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Abstract

Background: As DNA sequencing technologies are improving and getting cheaper, genomic data can be utilized
for diagnosis of many diseases such as cancer. Human raw genome data is huge in size for computational systems.
Therefore, there is a need for a compact and accurate representation of the valuable information in DNA. The
occurrence of complex genetic disorders often results from multiple gene mutations. The effect of each mutation is
not equal for the development of a disease. Inspired from the field of information retrieval, we propose using the term
frequency (tf) and BM25 term weighting measures with the inverse document frequency (idf) and relevance
frequency (rf) measures to weight genes based on their mutations. The underlying assumption is that the more
mutations a gene has in patients with a certain disease and the less mutations it has in other patients, the more
discriminative that gene is.

Results: We evaluated the proposed representations on the task of cancer type classification. We applied various
machine learning techniques using the tf-idf and tf-rf schemes and their BM25 versions. Our results show that the
BM25-tf-rf representation leads to improved classification accuracy and f-score values compared to the other
representations. The highest accuracy (76.44%) and f-score (76.95%) are achieved with the BM25-tf-rf based data
representation.

Conclusions: As a result of our experiments, the BM25-tf-rf scheme and the proposed neural network model is
shown to be the best performing classification system for our case study of cancer type classification. This system is
further utilized for causal gene analysis. Examples from the most effective genes that are used for decision making are
found to be in the literature as target or causal genes.

Keywords: Information retrieval, Machine learning, tf-idf, tf-rf, BM25, DNA mutations, Gene weighting, Disease
classification

Background
Complex diseases with genetic components arise from
different combinations of the mutations in DNA. With
the help of the decreasing cost of sequencing technolo-
gies, large scale sequencing datasets are being curated.
Machine learning methods can be helpful in analyzing
the huge genome data. However, a suitable representa-
tion technique for the sequencing data is still a problem
to be solved. In this paper, we propose using statistical
methods from the field of information retrieval for the
representation of mutation information in DNA. The pro-
posed representation methods are evaluated for the task
of cancer type classification.
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As stated in the 2017 report of National Center for
Health Statistics [1], cancer is the second among top lead-
ing causes of death. Cancer is a group of diseases and each
cancer type is labeled by the primary area of the body
where the cancer cells arise. Each cancer type in general
has a different set of causal genes and the disease emerges
from the combination of various mutations of these genes
[2]. The treatment is planned according to the primary
site. Late diagnosis prevents the application of treatments
and often results in the loss of the patient. Accordingly,
the unknown or wrong analysis of the primary site and
late diagnosis are major problems for cancer patients. The
use of genomic data for diagnosis might help both to rec-
ognize the disease in early stages and to accurately classify
the primary site.
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Cancer classification has been primarily based on the
morphological appearance of the tumor. Medical images
such as magnetic resonance images (MRI) [3–5], X-ray
and computed tomography (CT) images [6, 7], as well as
histopathology images [8, 9] have been utilized for can-
cer diagnosis and classification. Medical images provide
valuable information, especially about tumors, but they
represent a restricted area. Therefore, there is a need for a
more comprehensive data source.
Another commonly used data type for cancer classifica-

tion is gene expression data. While a number of studies
utilizing gene expression data have addressed the classifi-
cation of cancer types [10–14], this type of data is highly
sensitive to the microarray experiment setup and in gen-
eral suffers from low accuracy and robustness [15]. In
addition, due to the high dimensionality of gene expres-
sion data, gene selection methods are commonly applied
prior to classification [16, 17]. The feature selection step
may eliminate genes that in general have minor effects
on disease generation while still being significant for the
diagnosis of particular cancer types for some patients.
The biotechnology improvements and the automation

of sequencing systems have increased the speed and low-
ered the cost of human DNA sequencing, which enabled
the usage of this data type for disease diagnosis. The vari-
ants ormutations in the DNA of an individual can be iden-
tified by comparing the DNA sequence of the individual
to the DNA sequence of a reference genome maintained
by The Genome Reference Consortium [18] and stored
in a variant call format (VCF) file [19]. In recent studies,
the binary representations of mutation data obtained from
sources of manually curated somatic mutation profiles
have been utilized for cancer classification [20, 21]. How-
ever, binary representation is a limited way of describing
the data. It highlights the genes with mutations, but treats
them as equal. The distinction of common, rare and dis-
ease causing mutations is not expressed with the binary
representation. Therefore, methods such as C-score from
the Combined Annotation Dependent Depletion (CADD)
framework [22, 23] have been developed for weighting
gene mutations. Recently, the sum of C-scores of gene
mutations has been successfully used to cluster breast
cancer patients and predict the stage of the disease [24].
In this paper, we propose adapting and using term

weighting techniques (tf-idf, tf-rf and BM25) from the
information retrieval field for weighting genes based on
mutation information. As far as we know, these tech-
niques have not been used on variant data before. The
proposed gene weighting techniques are evaluated for
the task of cancer type classification. Our results demon-
strate that the best performing information retrieval
based model (BM25-tf-rf ) outperforms the C-score based
approach. When the best performing classification model
is analyzed, the most effective genes in the classification of

certain cancer types are found to have been also proposed
as causal or target genes in the previously published stud-
ies. These literature findings support the effectiveness of
our representation models.
Our work brings the following contributions:
1 Term weighting methods from the field of

information retrieval have been proposed for the
representation of mutation information within
genomic data.

2 A comparison of these data representation schemes
for the task of cancer type classification has been
performed using a wide range of machine learning
methods.

