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Abstract

Motivation: Current NGS techniques are becoming exponentially cheaper. As a result, there is an exponential
growth of genomic data unfortunately not followed by an exponential growth of storage, leading to the necessity of
compression. Most of the entropy of NGS data lies in the quality values associated to each read. Those values are often
more diversified than necessary. Because of that, many tools such as Quartz or GeneCodeq, try to change (smooth)
quality scores in order to improve compressibility without altering the important information they carry for
downstream analysis like SNP calling.

Results: We use the FM-Index, a type of compressed suffix array, to reduce the storage requirements of a dictionary
of k-mers and an effective smoothing algorithm to maintain high precision for SNP calling pipelines, while reducing
quality scores entropy.
We present YALFF (Yet Another Lossy Fastq Filter), a tool for quality scores compression by smoothing leading to
improved compressibility of FASTQ files. The succinct k-mers dictionary allows YALFF to run on consumer computers
with only 5.7 GB of available free RAM. YALFF smoothing algorithm can improve genotyping accuracy while using less
resources.

Availability: https://github.com/yhhshb/yalff
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Introduction
Modern sequencing technologies produce large amount
of data compared to the older machines. A single run can
produce dozens of gigabytes, but in the near future the
amount of data is going to grow in the orders of terabytes
[1]. This poses the serious question of how to efficiently
store and transmit these huge data sets, especially in antic-
ipation of widespread adoption of personalized medicine
and machine learning tasks.

The preferred files in which data are stored by
sequencers is the well known FASTQ format. It is a textual
file containing, for each read, an identifier, the nucleotide
sequence, and a quality string. The quality string has the
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same length as the nucleotide sequence and each charac-
ter encodes the probability of error of the corresponding
base. The probability is usually encoded using the Phred
quality score system [2]. Quality values are often essen-
tial for assessing sequence quality, filtering out low-quality
reads, mapping reads to a reference genome, assembling
genomic sequences, detecting mutations for genotyping,
reads clustering [3, 4] and comparison [5].

To reduce the memory required by a FASTQ file it is
necessary to compress it. The DNA compression is usu-
ally as simple as assigning a two bit encoding to each of the
four bases. This encoding achieve almost similar results to
standard lossless compressors [6]. Moreover, the sequence
exposes a high redundancy, especially on large reads col-
lections with high coverage, and a number of methods
have been developed to compress it [7–10]. On the other
hand, the quality values span a wider range of values, and
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when compressed they can sum up to about 70% of the
total space to encode a FASTQ file [11].

Quality scores are more difficult to compress due to a
larger alphabet (63-94 in original form) and intrinsically
have a higher entropy [12]. With lossless compression
algorithms and entropy encoders reaching their theo-
retical limits and delivering only moderate compression
ratios [13], there is a growing interest to develop lossy
compression schemes to improve compressibility further.

To further reduce the file sizes, Illumina proposed a bin-
ning method to reduce the number of different quality val-
ues from 42 to 8 [14]. With this proposal, Illumina opened
the doors for allowing lossy compression of the qual-
ity values. Another approach called P-Block [15] involves
local quantization so that a representative quality score
replaces a contiguous set of quality scores that are within
a fixed distance of the representative score. Similarly, the
R-Block [15] scheme replaces contiguous quality scores
that are within a fixed relative distance of a representative
score. Other lossy approaches improve compressibility
and preserve higher fidelity by minimising a distortion
metric such as mean-squared-error or L1-based errors
(Qualcomp and QVZ) [6, 16]. The drawback of lossy com-
pression of quality values is that downstream analyses
could be affected by the loss incurred with this type of
compression. This could be the case for the above meth-
ods that process only the string of quality scores, without
considering the DNA sequence associated to the read.
However, [12, 17] and [11] showed that quality values
compressed with more advanced methods could achieve
not only a better performance in downstream analyses
than Illumina-binned quality values, but even better per-
formance than the original quality values in some cases
because these methods remove noise from the data.

