair could work if the auxiliary dataset contains

Table 4 Performance with different auxiliary datasets

JNLPBA BC5CDR BioNLP 09 BioNLP 11ID BioNLP 13PC

BC2GM 84.41↑ 84.11↑ 83.85 84.15↑ 83.90

Ex-PTM 68.81↑ 67.51↑ 72.05↑ 68.89↑ 70.87↑
NCBI-disease 86.17↑ 85.74↓ 86.50↑ 84.90↓ 85.63↓
Linnaeus 78.07↓ 82.40↑ 81.93↑ 78.46↑ 78.37↓
Bold: the best F1 score for the dataset. ↑/↓: positive / negative improvement
comparing to STM

the categories of tags that main dataset also has. But for
Linnaeus and its best partner BC5CDR, although they
share no same categories of tags, BC5CDR can still pro-
vide biomedical information of other categories which is
helpful to Linnaeus.
In conclusion, there is no simple rule to find the best

partner, the most accurate way is to try out all the combi-
nations.

Performance with different entity types in auxiliary
datasets
In our five auxiliary datasets, some of them contain
multiple categories of tags. In order to discover which
category of tags is the major factor of performance,
we use sub-datasets to perform the experiments. The
BC5CDR, BioNLP11ID, BioNLP13PC datasets provide
sub-datasets that contain the single category of tags. In
this experiments, We choose our four main datasets and
BioNLP11ID-chem (Chemical), BioNLP11ID-ggp (Pro-
tein), BioNLP11ID-species (Species) as auxiliary datasets.
This experiment aims to check which category of tags is
the most important for main datasets in CS-MTM. The
results are shown in Table 5. The ↑ / ↓ indicates the
positive/negative improvement comparing to STM.
Ex-PTM dataset contains tags of protein category, and

its best partner BioNLP11ID-ggp also contains that cate-
gory of tags. Besides, as for Linnaeus and BioNLP11ID-
species, these two datasets are the best pair and both
contain tags of species category. It indicates that protein
tags and species tags are themajor factors for Ex-PTMand
Linnaeus datasets, respectively, when BioNLP11ID as the
auxiliary dataset. As for other tags, chemical and species
tags in the BioNLP11ID dataset are hardly helpful to Ex-
PTMdataset, while chemical and protein tags wouldmake
the performance of Linnaeus ever worse.
BC2GM and NCBI-disease datasets contain no tags of

chemical, protein and species categories. In experiment
results, we could observe that chemical and protein tags in
BioNLP11ID dataset are helpful to BC2GM while species
tags are harmful. For NCBI-disease dataset, all categories
of tags make performance worse.
When a dataset contains multiple categories of tags,

mutual influences may exist between them. For BC2GM

Table 5 Performance with different entity types in BioNLP11ID

BioNLP11
ID

BioNLP11
ID-chem

BioNLP11
ID-ggp

BioNLP11
ID-species

BC2GM 84.15↑ 84.39↑ 84.01 83.45↓
Ex-PTM 68.89↑ 67.51↑ 68.80↑ 67.58↑
NCBI-disease 84.90↓ 85.44↓ 85.26↓ 85.24↓
Linnaeus 78.46↑ 72.09↓ 73.21↓ 76.88↓
Bold: the best F1 score between sub-datasets. ↑/↓: positive / negative
improvement comparing to STM
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datasets, chemical tags improve performance and species
tags reduce performance, but the result of all tags is
still positive. It indicates that categories of tags with the
opposite effect would neutralize each other. For Ex-PTM
dataset, all the categories of tags improve performance,
and the performance of all tags is better than a single
category of tags. Similarly, for NCBI-disease dataset, the
merged result is worse. It demonstrates that the categories
of tags with the same effect could cooperate and accu-
mulate their effects. Exceptionally, for Linnaeus dataset,
categories of tags are all negative, but the result of all tags
is positive. We don’t have an analysis to explain this phe-
nomenon if just base on the current experiment result, but
it suggests that the influence of different categories of tags
is not a simple linear calculation.