3 The best performing representation and classification
model are utilized for causal gene analysis.

Methods
In this section, we describe the proposed data representa-
tionmodels as well as their utilization withmachine learn-
ing algorithms for cancer type classification. An overview
of the developed system is shown in Fig. 1. The pheno-
types occur as a result of DNA mutations. In our system,
we take VCF files, which hold the DNA mutation infor-
mation, as input. These gene mutations are weighted by
using the proposed representation models. The genomic
data representation vector is then processed with a wide
range of machine learning algorithms for the task of can-
cer type classification. So, the VCF data constitute the set
of observations and the genes, which are weighted based
onmutation information, are the features in our classifica-
tion model for learning the given cancer classes. The first
output of the system is the prediction of the cancer type.
The second output is the list of most effective genes in the
classification process, which is obtained by analyzing the
most accurate representation and classification model.

Dataset
The Cancer Facts and Figures 2017 annual report [25]
states the leading sites of cancer. According to this list
and the common cancer types from The National Can-
cer Institute [2], we created a dataset of ten cancer types,
which are observed frequently and account for above half
of the estimated cancer caused deaths. The list of selected
cancer types and the sample counts for each cancer type
are provided in Table 1. We downloaded a total of 7028
VCF files for ten cancer types from The Cancer Genome
Atlas (TCGA) [26]. ANNOVAR [27] is used for gene-
based annotation of the VCF files. From the annotated
files, we selected the exonic and intronicmutations as they
include specific gene labels. This selection of mutation
types resulted in 16,383 distinct genes. As a result, our
dataset, named as BOUN10CANCER, has 7028 samples
with mutation information of 16,383 distinct genes and a
class label for each sample representing the cancer type.
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Fig. 1 Overview of the proposed system

Data representation models
Binarymutationmodel
In the binary model, a gene is represented with 1 if there
is a mutation in that gene, and it is represented with 0 oth-
erwise. Hence, the resulting data set has the gene labels

Table 1 The list of cancer types and sample counts in the
BOUN10CANCER dataset

Cancer type Sample count

Lung 1232

Breast 1080

Brain 1028

Kidney 734

Colorectal 656

Thyroid 504

Prostate 503

Skin 472

Stomach 441

Liver 378

as features and binary values for each feature. The binary
value for each gene feature is extracted from the annotated
VCF file. If the gene label exists in the annotated file, the
value is 1, and it is 0 otherwise. If there are more than 1
mutation for a gene, the feature value for that gene is still
set to 1.
This representation model is applied by using two dif-

ferent gene lists. The first model is constructed with the
known causal genes for the selected cancer types. The
causal genes are obtained from OMIM [28] by using the
MSC tool [29] of HGNC [30]. We extracted 434 causal
genes for the cancer types in the BOUN10CANCER
dataset. The second model is constructed by using all
mutated genes in the annotated VCF files. We extracted
16,383 mutated genes for the cancer types in the
BOUN10CANCER dataset.

C-score basedmutationmodel
The CADD framework [22, 23] is a Support Vector
Machine (SVM) based framework which calculates C-
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scores for variants. The C-score integrates diverse annota-
tions and creates a single score for a variant. In the C-score
based mutation model, the sum of C-scores for all muta-
tions in a gene is used as the feature value for that gene.
For example, if a gene has two mutations in a sample,
the feature value for that gene in that sample is the sum
of the C-scores of these two mutations. The sum of C-
scores approach was also used in [24] for breast cancer
patient classification. We evaluate this approach for can-
cer type classification and compare it with the proposed
information retrieval based mutation models described in
the following subsections.

Tf-idf basedmutationmodel
Complex diseases are in general developed from the com-
bination of various mutations in the genes. Each mutation
may influence the evolution of the disease at different lev-
els. In order to express these differences, we proposed
to utilize the tf-idf (term frequency-inverse document
frequency) weighting method. Tf-idf is a term weight cal-
culation technique used commonly in the information
retrieval and text mining research areas. In [31], tf-idf is
defined as a statistical measure, which is used to evalu-
ate how important a word is to a document in a collection
by checking the distribution and frequency of the word’s
occurrences.
In our context, the tf-idf value measures how important

a gene mutation is to a sample in a collection of sam-
ples. Mutations in genes that are found in most samples
have low tf-idf values, whereas genes with rare mutations
are granted higher weights. With this strategy, we aim to
increase the impact of the existence of rare mutations and
suppress the effects of common mutations in the classifi-
cation task, since common mutations may not be a sign of
a disease.
In this model, instead of binary values, the calculated

tf-idf weights of the genes are used as feature values. The
main equation of tf-idf is presented in Eq. 1. Tf-idf value
for a gene g and sample s is the multiplication of tf, that
is term frequency, and idf, that is inverse document fre-
quency, values. The tf value for a gene g and sample s is
taken as the count of mutations of gene g in sample s. The
higher the number of mutations for a gene in a sample, the
more tf weight is assigned to this gene. The df value, that
is document frequency, for a gene g is taken as the count
of samples in the collection that contain mutations of gene
g. For a sample collection of size N, idf of gene g is calcu-
lated as shown in Eq. 2. Intuitively, the more samples in
the collection have mutations in gene g, the less discrimi-
nating power this gene will have as a feature in cancer type
classification. So it is assigned a lower idf score.

tf -idf g,s = tf g,s ∗ idf g (1)

idf g = log
(
N/df g

)
(2)