The most promising methods are those using both
sequence and quality information. The first method pro-
posed in this class is [18], where the authors applied
the Burrows-Wheeler Transform to the reads collection
in order to detect groups of suffixes starting with the
same prefix (with size at least k). All quality values in
a group are smoothed with the mean value. Leon [19]
constructs a reference from the input reads in the form
of a bloom filter compressed de-Bruijn graph and then
maps each nucleotide sequence as a path in the graph. If
a base is covered by a sufficiently large number of k-mers
from the reference its quality is set at a fixed high value.
Among the most interesting tools, Quartz [12, 20], simi-
larly to Leon, relies on an external reference to decide if a
given nucleotide is wrong or not. This reference database
is implemented as list of k-mers stored explicitly, that
requires 24GB when gzipped. Similarly, GeneCodeq [11]
also has a list of k-mers as ground truth, but the algo-
rithm involved during smoothing is more complex than
Quartz. Each base has its associated error probability

recalculated using a Bayesian framework and the smooth-
ing takes place only if the new quality is greater than the
old one. Both Quartz [12] and GeneCodeq [11] require a
machine with at least 32GB of RAM, because of the size
of the reference database.

In this paper we present YALFF (Yet Another Lossy
Fastq Filter), a reference-based quality score compressor
based on k-mers and the Burrows-Wheeler Transforma-
tion (BWT) [21], that is capable to improve compression
while introducing low distortion into the processed data.
One of the novelties of YALFF is that, thanks to the effi-
cient data structure (BWT), it requires only a small amout
of RAM (about 5GB) and it can be run on regular laptop.
In the following sections we will present YALFF, and the
results of our experiments, discussing the performances
of YALFF under different metrics.

Methods
In order to compress quality values it is important, not
only to process the quality scores, but also to consider
the corresponding sequence of DNA associated in the
read. As already demonstrated by a number of studies
(see above), the sequence can be used to predict the
correctness of a base, without the need of costly align-
ments of the reads to a reference. Instead, the use of
fast alignment-free methods, mostly based on k-mers, has
replaced alignment-based methods in a number of differ-
ent applications of sequence comparison [22–25]. In the
context of quality compression, the use of alignment-free
methods have attracted the attention for the good geno-
typing performance [11, 12, 18, 19, 26]. These methods are
based on the idea that the correctness of a base can be pre-
dicted by the context of bases that are next to it. In [18, 19]
this local sequence context is computed from the input
reads, using the BWT [18] or the de-Bruijn graph [19].
Instead, Quartz [12] and GeneCodeq [11] does not need
to preprocess the reads, but they are based on an external
dictionary of k-mers. In this paper we introduce YALFF
that uses a similar approach to Quartz and GeneCodeq,
relying on a dictionary of k-mers in order to assess if
one base of a read is correct or not. The most distinctive
aspect of our approach is the compression of the k-mer
list using a succinct data structure which allows us to store
the whole dictionary in linear space. This task is achieved
by using well-known data structures and algorithms such
as the BWT [21] and its implementation found in BWA
[27, 28]. The main idea is to represent the list of k-mers
as a single string so as to eliminate most of the redun-
dancy in a typical k-mer dictionary. Similarly to the other
methods, in YALFF the compression of quality values is
performed by searching k-mers of the reads into the dic-
tionary. The main difference is that YALFF requires all
k-mers covering the base under investigation to be found
in the dictionary in order to compress the corresponding
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quality, whereas for previous algorithms it is enough only
one shared k-mer.

BWT Indexing of k-mers Dictionary
The most common procedure to obtain a reference list
of k-mers from a set of sequences is by a k-mer counting
procedure. Most k-mer counters keep track of each k-mer
using hash tables, which usually require huge amounts
of memory even though there exist optimized implemen-
tations [29] that allows for reduced memory overhead
per key stored and concurrent access. Even if the under-
represented k-mers and all the counters are removed from
the resulting list, it still requires a huge amount of mem-
ory. For example, the 2 bit encoded dictionary for Quartz
[12] sums up to 25 GB of space. Similarly, GeneCodeq [11]
extracts all k-mers from the human reference genome and
store them in a dictionary. Again, the memory require-
ments of GeneCodeq is of 24GB of RAM. Thus, both these
methods are not suited to run on small machines.