Impact of dataset size
In this part, we discover the performance of CS-MTM
on smaller datasets. Using reduced-size main datasets, we
record the performance (precision, recall, F1) of different
situations. The results of CS-MTM in this experiment are
produced using the best pairs in “Performance with differ-
ent auxiliary datasets” section. The reduced-size datasets
are produced by removing sentences in training sets ran-
domly, and the development sets and test sets are not
modified. To compare with, we also use the reduced-
size dataset on baseline single-task model. The results are
shown in Table 6. The better F1 scores for each training
set size are bold.
For STM and CS-MTM, the F1 score decreases when

the size of training data is limited. When the training set
is reduced and the test set is kept, the missing of infor-
mation in removed sentences makes the model produce

worse results. In CS-MTM, the missing information could
be found in auxiliary datasets, so CS-MTM could improve
the performance back if a suitable auxiliary dataset is
chosen.
For 50%-size and 25%-size datasets, CS-MTM outper-

forms STM on F1 score by providing a higher recall score.
But for 10%-size datasets, CS-MTM outperforms STM on
BC2GM and NCBI-disease datasets and degrades on Ex-
PTM and Linnaeus datasets. In this case, our CS-MTM
may not learn missing information from auxiliary dataset
well.

Performance with different word embeddings
In this part, we discover the performance of STM and CS-
MTM by using different pre-trained word embeddings.
In our previous experiments, we just use the pre-trained
GloVe to produce our word embeddings. Our CS-MTM
model may have better performance when using other
word embeddings. In this experiment, we obtain the per-
formance with several different pre-trained Word2Vec
and compare them with the performance with the original
pre-trained GloVe. The results are shown in Table 7. The
best F1 scores for the model on each dataset are bold.
Four pre-trained Word2Vec word embeddings are used

in this experiment. One trains with PMC corpus, one
trains with PubMed corpus, one trains with PMC +
PubMed corpora, one trains with PMC + PubMed +
Wikipedia corpora. These pre-trained Word2Vec word
embeddings are available at http://bio.nlplab.org/. They
report that Word2Vec was run using the skip-grammodel
with a window size of 5, hierarchical softmax training, and
a frequent word subsampling threshold of 0.001 to create
200-dimensional vectors.

Table 6 Impact of dataset size

Full-size
STM

Full-size CS-
MTM

50%-size
STM

50%-size
CS-MTM

25%-size
STM

25%-size
CS-MTM

10%-size
STM

10%-size
CS-MTM

BC2GM Precision 84.00 83.12 82.37 79.37 77.82 79.44 73.19 72.95

Recall 83.82 85.74 80.77 85.05 79.57 78.98 73.59 75.39

F1 83.91 84.41 81.56 82.12 78.69 79.21 73.39 74.15

Ex-PTM Precision 70.83 74.73 67.74 68.18 57.46 54.00 42.47 50.69

Recall 64.12 69.56 58.62 67.48 53.69 63.97 50.27 41.68

F1 67.31 72.05 62.85 67.83 55.51 58.56 46.04 45.75

NCBI-
disease

Precision 88.45 86.59 84.03 84.72 81.52 81.00 81.02 79.32

Recall 83.78 86.42 84.56 84.76 76.50 81.00 68.59 74.40

F1 86.05 86.50 84.30 84.74 78.93 81.00 74.29 76.78

Linnaeus Precision 92.86 89.81 91.77 88.92 89.90 90.20 90.80 85.98

Recall 67.62 76.12 68.11 72.95 67.62 68.29 52.65 51.33

F1 78.25 82.40 78.19 80.15 77.18 77.73 66.65 64.29

Bold: the better F1 scores between STM and CS-MTM for each dataset size

http://bio.nlplab.org/
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Table 7 Performance with different word embeddings

