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Identification of monotonically differentially
expressed genes for non-small cell lung
cancer
Suyan Tian

Abstract

Background: Monotonically expressed genes (MEGs) are genes whose expression values increase or decrease
monotonically as a disease advances or time proceeds. Non-small cell lung cancer (NSCLC) is a multistage
progression process resulting from genetic sequences mutations, the identification of MEGs for NSCLC is important.

Results: With the aid of a feature selection algorithm capable of identifying MEGs – the MFSelector method – two
sets of potential MEGs were selected in this study: the MEGs across the different pathologic stages and the MEGs
across the risk levels of death for the NSCLC patients at early stages. For the lung adenocarcinoma (AC) subtypes
no statistically significant MEGs were identified across pathologic stages, however dozens of MEGs were identified
across the risk levels of death. By contrast, for the squamous cell lung carcinoma (SCC) there were no statistically
significant MEGs as either stage or risk level advanced.

Conclusions: The pathologic stage of non-small cell lung cancer patients at early stages has no prognostic value,
making the identification of prognostic gene signatures for them more meaningful and highly desirable.

Keywords: Non-small cell lung cancer (NSCLC), Monotonically expressed genes (MEGs), Pathologic stages, Overall
survival, Feature selection, Adenocarcinoma, Squamous cell carcinoma

Background
The 5-year survival rate of non-small cell lung cancer
(NSCLC), which accounts for approximately 85% of lung
cancer (LC) cases, remains very low [1]. So far, the most
promising strategy of improving progression-free sur-
vival time and overall survival (OS) time of the NSCLC
patients is early diagnosis followed by surgical resection,
which is currently the standard of care. Unfortunately, at
the time of diagnosis most NSCLC patients have already
progressed to the advanced or metastatic stages, which
are inoperable [2].
Since NSCLC is a multistage progression process result-

ing from genetic sequences mutations, researchers may be
interested in knowing how the expression pattern of a
gene varies as NSCLC progresses from early to late stages.
This is especially the case with “monotonic” genes whose
expression levels increase or decrease monotonically as

the disease advances. Such an investigation may harvest
no meaningful results given that no satisfactory segmenta-
tions among the early stages of NSCLC using gene expres-
sion profiles have yet been achieved [3–5]. Therefore, the
likelihood of finding monotonically expressed genes
(MEGs) across pathologic stages is extremely low.
Survival rates for stages I through IV of NSCLC de-

crease due to the progress of the disease such as the
5-year survival rate for stage I is 47%, stage II is 30%,
stage III is 10%, and stage IV is 1% (http://www.cancer.
org). These pathologic stages were determined according
to the Cancer Staging System (http://cancerstaging.org)
of the American Joint Committee on Cancer (AJCC).
Nevertheless, for the NSCLC patients at the early stages
of disease, the pathologic stage may not be a good index
of how long a patient can expect to be progression-free
and survive, given that a study by Der et al. [6] showed
the hazard ratio for stage II versus stage I was 1.52 (95%
CIs: 0.9~2.55) and the corresponding p-value of the
log-rank test which compared the survival curves of pa-
tients at stage I and stage II was 0.11. Meanwhile,
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continuous efforts [7–13] have been made to identify at-
tributes predictive of progression-free survival or overall
survival (mainly using gene expression profiles, thus an
attribute corresponds to a gene), which may facilitate
personalized medicine. Only with more “personalized”
treatments that are tailored for a specific patient, could
a stage I patient with poor prognosis live longer by re-
ceiving the adjuvant chemotherapy while a stage II pa-
tient with good prognosis could avoid suffering from
adverse effects associated with the treatments and have
a better quality of life.
Among NSCLC patients, adenocarcinoma (AC) and