Tf-rf basedmutationmodel
A mutation can be rare in the collection, however, it may
be effective for samples with particular cancer types. In
order to account for the class information, tf-rf (term
frequency-relevance frequency) based data representa-
tion is adapted. Similarly to tf-idf, tf-rf is also used in
information retrieval and text mining. Unlike tf-idf, tf-rf
is a supervised statistical measure proposed in [32]. It is
used to evaluate how important a word is to a class of doc-
uments in a collection. In tf-rf, a word may have different
weight values for different classes.
In our context, the tf-rf value measures how important

a gene mutation is to a sample by using the information of
its class label. If the particular gene mutation is encoun-
tered more in one class compared to the other classes, the
corresponding rf and tf-rf values are higher than for the
other classes. As shown in Eq. 3, the tf-rf value for a gene
g and sample s is the multiplication of tf, that is term fre-
quency, and rf, that is relevance frequency, values. The tf
value is computed in the same way as in tf-idf. The rf value
of gene g and class c is calculated as in Eq. 4, where a is
the number of samples in class c which contain mutation
in gene g, and b is the number of samples in other classes
which contain mutation in gene g.

tf -rf g,s = tf g,s ∗ rf g,c (3)

rf g,c = log(2 + a/max(1, b)) (4)

BM25-tf-idf basedmutationmodel
BM25, often called Okapi, is a ranking function used by
search engines to rank matching documents according to
their relevance to a given search query [33]. For our task of
weighting genes based on mutation information, the term
frequency definition in BM25 is used instead of the classic
term frequency in tf-idf. As shown in Eq. 5, BM25-tf-idf
value for a gene g and sample s is the multiplication of
BM25-tf, that is BM25 definition of term frequency, and
idf, that is inverse document frequency, values. BM25-tf
value for a gene g and sample s is calculated as in Eq. 6.
In this equation, Ls and Lave are the length of sample s
and the average sample length for the whole collection,
respectively. We model the samples with the same fea-
tures. Therefore, in our representation model, Ls is equal
to Lave. When we use this equality, Eq. 6 is simplified to
Eq. 7. k is used as a smoothing parameter for tf. The idf
definition is the same as in tf-idf.

BM25-tf -idf g,s = BM25-tf g,s ∗ idfg (5)

BM25-tf g,s = (
(k + 1) ∗ tfg,s

)
/ (k ∗ ((1 − b)

+b ∗ (Ls/Lave)) + tfg,s
) (6)

BM25-tf g,s = ((k + 1) ∗ tfg,s)/(k + tfg,s) (7)
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BM25-tf-rf basedmutationmodel
For BM25-tf-rf, the term frequency definition in BM25
is used instead of the classic term frequency in tf-rf. As
shown in Eq. 8, the BM25-tf-rf value for a gene g and
sample s is the multiplication of BM25-tf, that is BM25
definition of term frequency, and rf, that is relevance fre-
quency, values. The BM25-tf value is computed in the
same way as in BM25-tf-idf. The rf definition is the same
as in tf-rf.

BM25-tf -rf g,s = BM25-tf g,s ∗ rfg,c (8)

The effect of the smoothing parameter k is illustrated
in Fig. 2. In this chart, the tf and BM25-tf values for dif-
ferent values of k are shown when the number of gene
mutations changes in the range from 1 to 10. The figure
demonstrates that, the tf values, which are represented by
empty circles, keep increasing as the number of mutations
increases. Even a point mutationmay be significant for the
occurrence of a certain disease. Therefore, a gene with n
mutations is not necessarily n times more important than
a gene with 1 mutation for disease detection. As shown
in Fig. 2 the smoothing parameter k in BM25-tf dampens
the effect of high tf values.

Implementation and experiment design
Machine learningmodels
A wide range of machine learning algorithms are applied
to investigate the effects of the proposed mutation

based DNA representation models in the task of dis-
ease classification. Naive Bayes (NB), K-Nearest Neighbor
(KNN), Support VectorMachines (SVM), Logistic Regres-
sion (LR), One-Layer-Perceptron (Perceptron) and Feed-
Forward Multilayer Neural Network (NN) are run on the
prepared datasets.
For the Feed ForwardNN, themodel is composed of two

or more fully connected layers. Except the last layer, the
number of nodes is halved at each layer. If the first layer
has N units, then the second layer has N/2 units. With this
strategy, each layer represents the information from the
previous layer with less units. After each fully connected
layer, a dropout is applied. As there are 10 classes, the last
layer has 10 nodes with softmax activation function. Cat-
egorical cross-entropy is employed as the loss function.
The number of epochs is 50 and the batch size is 50.
All experiments are implemented with Python. For the

traditional machine learning algorithms, the scikit-learn
library [34] is used. The feed forward network model is
implemented with Keras [35] on Tensorflow [36] backend.

Evaluation strategy
The input datasets are first divided into 80% training and
20% test sets. Parameter tuning is accomplished using 10-
fold cross-validation on the training set. Testing is also
accomplished in 10-folds. In each fold, the model with the
best parameters is trained with one of the training sets
from the initial cross-validation experiment, which was

Fig. 2 The effect of the smoothing parameter k in the BM25 calculations for term frequency
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performed over the 80% of the data, and testing is per-
formed over the test set (the initially separated 20% of the
data). By this strategy, the instances in the independent
test set are not included in any step of either parameter
tuning or training, and the effects of minor changes of
the training data are also indicated. The reported results
are the micro-averaged scores and standard deviations
on the independent test set. Accuracy, f-score, precision,
recall, false positive rate (FPR) and area under the receiver
operating curve (roc-auc) are used as the performance
measures.

Parameter tuning for the representationmodels
For BM25-tf, a range of k values between 0.6 and 2 are
used in the parameter tuning phase. The BM25-tf-rf rep-
resentation model and the Feed Forward NN are used in
the parameter tuning setup. The classification results for
different values of k are presented in Table 2 and the best
performing row is shown in bold. k=0.8 leads to the best
accuracy and f-score values. Therefore, this value is used
in our experiments for the BM25-tf calculations.