STM CS-MTM

BC2GM Ex-PTM NCBI-disease Linnaeus BC2GM Ex-PTM NCBI-disease Linnaeus

PMC 84.22 66.09 85.24 76.87 85.07 70.61 84.32 80.00

PubMed 84.15 66.86 85.21 71.23 83.84 70.66 84.99 74.63

PMC+PubMed 84.35 66.57 84.39 75.07 85.18 72.03 85.34 76.71

PMC+PubMed +Wikipedia 84.71 65.71 84.46 76.87 84.10 71.79 85.27 78.99

Our GloVe 83.91 67.31 86.05 78.25 84.41 72.05 86.50 82.40

Bold: the best F1 scores for the model on each dataset

For STM, we have the best performance on BC2GM
dataset when choosing PMC + PubMed +Wikipedia word
embedding, and the best performance on the other three
datasets is achieved by our original GloVe word embed-
ding. For CS-MTM, PMC + PubMed on BC2GM and
other three datasets on GloVe word embedding can pro-
duce the best performance. This phenomenon shows that
different word embeddings can produce discrepant per-
formance.
OurGloVeword embedding achieves good performance

on three datasets, but the coverage of Glove might be
relatively small because it is not trained with the biomed-
ical corpus. An important reason is that CNN in the
embedding layer builds character embeddings to com-
pensate for the missing of words. Besides, according to

the overall performance, GloVe embeddings work bet-
ter with our models than Word2Vec embeddings. But
on certain datasets, such as BC2GM, character embed-
dings may not work well, and using word embedding
which trains with specialized corpus can improve the
performance.

Case study
In this part, we use some examples from datasets to illus-
trate the effect of the multi-task model. The examples are
shown in Table 8.
Case 1 and 2 are picked from the test set of Ex-PTM.

The main dataset, Ex-PTM, and the auxiliary dataset,
BioNLP09, only have entity tags of protein category.
In case 1, STM cannot recognize the entity Nef but

Table 8 Case Study: Bold text: ground-truth entity; Underlined text: model prediction

Main dataset: Ex-PTM Auxiliary dataset: BioNLP09

Case 1 STM The myristoylation of Nef and its membrane localization were essential for these effects.

CS-MTM The myristoylation of Nef and its membrane localization were essential for these effects.

Auxiliary data Human immunodeficiency virus type 1 Nef protein inhibits NF-kappa B induction in
human T cells.

Description The training data of auxiliary dataset directly provides entity information about Nef protein.

Main dataset: Ex-PTM Auxiliary dataset: BioNLP09

Case 2 STM Vitamin K deficiency is a relatively common condition in neonates.

CS-MTM Vitamin K deficiency is a relatively common condition in neonates.

Auxiliary data Ascorbic acid (ascorbate or vitamin C) has been shown to suppress the induction of HIV
in...

In conclusion, we demonstrate that the vitamin E derivative TCP succinate prevents
monocytic...

Description The training data of auxiliary dataset indirectly provides information that Vitamin is not protein.

Main dataset: Linnaeus Auxiliary dataset: BC5CDR

Case 3 STM He slept well at night, ate more than his mother thought was good for him, and was able
to...

CS-MTM He slept well at night, ate more than his mother thought was good for him, and was able
to...

Auxiliary data During the night clomipramine ingestion altered the complete sleep architecture in that
it suppressed REM sleep and the sleep cycles and induced increased wakefulness.

Description The training data of auxiliary dataset directly provides information that sleep don’t belong to species.
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CS-MTM can find it out, because the training data of aux-
iliary dataset directly provides entity information about
Nef protein. In case 2, STM recognizes Vitamin K as a
protein entity, which is incorrect. For the CS-MTM, in
the training data of auxiliary dataset, there is no infor-
mation about Vitamin K, but other Vitamins, such as
Vitamin C and Vitamin E, appear in the dataset. The
character embedding in the model can capture the mor-
phological information; therefore, the multi-task model
can recognize these Vitamins as non-protein entities.
Case 3 is picked from the test set of Linnaeus. Linnaeus

contains entity tags of species category, but the auxiliary
dataset, BC5CDR, have no species entity tags. In case
3, STM recognizes slept as a species entity. Because our
model use no pre-defined feature, such as Part-of-Speech
feature, STM may not learn that slept is not an entity if
there are few appearances of this word. For the CS-MTM,
it can learn from auxiliary training data which exists the
information of sleep; therefore, CS-MTM can recognize it
as a non-species entity.