The main insights in order to reduce the size of the
dictionary is that most of the information carried by a
k-mer stored explicitly is redundant. This intuition is eas-
ily explained by recalling the k-mer counting procedure
itself. All the k-mers counted comes from a set of reference
sequences and the counting procedure is only necessary
to remove the wrong ones. There is no need to keep the
k-mers explicitly stored to answer simple yes/no queries
over their set. Given two consecutive k-mers it is possible
to reassemble them into a single (k+1)-mer thus reduc-
ing the storage requirement by k-1 bases. This reassem-
bly step can be carried out on the k-mers dictionary of
Quartz, as well on the k-mers dictionary of GeneCodeq,
leading to a linear sequence, or set of sequences, that con-
tains all the input k-mers. However, if we want to use all
the k-mers of a given reference genome, there are more
efficient data structures to do so.

The problem of indexing a reference genome in minute
space, while providing full search capability, has been
widely studied and efficient data structure are now
available. The data structure chosen for this purpose is

the FM-Index [30, 31] which is based on the Burrows-
Wheeler transform (BWT) of a sequence. The FM-index,
and its variants, are now at the basis of many algorithms
in the field of sequence analysis. For example, one of the
most used tool for reads mapping, BWA [32], is based on
the FM-index and it requires as input the FM-index of the
reference genome. For this reason, the FM-index of many
genomes are available already as they are routinely used
by bioinformaticians. Thus, we decided to use the FM-
index of the human reference genome. Because a reference
genome is also basic resource for every bioinformatician,
this method has the collateral advantage of not requiring a
separate indexed FASTA for compression instead sharing
the same index for reads alignments.

The FM-index will be used to search for k-mers. The
procedure to retrieve the position of a k-mer is the
enhanced backward search algorithm described in [27],
that is also able to account for mismatches. In our case we
will search if a k-mer is present in the reference genome
with up to one mismatch.

Quality Score Smoothing
The basic idea is that a read is represented by its con-
stituent k-mers. Then, these k-mers can be used to assess
if a given base of the read is correct. If a base is predicted
to be correct, then we don’t need to store the correspond-
ing quality value, but it can be substituted with a default
value indicating a base with high probability to be correct.

The smoothing strategy of YALFF applies this rule as
follows: each k-mer of a read is searched in the dictio-
nary and each mismatch makes the corresponding quality
score untouchable, that is, it is sufficient to have one non
concordant base in one of the k-mers to maintain the cor-
responding quality value unchanged. If all the k-mers are
concordant with the reference for a particular base the
associated quality is set to a default value (Fig. 1).

This basic procedure has been modified to include a
threshold for the quality scores (Fig. 2). All the scores
below this threshold are maintained regardless of the out-
come of the dictionary search. Such caveat is necessary to

Fig. 1 Example of smoothing performed by YALFF. A mismatch in one of the k-mers is enough to keep the corresponding quality value unchanged
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Fig. 2 The threshold excludes k-mers 1 to 5 to be skipped by the algorithm

enforce YALFF to ignore very low quality k-mers. A very
low quality base excludes all the k-mers covering that base
as shown in Fig. 2 where the first five k-mers are skipped
because of the single bad quality at position 5. The effect
of having very low quality values will imply that all the
k-mers containing one or more base with high probability
of being incorrect are skipped. This also works as a trim-
ming mechanism as shown in Fig. 3 where the tail of the
read is left untouched.

Figure 4 displays the whole mechanism including both
mismatches with the k-mers DB and low quality values.
The threshold should be chosen depending on if it is
necessary to avoid as much distortion as possible or if
compression is considered much more important. As a
rule of thumb a higher threshold maintains more qual-
ity values unchanged but this leads to an increase in the
entropy of the output file. It is advisable to plot an his-
togram of the distribution of quality values to choose the
threshold accordingly. A good value found for this study
was a quality value equal to the character ’ (apex) which
corresponds to a probability of error of 0.25119.

According to other studies we selected the parameter
k = 32 [11, 12]. The k-mers should be long enough to
ensure that the number of all possible k-mers is much
larger than the number of unique k-mers in the genome,
so as to ensure incidental collisions between unrelated
k-mers are rare. Also, k-mer length should ideally be a

multiple of four, since a 4bp length DNA sequence can be
represented by a single byte. A 32-mer satisfies these con-
straints [11, 12]; it is represented by a single 64-bit integer,
with a relatively low probability of containing more than
one sequencing error with Illumina sequences, as well as
resulting in few k-mer collisions.