Parameter tuning for the classificationmodels
A parameter tuning phase is applied for each machine
learning algorithm and data representation model. The
best parameter set is used in the test phase. The default
values are used for the parameters that are not tuned. NB
and LR are applied with the default parameters. The range
or list of values used in parameter tuning for the other
machine learning algorithms are presented in Table 3.
The best parameters for the classification models are
presented in Table 4.

Results
Selection of gene sets
The success of the mutation based data representation
schemes also depends on the selected gene list. The ini-
tial experiments are applied on the binary representation
to observe the classification performances over the causal

Table 2 Parameter tuning results for the parameter k in the
BM25-tf formula

k Accuracy F-Score Precision Recall

0.6 75.20 ± 1.21 75.89 ± 1.14 76.59 ± 1.11 75.20 ± 1.21

0.8 75.38±1.02 76.18±1.03 76.99±1.10 75.38±1.02

1.0 75.24 ± 1.60 75.87 ± 1.55 76.51 ± 1.53 75.24 ± 1.60

1.2 74.60 ± 1.60 75.32 ± 1.49 76.07 ± 1.39 74.60 ± 1.60

1.4 74.24 ± 1.00 74.88 ± 0.76 75.54 ± 0.65 74.24 ± 1.00

1.6 74.43 ± 1.39 75.35 ± 1.28 76.30 ± 1.42 74.43 ± 1.39

1.8 74.21 ± 1.46 74.89 ± 1.40 75.58 ± 1.38 74.21 ± 1.46

2.0 74.73 ± 1.32 75.53 ± 1.21 76.36 ± 1.16 74.73 ± 1.32

The row with the highest scores is shown in bold.

Table 3 The range (or list) of parameters used in the parameter
tuning phase for the classification models

Algorithm Parameter Range or Values

KNN k [ 2, 150]
SVM Kernel linear, polynomial, rbf

Polynomial degree [ 2, 5]
Gamma [ 10−4, 10−1]
Cost [ 101, 104]

Perceptron Optimization function Adam, SDG
Activation function ReLU, tanh
Hidden layer size [ 10, 100]
The maximum number of
iterations

[ 100, 300]

Feed Forward NN Optimization function Adam, SDG
Activation function ReLU, tanh
The number of layers [ 2, 6]
Dropout rate [ 0.25, 0.5]
The number of nodes in
the first layer

[ 1024, 8192]

Table 4 The best parameters found as a result of the parameter
tuning phase for the classification models

Algorithm Parameter Value Data Rep.

KNN k 50 Binary
10 c-score, tf-idf, tf-rf,

bm25-tf-idf,
bm25-tf-rf

SVM-poly Polynomial
degree

3 binary, tf-idf,
bm25-tf-idf

2 c-score, tf-rf,
bm25-tf-rf

SVM-rbf Gamma 10−4 All
Cost 103 All

SVM-linear Gamma 10−4 All
Cost 102 All

Perceptron Optimization
function

SGD binary

Adam c-score, tf-idf, tf-rf,
bm25-tf-idf,
bm25-tf-rf

Activation
function

tanh binary

ReLU c-score, tf-idf, tf-rf,
bm25-tf-idf,
bm25-tf-rf

Hidden layer size 100 All
The maximum
number of
iterations

200 binary

300 c-score, tf-idf, tf-rf,
bm25-tf-idf,
bm25-tf-rf

Feed Forward NN Optimization
function

Adam All

Activation
function

ReLU All

The number of
layers

4 All

Dropout rate 0.25 All
The number of
nodes in the first
layer

8192 All
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Table 5 Machine learning experiment test results on the gene sets with the binary representation model

Gene Set Algorithm Data Rep. Accuracy F-Score Precision Recall Roc-Auc FPR

causal LR binary 36.81 ± 0.45 36.36 ± 0.50 35.93 ± 0.52 36.81 ± 0.45 0.63 ± 0.03 9.03 ± 0.10

causal SVM-linear binary 33.53 ± 0.32 32.70 ± 0.99 31.92 ± 1.13 33.53 ± 0.32 0.62 ± 0.05 9.38 ± 011

causal Perceptron binary 36.74 ± 0.56 36.62 ± 0.83 36.52 ± 2.56 36.74 ± 0.56 0.63 ± 0.06 10.01 ± 0.10

all LR binary 67.19 ± 0.41 68.01 ± 0.01 68.01 ± 0.00 67.01 ± 0.01 0.78 ± 0.01 3.85 ± 0.07

all SVM-linear binary 68.46 ± 0.67 68.01 ± 0.01 69.01 ± 0.01 68.01 ± 0.01 0.78 ± 0.01 4.07 ± 0.09

all Perceptron binary 68.50 ± 0.48 69.01 ± 0.01 70.01 ± 0.01 68.01± 0.01 0.78 ± 0.03 4.07 ± 0.09

and full gene sets. LR, SVM with linear kernel and Per-
ceptron are selected as pilot algorithms. As shown in
Table 5, the accuracy values are between 33% and 37%
for the binary causal gene dataset and between 66% and
69% for the binary full gene dataset. It is observed that,
the addition of extra gene information nearly doubles the
classification accuracy. The mutation data of the addi-
tional genes increases the accuracy. The dramatic increase
can be observed in f-score results too. This result can be
interpreted as being an indication of the existence of new
(currently unknown) causal genes. As the accuracy of the
classification models are enhanced with additional genes,
the rest of the experiments are applied on the full gene
datasets.