Discussion
In this part, we compare our models with other BioNER
models as well as the state-of-the-art models.
For the multi-task model from Crichton et al. [23], they

experiment withmany BioNER datasets. They report their
best model achieves the F1 of 73.17% on BC2GM, 74.90%
on Ex-PTM, 80.37% on NCBI-disease, and 84.04% on Lin-
naeus. Our model has better performance on BC2GM
and NCBI-disease datasets, because both word embed-
ding and character embedding are used as input in our
model, while only word embedding is used in their model.
In Crichton’s work, many more combinations of datasets
are tried in the experiment, so this could be the rea-
son why they have better performance on Ex-PTM and
Linnaeus.
For the multi-task model from Wang et al. [19], they

achieve the F1 of 83.14% on BC2GM and 86.37% on
NCBI-disease. Our model outperforms their model on
these two datasets, because we use shared and private Bi-
LSTMs to capture different features, as well as the gated
interaction unit to make use of features from the auxiliary
dataset.
For the BioBERT model from Lee et al. [30], they report

their best model achieves the F1 of 84.40% on BC2GM,
89.36% on NCBI-disease, and 89.81% on Linnaeus. Their
model outperforms ours because BioBERT has much
more trainable parameters than ours. In BioBERT’s paper,
the authors don’t report the number of parameters, but
BioBERT should be similar to the original BERTwhich has
more than 100M parameters to train.
For the CollaboNet model from Yoon et al. [31], they

achieve the F1 of 78.56% on BC2GM and 86.36% on
NCBI-disease. This model uses a special structure to

achieve good performance, but our model uses multi-
task learning to achieve better performance on BC2GM
dataset.
As for state-of-the-art models, BioCreative II Gene

Mention Tagging System [10] achieves the F1 of 87.21%
on BC2GM dataset, MO-MTM from Crichton et al. [23]
achieves the F1 of 74.90% on Ex-PTM dataset, BioBERT
[30] achieves the F1 of 89.36% on NCBI-disease dataset,
and the original LINNAEUS system [32] achieves the
F1 of 95.68% on Linnaeus dataset. Although BioCreative
II and LINNAEUS system have the best performance
on certain datasets, they rely heavily on hand-craft fea-
tures which are not used in our model. Besides, these
systems can pre-process the input data or have some spe-
cial process using field knowledge, which benefits the
performance.

Conclusion
In this paper, we propose a newmulti-task learning frame-
work for BioNER. We also implement some other multi-
task models and compare our new model with them. Our
proposed model achieves better performance, even if the
size of the training data is smaller. Detailed analysis about
best partners of datasets and influence between entity cat-
egories can provide guidance of choosing proper dataset
pairs for multi-task training. Furthermore, our analysis
suggests that the cross-sharing structure in our model
is a key point to improve performance in the way of
cross-dataset feature sharing.
Limitations to the work include that it is difficult to

predict whether one dataset can help another before run-
ning the model. Another limitation is that the current
implementation of the model may not produce promis-
ing results for all datasets, in our experiment we find the
performance of the proposed model on Linnaeus dataset
worse than the ADV-MTM.
There are several further directions with our cross-

sharing multi-task model. First, training more datasets at
the same time could provide more cross-dataset infor-
mation and obtain better performance. Besides, we can
adjust our cross-sharing structure to improve the perfor-
mance on certain datasets or combine the current multi-
task model with the newly proposed structure, such as
BioBERT. Finally, our work may have entity type conflict
problem, we could use an entity type unifier to recog-
nize by source datasets in order to get the performance
improvement.
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