Implementation details
YALFF is written in C/C++. The C parts are from BWA.
In particular, the source code of the aln utility has been
recycled to handle the query operations during smooth-
ing. The FM-indexed version of a dictionary string is
obtained through the index command of BWA. This
opportunistic choice was made to ensure a widespread
adoption of YALFF. Because BWA is the recommended
aligner in most applications, it is extremely probable that
a user who wants to compress some datasets will already
have some sort of indexed reference genome which can be
used as a dictionary. The indexing procedure and the data
produced can be shared between our software and BWA
leading to less time and storage required. In Fig. 5 is shown
an overview of YALFF.

Because each read can be processed independently from
the others, YALFF can be easily parallelized using more
than one thread. The smoothed FASTQ files in output are
guaranteed to maintain the order of the records compared
to the input. This is particularly useful with paired end

Fig. 3 Example showing the threshold mechanism introduced to trim the low quality bases of a read. In this case only two k-mers are queried
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Fig. 4 An example of quality smoothing by YALFF including both mismatches with the k-mers DB and low quality values

reads where the relative position of each read gives the
association between them and thus has to be maintained.

In addition to the strictly necessary query parame-
ters such as the k-mer length, the maximum number
of mismatches allowed, the trimming threshold and the
quality value used as replacement for the concordant
bases, YALFF also supports other options. For exam-
ple, as a speed up, it is possible to replace an entire
block of quality values above a certain threshold with
the smoothed value without searching the reference, or
loading the reference in shared memory. Please refer to
https://github.com/yhhshb/yalff for a complete descrip-
tion of the available options.

Results
Since YALFF is a compressor where the reconstructed (i.e.
decompressed) quality values can be different from the

original ones, it is of uttermost importance to assess the
effect that these changes in the quality values have on
downstream applications. In the scope of this paper, in line
with other studies, we choose variant calling as it is crucial
for clinical decision making and thus widely used.

Datasets, pipeline and parameters
The dataset used in this study is a set of real reads
(NA12878) from the 1000 Genomes Project http://www.
internationalgenome.org/data-portal/sample/NA12878. Only
the two paired end archives were used (namely SRR62246
1_1.filt.fastq.gz and SRR622561_2.filt.fast.gz) for the evalu-
ation, while the third containing unpaired reads were
discarded. All tests have been done from scratch using
the two paired end reads to evaluate the tools, without
using previous results from other papers in order to make
the comparison as clear as possible. This dataset has been

Fig. 5 An overview of YALFF’s inner structure

https://github.com/yhhshb/yalff
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widely used for benchmarking in other papers, because
the list of known SNPs is available and it can retrieved
from ftp://ussd-ftp.illumina.com/2017-1.0/hg38.

The reference genome used during alignment, and as
a dictionary string for smoothing, is the human genome
reference FASTA file hg38.fa downloaded from http://
hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/. The
FM-index of the human genome is computed only once,
in about 1h, and then it can be used for multiple runs of
quality compression and reads alignment. The genotyp-
ing pipeline is implemented as a single bash script which
uses bwa mem for alignments, bcftools for SNP call-
ing and vcfeval for evaluation. All scripts can be found
at https://github.com/yhhshb/yalff/tree/master/scripts.

Although YALFF can be run on a normal laptop, as
opposed to Quartz, for all tools all tests were performed
on a 14 lame blade cluster DELL PowerEdge M600 where
each lame is equipped with two Intel Xeon E5450 at 3.00
GHz, 16GB RAM and two 72GB hard disk in RAID-1
(mirroring).

In this study we compared YALFF with other alignment-
free methods, e.g. Quartz and Leon, as well as with other
methods that are not based on the sequence like: Illumina
8bin, Pblock, Rblock and QVZ. As reported in [11, 12]
reference-based methods are the most promising in terms
of SNPs detection, in fact only these methods are able
to improve the genotyping accuracy w.r.t. to the original
reads. The choice to include Leon instead of GeneCodeq
is because the latter does not provide an open source
license but only non-optimized pre-compiled executa-
bles are available. Leon, on the other hand, is completely
open-source and its binaries are optimized for most use
cases. It also uses a probabilistic de-Brujin graph gen-
erated from the reads in input for smoothing instead of
a predefined reference, thus widening the scope of the
comparison. Leon does not produce a FASTQ file by
default and uses its own compressed format instead. The
exact commands for each program are reported in the
Additional file 1.