Comparison of the data representation models with
machine learning experiments
Machine learning algorithms are applied in order to
explore the effects of the proposed data representations.
Table 6 lists the results of the machine learning experi-
ments. The table is designed to compare the data repre-
sentationmodels for each algorithm. The rowwith the best
result is shown in italic for each algorithm and the overall
best performance is made bold.
The accuracy scores of NB, KNN and SVM with poly-

nomial kernel are below 57% and the f-score results are
below 59%. The remaining 5 algorithms obtain accuracy
and f-score levels above 60% (except SVM-rbf with tf-
idf ). We will focus on these better performing algorithms.
The BM25-tf-rf representation scheme leads to the best
accuracy and f-score results for all of the 5 algorithms.
In addition, the BM25-tf-rf data representation results in
nearly 2 to 4 percent accuracy and f-score improvement
and 0.01 to 0.05 roc-auc improvement compared to the
second best representation for all of the 5 successful algo-
rithms. When we consider the FPR results, BM25-tf-rf
leads to lowest values in all of the 5 successful algorithms.
For the Feed-Forward NN f-score results with binary

and BM25-tf-rf representations, the paired t-test pro-
duces a p-value< 2.5e − 10, and with the tf-rf and
BM25-tf-rf representations, the paired t-test produces a
p-value< 1.1e − 05. These results show that the addi-
tional statistical information hidden in the BM25-tf-rf
representation provides significant gain compared to the

other representationmodels.When we compare the Feed-
ForwardNN f-score values for the C-score and BM25-tf-rf
models, the paired t-test produces a p-value< 3.2e − 06.
This significant difference states that, although the BM25-
tf-rf scheme doesn’t utilize the various properties of muta-
tions that are expressed in C-score, it is more successful
for the differentiation of cancer types with its class-based
statistical approach for the mutations. We can conclude
that the BM25-tf-rf scheme is a suitable representation
tool for the mutation information in VCF files for the
cancer type classification task.
The most accurate algorithm (76.44% accuracy and

76.95% f-score) is the Feed-Forward NN with the BM25-
tf-rf representation scheme, despite the extra network
cost. The precision and recall results for the NN on BM25-
tf-rf representation are similar with the accuracy value.
The roc-auc result is also the highest compared to the
other results in Table 6.
For the LR and NN f-score results with the BM25-tf-rf

representation scheme, the paired t-test produces a p-
value< 2.35e − 05. For the Perceptron and NN f-score
results with BM25-tf-rf, the paired t-test produces a p-
value<1.7e−06. Thus, the multilayer feed forward neural
network model is found to be significantly more accurate
than the single layer perceptron and LR with BM25-tf-rf.

Class-based comparison of experiment results
BM25-tf-rf based representation leads to improved per-
formance results compared to the other representations
with almost all machine learning algorithms in our exper-
iments. In addition, the multilayer feed forward neural
network model achieves better cancer type classification
performance compared to the other machine learning
algorithms in our experiments for all data representations
except tf-idf. Therefore, we used the results for the NN
algorithm with the BM25-tf-rf representation model for
further discussions on class-level performance.
Table 7 lists the class-based performance metrics. The

cancer types are presented in the order of descending
sample count. From this list, it is observed that the clas-
sification performance differs for each class. The results
show that the success level does not entirely depend on the
number of samples in the dataset, as there are fewer sam-
ples for Skin cancer than Thyroid cancer, but the f-score
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Table 6 Machine learning experiment test results on the data representation models of the full gene BOUN10CANCER dataset

Algorithm Data Rep. Accuracy F-Score Precision Recall Roc-Auc FPR

NB binary 33.84 ± 0.83 35.25 ± 0.95 37.04 ± 1.34 33.84 ± 0.83 0.62 ± 0.02 8.38 ± 0.11

c-score 31.10 ± 0.86 32.72 ± 0.74 34.53 ± 1.43 31.10 ± 0.86 0.59 ± 0.01 8.61 ± 0.08

tf-idf 33.34 ± 0.48 35.04 ± 0.60 37.03 ± 1.03 33.34 ± 0.48 0.62 ± 0.02 7.99 ± 0.07

tf-rf 38.14± 0.57 38.97± 0.87 40.08± 1.27 38.14± 0.57 0.65± 0.01 7.99± 0.10

bm25-tf-idf 32.50 ± 0.96 34.19 ± 0.87 36.08 ± 1.35 32.50 ± 0.96 0.60 ± 0.01 8.48 ± 0.10

bm25-tf-rf 37.94 ± 0.63 38.99 ± 0.60 40.12 ± 1.24 37.94 ± 0.63 0.62 ± 0.01 7.91 ± 0.10

KNN binary 11.54 ± 0.85 16.87 ± 0.66 31.46 ± 2.54 11.54 ± 0.85 0.50 ± 0.04 7.41 ± 0.04

c-score 15.87 ± 0.63 22.60 ± 0.44 39.27 ± 4.21 15.87 ± 0.63 0.53 ± 0.01 7.96 ± 0.07

tf-idf 34.96± 0.66 37.35± 0.95 38.92± 0.69 34.96± 0.66 0.62± 0.03 8.10± 0.04

tf-rf 19.29 ± 0.44 22.23 ± 0.61 40.29 ± 0.82 19.29 ± 0.44 0.55 ± 0.02 7.57 ± 0.07

bm25-tf-idf 12.72 ± 1.23 20.05 ± 0.58 47.32 ± 5.85 12.72 ± 1.23 0.51 ± 0.01 8.17 ± 0.37

bm25-tf-rf 11.91 ± 1.13 19.21 ± 0.50 49.74 ± 1.58 11.91 ± 1.13 0.51 ± 0.01 7.88 ± 0.17