The result section below shows time measurements for
each tool defined as the time to obtain the smoothed
FASTQ file from the original.

Genotyping Accuracy
The performance evaluation of the algorithms com-
pares the number of retrieved SNPs from a smoothed
file to the ground truth associated with the origi-
nal dataset. Each set of variants (stored in the output
VCF file) is compared against the consensus set of
variants. The benchmarking tools output the following
values.

• True Positives (T.P.): All those variants that are both
in the consensus set and in the set of called variants.

• False Positives (F.P.): All those variants that are in the
called set of variants but not in the consensus set.

• False Negatives (F.N.): All those variants that are in
the consensus set but not in the set of called variants.

These values are used to compute the following three
metrics:

• Recall: This is the proportion of called variants that
are included in the consensus set; that is,
R = T .P./(T .P. + F .N .),

• Precision: This is the proportion of consensus
variants that are called by the variant calling pipeline;
that is, P = T .P./(T .P. + F .P.).

• F-Measure: The harmonic mean of precision and
recall; that is, F − Measure = 2 ∗ (P ∗ R)/(P + R)

In the first experiments we run all tools and test how the
modified quality values influence the detection of SNPs.
We use the above metrics to assess the performance with
respect to the original unsmoothed FASTQ file.

Table 1 reports the results of these first experiments.
The F-measure is a global indicator of the goodness of
results, as it captures both precision and recall. If we com-
pare the F-measures of all tools with respect to that of
the original unsmoothed fastq, we can observe that the
only methods that are able to improve this measure are
Quartz and YALFF, whereas all other tools have lower
F-measures. The F-measure improvement of Quartz is
higher than YALFF and it is mainly due to the higher
recall. A possible explanation is the fact that YALFF
uses only k-mers from one reference genome, while the
k-mers DB of Quartz is built from multiple genomes.
Quartz shows the highest recall, that is, more SNPs are
found, but at the expenses of the precision, in fact it
exhibits the lowest precision and the highest number of
false positives. If we consider the precision, the perfor-
mance of Quartz degrades w.r.t. to the unsmoothed file,
while YALFF is closer to it. High values of precision are
reported also for Pblock, Rblock and Illumina 8bin, but
in these cases the recall decreases. Overall, only Quartz
and YALFF are to improve genotyping accuracy in terms
of F-measure. However, YALFF produces very few false
positive SNPs, as opposed to Quartz. This is a desir-
able characteristic especially in sensitive application such
as health care or cancer analysis. Similar observations
can be deduced from the ROC curves in Fig. 6. This
Figure reports the number of true positives as a func-
tion of the false positives, and it includes for completeness
the recall rate. More ROC curves can be found in the
Additional file 1.

Timing and RAM
We also compared the methods in terms of com-
puting resources required for smoothing. The time

ftp://ussd-ftp.illumina.com/2017-1.0/hg38/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/
https://github.com/yhhshb/yalff/tree/master/scripts
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Table 1 Comparison of various metrics T.P., F.P., F.N., Precision, Recall and F-Measure in SNP calling between different tools

Smoothing algorithm T.P. F.P. F.N. Precision Recall F-Measure

None (original files) 2588159 219803 1493731 0.9217 0.6341 0.7513

YALFF 2603620 221368 1478264 0.9216 0.6378 0.7539

Quartz 2661218 237820 1420672 0.9180 0.6520 0.7624

Leon 2278517 204803 1803366 0.9175 0.5582 0.6941

Illumina 8bin 2546518 216128 1535370 0.9218 0.6239 0.7441

Pblock p=2 2574111 218405 1507773 0.9218 0.6306 0.7489

Pblock p=4 2558612 216995 1523273 0.9218 0.6268 0.7462

Rblock t=1.1 2550179 216738 1531706 0.9217 0.6248 0.7447

Rblock t=1.15 2526704 215721 1555181 0.9213 0.6190 0.7405

QVZ 0.6 2588704 225730 1493180 0.9198 0.6342 0.7507

QVZ 0.8 2588773 223210 1493112 0.9206 0.6342 0.7510

measurements are the real wall clock times given by the
time command on POSIX systems. Because all the tools
where given one processor to perform their tasks the
real wall clock time and the sum of user and sys times
were comparable. All tools were tested on uncompressed