SVM-poly binary 17.50 ± 0.00 5.21 ± 0.00 3.06 ± 0.00 17.50 ± 0.00 0.53 ± 0.00 16.34 ± 0.00

c-score 56.14± 0.44 58.90± 0.39 61.96± 0.46 56.14± 0.44 0.73± 0.01 5.33± 0.06

tf-idf 17.50 ± 0.00 5.21 ± 0.00 3.06 ± 0.00 17.50 ± 0.00 0.53 ± 0.00 16.35 ± 0.00

tf-rf 55.51 ± 0.55 56.52 ± 0.65 61.40 ± 0.53 55.51 ± 0.55 0.71 ± 0.03 5.16 ± 0.05

bm25-tf-idf 36.36 ± 0.66 42.64 ± 0.75 51.56 ± 0.89 36.36 ± 0.66 0.62 ± 0.01 7.93 ± 0.08

bm25-tf-rf 53.41 ± 0.27 51.46 ± 0.27 63.95 ± 0.65 53.41 ± 0.27 0.66 ± 0.01 7.38 ± 0.04

SVM-rbf binary 66.71 ± 0.36 67.01 ± 0.00 68.01 ± 0.00 67.01 ± 0.01 0.78 ± 0.01 4.04 ± 0.09

c-score 57.35 ± 0.30 61.31 ± 0.28 65.86 ± 1.10 57.35 ± 0.30 0.72 ± 0.01 7.09 ± 0.05

tf-idf 50.92 ± 0.19 44.26 ± 0.20 51.64 ± 0.19 50.92 ± 0.19 0.69 ± 0.02 8.30 ± 0.03

tf-rf 69.53 ± 0.71 69.82 ± 0.72 70.75 ± 0.71 69.53 ± 0.71 0.78 ± 0.03 3.64 ± 0.09

bm25-tf-idf 66.17 ± 0.56 66.61 ± 0.60 67.20 ± 0.62 66.17 ± 0.56 0.78 ± 0.01 4.40 ± 0.07

bm25-tf-rf 73.77± 0.46 74.00± 0.46 74.96± 0.40 73.77± 0.46 0.83± 0.01 3.20± 0.07

SVM-linear binary 68.46 ± 0.67 68.01 ± 0.01 69.01 ± 0.01 68.01 ± 0.01 0.78 ± 0.01 4.07 ± 0.09

c-score 71.91 ± 0.44 72.46 ± 0.45 73.02 ± 0.44 71.91 ± 0.44 0.82 ± 0.01 3.50 ± 0.09

tf-idf 69.54 ± 0.66 69.01 ± 0.01 70.01 ± 0.01 69.01 ± 0.01 0.78 ± 0.01 3.94 ± 0.06

tf-rf 68.80 ± 0.62 68.01 ± 0.01 69.51 ± 0.01 69.01 ± 0.01 0.78 ± 0.01 3.74 ± 0.09

bm25-tf-idf 66.26 ± 0.58 66.35 ± 0.60 67.94 ± 0.66 66.26 ± 0.58 0.78 ± 0.01 4.31 ± 0.07

bm25-tf-rf 73.44± 0.43 73.66± 0.45 74.63± 0.41 73.44± 0.43 0.83± 0.01 3.24± 0.07

LR binary 67.19 ± 0.41 68.01 ± 0.01 68.01 ± 0.00 67.01 ± 0.01 0.78 ± 0.01 3.85 ± 0.07

c-score 73.50 ± 0.64 73.89 ± 0.92 74.29 ± 0.66 73.50 ± 0.64 0.83 ± 0.01 3.40 ± 0.08

tf-idf 63.17 ± 0.30 60.01 ± 0.00 66.01 ± 0.01 63.01 ± 0.00 0.74 ± 0.01 5.68 ± 0.04

tf-rf 71.51 ± 0.46 72.01 ± 0.01 73.01 ± 0.01 71.01 ± 0.01 0.81 ± 0.01 3.24 ± 0.07

bm25-tf-idf 67.80 ± 0.45 68.20 ± 0.47 68.61 ± 0.53 67.80 ± 0.45 0.79 ± 0.01 4.09 ± 0.06

bm25-tf-rf 74.99± 0.41 75.19± 0.38 75.96± 0.37 74.99± 0.41 0.83± 0.01 3.03± 0.06

Perceptron binary 68.50 ± 0.48 69.01 ± 0.01 70.01 ± 0.01 68.01± 0.01 0.78 ± 0.03 4.07 ± 0.09

c-score 71.64 ± 1.54 71.76 ± 1.87 71.89 ± 1.38 71.64 ± 1.54 0.81 ± 0.01 3.67 ± 0.24

tf-idf 70.23 ± 0.40 70.01 ± 0.00 70.01 ± 0.01 70.01 ± 0.01 0.79 ± 0.01 3.83 ± 0.05

tf-rf 72.07 ± 1.86 72.01 ± 0.02 74.01 ± 0.01 72.01 ± 0.02 0.82 ± 0.02 3.29 ± 0.12

bm25-tf-idf 65.52 ± 0.52 65.97 ± 0.52 66.44 ± 0.56 65.52 ± 0.52 0.78 ± 0.01 4.48 ± 0.08

bm25-tf-rf 74.15± 0.51 74.48± 0.56 75.46± 0.56 74.15± 0.51 0.83± 0.01 3.07± 0.10

Feed-Forward NN binary 69.00 ± 0.76 69.52 ± 0.70 71.00 ± 0.52 69.00 ± 0.81 0.79 ± 0.02 3.65 ± 0.17