FASTQ files because both Quartz and Leon don’t support
compressed I/O. It must be noted that YALFF relies on the
system pipe mechanism for read/write operations and can
be used on compressed archives simply by command con-
catenation. The I/O operations and throughput handling

Fig. 6 ROC curves of SNPs calling for various methods
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are left to the pipe mechanism leading to a much more
friendly experience.

The fastest tools are those based only on the quality val-
ues, like Illumina 8bin, Pblock, Rblock and QVZ. They
all require similar computing resources of about few GBs
of RAM and 40 to 60 min for the execution. On the
other hand, the methods that process also the sequence,
like Quartz, YALFF and Leon, are more computation-
ally demanding. Figure 7 shows a graphical representation
of time and memory measures for Quartz, YALFF and
Leon. In terms of execution times YALFF is the slowest
of the three, with computing times comparable to Quartz,
but not as fast as Leon. Leon on the other hand is the
fastest, but it is also the least accurate tool with the worst
precision and recall. YALFF despite being the slowest it
requires less memory, only 5.7 GB of RAM, whereas Leon
and Quartz need 6.3 GB and 25.4 GB respectively. Thus
YALFF is the only one that can achieve good accuracy on
SNPs calling and it can be used on a desktop computer,
without relying on expensive hardware.

We tested also the scalability of YALFF. In Fig. 8 are
reported the computing time of YALFF to smooth a sin-
gle FASTQ file as a function of the number of cores used.
To be able to make those scalability measures as reliable
as possible each round has the number of cores allocated
by a server supervisor so that no additional idle cores are
present at each run. Both input and output streams use
uncompressed files to make the plot comparable with the

Fig. 7 Histogram showing the total execution time in hours and peak
RAM usage of the different programs

Fig. 8 Time taken by YALFF to smooth a FASTQ file as a function of
the number of cores

others. The optimal number of cores seems to be 3 or 4
but it strongly depends on the secondary storage device
used and its characteristics. Using an SSD allows for bet-
ter throughput and better core utilization. In summary
YALFF can be easily parallelized to speed up smoothing.

Compression
In this section we evaluate the compression ratios
between the original uncompressed files and the com-
pressed ones, while varying the smoothing method. To
have a better overview of the compression ratios we used
three lossless compressors, two widely used tool as gzip
and bzips, and a more advanced one LZMA.

The results are shown in Table 2. As expected the
smoothed files are more compressible that the original
FASTQ. Also, LZMA achieves better compression ratios
than gzip and bzip on all tests. In terms of compres-
sion ratio, the methods based on the sequence are able
to achieve better compression. Among the methods based
only on the quality values, Rblock appears to be the best
one. If we consider all smoothing methods we can observe
that YALFF has the best compression ratios, outperform-
ing all other tools, irrespective of the compressor used.

YALFF parameters
In this section we evaluate the impact of the parameters
of YALFF. We recall that YALFF has three parameters:
k for the length of k-mers, the lower quality threshold
(L.T.) for trimming and the higher quality threshold (H.T.)
to speed-up the smoothing. The thresholds L.T. and H.T.
are expressed using the Phred quality representation, that
for Illumina spans between 0 (poor quality) to 41 (high
quality). In the previous experiments we used as default
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Table 2 Compression ratio for the different smoothing tools and
compressors. The ratio is defined as uncompressed size

compressed size where the
uncompressed size is 42GB

Smoothing algorithm gzip bzip2 xz (LZMA)

None (original files) 4.617 5.152 5.918

YALFF 7.147 7.633 9.186

Quartz 6.925 7.349 8.827

Leon 7.098 7.551 8.988

Illumina 8bin 6.054 6.742 7.819

Pblock p=2 5.373 5.966 7.011

Pblock p=4 6.052 6.647 7.671

Rblock t=1.1 6.285 6.859 7.941

Rblock t=1.15 6.675 7.250 8.443

QVZ 0.6 4.776 5.533 6.395

QVZ 0.8 4.778 5.510 6.366

values k=32, L.T.=6 and H.T.=40. In Table 3 we report the
performance of YALFF for various parameters.