c-score 73.74 ± 0.88 74.07 ± 0.73 74.41 ± 0.67 73.74 ± 0.88 0.84 ± 0.02 3.27 ± 0.24

tf-idf 62.91 ± 0.79 63.32 ± 0.70 65.04 ± 0.52 62.91 ± 0.83 0.73 ± 0.02 4.00 ± 0.10

tf-rf 74.13 ± 1.33 74.17 ± 1.47 75.43 ± 1.07 74.13 ± 1.40 0.85 ± 0.02 3.07 ± 0.24

bm25-tf-idf 68.18 ± 1.83 68.79 ± 1.28 69.42 ± 0.76 68.18 ± 1.83 0.82 ± 0.02 4.07 ± 0.54

bm25-tf-rf 76.44±0.66 76.95±0.68 77.48±0.78 76.44±0.66 0.86±0.02 2.75±0.13

The row with the best accuracy and f-score is shown in italic for each algorithm. The overall best performance is made bold
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Table 7 Class based experiment test results with NN on full gene BM25-tf-rf dataset

Cancer Type F-Score Precision Recall FPR

Lung 85.47 ± 1.20 88.03 ± 2.00 83.16 ± 1.94 2.42 ± 0.48

Breast 95.92 ± 1.81 94.23 ± 2.41 97.69 ± 1.44 1.09 ± 0.47

Brain 69.80 ± 1.23 64.19 ± 3.47 77.13 ± 1.46 2.61 ± 2.32

Kidney 68.51 ± 1.14 73.59 ± 3.48 64.23 ± 2.22 2.72 ± 0.48

Colorectal 88.89 ± 1.92 88.21 ± 3.45 89.93 ± 2.89 1.28 ± 0.66

Thyroid 51.40 ± 3.35 47.86 ± 4.29 56.54 ± 4.43 14.79 ± 1.25

Prostate 39.80 ± 2.28 37.97 ± 4.03 42.32 ± 2.41 15.36 ± 1.03

Skin 89.56 ± 1.21 95.66 ± 3.49 84.38 ± 2.09 1.29 ± 0.26

Stomach 60.30 ± 2.33 74.45 ± 4.41 51.86 ± 4.50 10.31 ± 0.84

Liver 71.51 ± 2.20 83.98 ± 3.67 63.28 ± 4.00 7.75 ± 0.47

for Skin cancer is higher. The proposedmodel doesn’t per-
form well for cancer types such as Prostate and Thyroid.
Other cancer types such as Lung, Breast, Colorectal, and
Skin are classified with better f-scores. This suggests that
there may be more distinctive and class specific mutations
in these cancer types, which the BM25-tf-tr scheme can
model successfully.

Location-based comparison of gene mutations
In the previous sections all exonic and intronic muta-
tions in the dataset have been utilized to compare the
data representation and classification models. The results
have shown that the BM25-tf-rf is the best performing
representation model and the multilayer feed forward
neural network is the best performing classificationmodel
in our experiments. By using these best models, a new
experiment setup is created to explore the effect of the
location of the mutations in the classification result. The
exonic and intronic mutations are used separately. The
experiment results are presented in Table 8. When only
the exonic mutations are used, the classification perfor-
mance decreases dramatically to 54.56% accuracy and
55.52% f-score. This decrease can be dependent on the
fact that only 15% of all mutations are exonic. When
only intronic mutations are used, the classification perfor-
mance decreases to 74.39% accuracy and 75.54% f-score.
This relatively lower decrease in the performance can be
explained by the vast majority of mutations being intronic.
The paired t-test produces a p-value< 4.8e − 02 for the
f-score results of the Feed-Forward NN with BM25-tf-rf
representation with only intronic and all mutations. The
utilization of all exonic and intronic mutations for input

representation leads to statistically significant improve-
ment in f-score performance. Similar to recent studies
stating that malignancy-driving mutations can also occur
outside the coding region [37, 38], our location based
comparison results support the need for further research
in non-coding variants.

Discussion
The main goal of genomic studies for diseases is to pro-
pose target or causal genes. BM25-tf-rf is found to be
superior compared to binary, tf-idf and C-score for the
representation of DNA mutations for the task of cancer
classification. We further analyze our best model (BM25-
tf-rf and Feed Forward NN) for the most effective genes
in decision making.
In Figs. 3 and 4, the heat maps show the most effective

genes in the NN model with BM25-tf-rf representation
for the classification of the breast and lung cancer types,
respectively. The heat maps are constructed by giving one
hot vectors, where only one gene feature is set to 1 and
the others are set to 0, as input to the 10-fold trained NN
classifiers. The output values from the 10 output nodes
corresponding to the probabilities for the 10 cancer types,
are saved as a heat map for that fold. The final heat map
is the average of the folds. Each output of the NN reflects
the effect of the labelled gene (set to 1 in the input) to the
prediction of the cancer types. If the probability value for
a cancer type is high, this means that the labelled gene is
more effective in the prediction of that cancer type, since
in the NN calculations, the other features are cancelled as
their input values are 0. If the probability value for a cancer
type is low, this means that the labelled gene doesn’t play

Table 8 Machine learning experiment test results on the separated exonic and intronic mutations

Mutation Set Accuracy F-Score Precision Recall Roc-Auc FPR

exonic 54.56 ± 1.18 55.52 ± 0.96 56.52 ± 0.83 54.56 ± 1.18 0.67 ± 0.01 5.44 ± 0.17

intronic 74.39 ± 1.58 75.54 ± 1.30 76.74 ± 1.10 74.39 ± 1.58 0.83 ± 0.01 2.91 ± 0.33

all 76.44 ± 0.66 76.95 ± 0.68 77.48 ± 0.78 76.44 ± 0.66 0.86 ± 0.02 2.75 ± 0.13
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Fig. 3 The heat map of the most effective genes in NN with BM25-tf-rf model for breast cancer. A light colored region for a gene and a cancer type
can be interpreted as the gene is more effective in the decision of the cancer type. A dark colored region corresponds to less effective state