The most important parameter is the length of the
k-mers. If k is small, e.g. k=16, there is a small improve-
ment in terms of F-measure and compression, how-
ever this comes at the expenses of the computing time
that increases substantially. On the other hand, if k=48,
the running time decreases, but also the compression
decreases. We choose k=32 as the best compromise
between compression and computing time. The lower
threshold (L.T.) is used for trimming low quality values,
that are not boosted by YALFF. If this threshold is not
applied (L.T.=0) the precision decreases. If higher val-
ues are used (L.T.=12) the precision increases, but the
compression decreases. We choose L.T.=6 as a trade off
between trimming and compression. The higher quality
threshold (H.T.) can be used to speed-up the computation
by boosting all quality values above H.T. If we use H.T.=30
the computation time decreases considerably, with a small

reduction of precision. However, if time is not a constraint
and precision is most important, we suggest to use high
values of H.T.

Discussion
The low compressibility of quality values is one of the
main problem of sequencing reads compression. Several
lossy smoothing strategies have been proposed, all with
the intent to improve compressibility without altering the
information carried by quality value for downstream anal-
ysis. Here, we propose YALFF, a tool that smooths quality
scores based on a dictionary of k-mers from a reference
genome. The YALFF smoothing algorithm can achieve
low distortion of the processed datasets with a small
degradation of precision during SNP calling, but with an
overall improvement of F-measure. We developed this
program with consumer application of genome sequenc-
ing in mind. For example, one of the current hot topic is
personalized medicine, which requires huge databases to
store as many genomic information as possible and new
methods to allow common users to share their genetic
code. New compression programs needs to be developed
to tackle these problems. Tools with reduced memory
consumption, like YALFF, to be executed on commodity
computers, will enhance the sharing of sequencing data.

Unfortunately, YALFF is not perfect and it can be fur-
ther improved. Its main flaw is the time inefficiency com-
pared to e.g. Quartz or Leon. Using a compressed data
structure as a dictionary can compromise cache efficiency.
The main question which needs to be investigated further
is if it is possible to develop a compressed dictionary with
good locality properties.

Conclusions
In this work, we have presented YALFF, a lossy FASTQ
smoother which uses a dictionary of k-mers that are
compressed with a BWT. YALFF is able to reduce
the entropy of quality scores by smoothing leading to

Table 3 The impact of the parameters of YALFF for various metrics T.P., F.P., F.N., Precision, Recall, F-Measure, Compression (LZMA) and
Time (min.)

Parameters

k L.T. H.T. T.P. F.P. F.N. Prec. Recall F-M. Compr. Time

16 6 40 2659170 276596 1422714 0.9058 0.6515 0.7579 10.107 11850

32 6 40 2603620 221368 1478264 0.9216 0.6378 0.7539 9.186 2934

48 6 40 2588254 220176 1493631 0.9216 0.6341 0.7513 5.936 509

32 0 40 2626957 253747 1454928 0.9119 0.6436 0.7546 9.181 2657

32 3 40 2603891 221696 1477993 0.9215 0.6379 0.7539 9.113 2315

32 12 40 2601463 219417 1480421 0.9222 0.6373 0.7537 8.813 2239

32 3 30 2616530 225716 1465356 0.9206 0.6410 0.7558 9.597 565

32 3 35 2612145 223372 1469743 0.9212 0.6399 0.7552 9.429 848

32 3 37 2609021 222494 1472866 0.9214 0.6392 0.7548 9.115 1279
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improved compressibility of FASTQ files w.r.t. to other
popular tools. The succinct dictionary allows YALFF to
run on consumer computers with only 5.7 GB of RAM,
as opposed to Quartz that requires large amount of mem-
ory. The smoothing algorithm of YALFF can improve the
genotyping accuracy, in terms of F-measure, when com-
pared with the unsmoothed FASTQ, and it can also reduce
the number of false positive, w.r.t. Quartz. In summary
YALFF produces smoothed FASTQ that are highly com-
pressible, while maintaining high accuracy on genotyping
and using less resources.
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