Fig. 4 The heat map of the most effective genes in NN with BM25-tf-rf model for lung cancer. A light colored region for a gene and a cancer type
can be interpreted as the gene is more effective in the decision of the cancer type. A dark colored region corresponds to less effective state
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an important role in the prediction of that cancer type.
The genes that result in high output probability values for
a cancer type are taken as more effective and active genes
for the prediction of that cancer type.
For the specific heat maps in Figs. 3 and 4, the final heat

map is sorted according to the selected class column and
20 genes, which have the highest impact on the prediction
of the selected cancer type, are plotted. The values in the
heat-maps represent how effective a gene is for the predic-
tion of the corresponding cancer type. The lighter colors
represent higher values which refer tomore effective state.
In Fig. 3, PRSS3, AQP3, HAPLN3, RASSF8, BRF1 and

GSE1 are shown to be effective on classification of breast
cancer and there is supporting evidence in the literature
for their relatedness to the disease. PRSS3 was found to
promote the growth of breast cancer cells [39]. AQP3
is studied in [40]. In [41], HAPLN3 was shown to be
among the overexpressed genes for breast cancer. In [42],
HAPLN3was suggested to be involved in the development
of breast cancer and to be a biomarker for the treatment
of breast cancer. In [43], RASSF8 was proposed to be
used in discrimination of benign and malignant breast
tumors. In [44], they investigated whether BRF1 expres-
sion is increased in the samples of human breast cancer
and their results indicated that it is overexpressed in most
cases. In [45], it is reported that GSE1 is overexpressed
in breast cancer and silencing of GSE1 significantly sup-
pressed breast cancer cells.
The effect of BM25-tf-rf weighting is illustrated through

an example for the HAPLN3 and BRF1 genes of two
sample patients. Sample-79 is a breast cancer patient
and Sample-164 is a brain cancer patient. HAPLN3 and
BRF1 have been found relevant to breast cancer in the
literature and they are both found to be among the
most effective genes for our classification system. But
there is no scientific evidence about the relationship of
these genes and brain cancer. The BM25-tf-rf value for
HAPLN3 in Sample-79 is 1.016021 whereas it is 0.794813
in Sample-164. There is a nearly 28 percent increase
in the weight of this gene for the breast cancer sam-
ple. For BRF1, the BM25-tf-rf value in Sample-79 is
1.323967 whereas it is 1.085498 in Sample-164. There is
a nearly 22 percent increase in the weight of this gene
for the breast cancer sample. When we consider the
Feed Forward NN classification model, the weights for
these gene features is the same for both samples. There-
fore, the distinction of predicted cancer type results arise
from the difference in BM25-tf-rf weights. This differ-
ence effects the decision and helps to distinguish between
cancer types.
In Fig. 4, POLD1, COTL1, AXIN2, WIF1 and SLC2A1

(previous symbol GLUT1) are shown to be effective on
classification of lung cancer. There are studies in the lit-
erature supporting the relatedness of these genes to lung

cancer. POLD1 is studied in [46]. In [47] and [48], COTL-
1 was proposed to be a biomarker or a therapeutic target
for small cell lung cancer (SCLC) patients. In [49], AXIN2
was found to play a major role in modulating lung can-
cer risk. It was shown that WIF1 had the potential as a
methylation biomarker in the diagnosis of non small cell
lung cancer (NSCLC) [50]. In [51], it is reported that lung
squamous cell carcinoma, a major subtype of NSCLC,
exhibits remarkably elevated glucose transporter GLUT1
expression.
Since there is literature evidence for the disease-

relatedness of a subset of the most effective genes in
classification using NN model with BM25-tf-rf, the other
most effective genes that are not studied yet might also
have causal roles in cancer development. According to
these evidences, NN trained with the BM25-tf-rf repre-
sentation of the mutations in the VCF files, can also be
used for the purpose of finding new candidate genes for
cancer types.

Conclusion
Complex genomic diseases are caused by changes in DNA
that alter cell behavior. The impact level of each mutation
may be different for various diseases. In order to model
this diversity, being inspired from the document repre-
sentation techniques in the information retrieval domain,
we proposed different mutation based statistical genomic
data representation schemes.
We utilized VCF files, which contain mutation informa-

tion in the DNA, for the classification of cancer types as a
case study. Cancer, in general, results from a combination
of several genomic alterations, which can be addressed
in variant calls data. We evaluated the performance of
the proposed data representation schemes with a wide
range of machine learning algorithms. Our experiment
results showed that BM25-tf-rf based representation is
more successful at modeling VCF data compared to the
binary, tf-idf and C-score based representation schemes.
Each cancer type may develop as a result of different gene
mutations. The supervised weighting approach of tf-rf
successfully reflects this class-mutation relationship. The
normalization effect of BM25-tf further improves the clas-
sification performance of tf-rf. We investigated the most
effective mutated genes in our proposed system for breast
and lung cancers. A subset of the resulting genes have
also been suggested as causal or target genes in previously
published studies, which demonstrates that the proposed
approach can also be used to recommend candidate genes.
The introduced data representation models are evalu-

ated for the task of cancer type classification, which is an
important problem in bioinformatics, since the appropri-
ate treatment is determined according to the primary site.
However, they can also be utilized for other genetic dis-
eases, which we plan to investigate in our future studies.
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