squamous cell carcinoma (SCC) are two major subtypes,
accounting for roughly 40 and 35% of the lung cancer
(LC) cases, respectively. Increasing evidence supports
the fact that AC and SCC differ in many respects [14],
therefore AC and SCC have been regarded as two dis-
tinct diseases. The DEGs for the two subtypes versus the
normal controls naturally vary from each other. Hence,
it is quite possible that MEGs across multiple pathologic
stages for AC and SCC are distinct. Separate analyses for
each subtype to identify their respective prognostic
genes and respective MEGs are more appropriate than
the analyses where these two subtypes are considered to-
gether as a whole.
In this study, a novel feature selection algorithm cap-

able of identifying monotonically changed genes i.e., the
monotonic feature selector (MFSelector) method [15]
was used to test two research hypotheses. In [15], the
authors demonstrated that the MFSelector method out-
performs other competitive methods capable of identify-
ing MEGs. The first hypothesis of the current study is to
test if MEGs exist across different pathologic stages (i.e.,
stages IA, IB, IIA and IIB). The second hypothesis is to
test the existence of MEGs over different risk profiles of
a disease. Here, the risk levels of death were determined
on the basis of the quartiles of overall survival time,
namely, the extremely high-risk group whose survival
time is less than 25% of survival time of all samples, the
high-risk group is in between 25 and 50%, the
moderate-risk group is in between 50 and 75% and the
low-risk group is above 75%. My conjecture is that there
are no MEGs across pathologic stages but some MEGs
do exist over different risk levels. If this conjecture is
true, it is more beneficial to predict a patient’s risk of
death using his/her gene expression profiles than using
his/her pathologic stage alone, which provides more sup-
port for the necessity of finding genes with significant
prognostic values for NSCLC patients at early stages.

Methods
Experimental data
The raw data of these two microarray experiments are
publicly accessible on the GEO (https://www.ncbi.nlm.

nih.gov/geo/) repository, under the accession numbers
of GSE37745 [16] and GSE50081 [6]. All chips of these
two experiments were profiled on the Affymetrix
HGU133 Plus 2.0 platform. Only patients in these two
cohorts who remained adjuvant treatment naïve with
their clinical information such as survival time, age and
smoking status available were included. Furthermore, in
order to avoid ambiguous classification of a patient into
a risk group (corresponding to the four quartiles of over-
all survival time), all censored patients were excluded
from the downstream analyses, resulting in 73 AC pa-
tients and 31 SCC patients included in this study.
Among the 73 AC patients, there were 11 stage IA, 39
stage IB, 5 stage IIA and 18 stage IIB patients. For SCC
patients, there were 6 stage IA, 18 stage IB, 0 stage IIA
and 7 stage IIB.
RNA-Seq data were downloaded from The Cancer

Genome Atlas Data Portal (level 3) (https://tcga-data.
nci.nih.gov/tcga/). Cohorts that were considered are:
LUAD for the AC subtype and LUSC for the SCC sub-
type. By restricting selection to patients at early stages of
disease and whose vital status was decreased, 73 AC and
97 SCC patients were included in this analysis. Among
the 73 AC patients, there were 14 stage IA, 26 stage IB,
8 stage IIA and 23 stage IIB. For SCC patients, there
were 17 stage IA, 46 stage IB, 12 stage IIA and 22 stage
IIB. Notably, the adjuvant treatment restriction has been
released for the RNA-Seq data since with it, there were
only 17 AC and 9 SCC patients left.

Pre-processing procedures
Raw data (CEL files) of these two microarray datasets
were downloaded from the GEO repository. The expres-
sion values were obtained using the fRMA algorithm
[17] and were normalized using quantile normalization.
Then, the COMBAT algorithm [18] was used to elimin-
ate or alleviate the batch effects existing between these
two experiments. Counts-per-million (CPM) values for
the RNA-seq data were calculated and log2 transformed
by the Voom function in the R software.

Monotonic feature selector
The monotonic feature selector (MGSelector) method
proposed by Wang et al. [15] introduces a new novel
index, namely, the DEtotal (total discriminating error)
score for each gene, with the objective of selecting genes
with strong monotonically changed patterns over stages
or time. In addition, the corresponding p-value and
q-value (which adjusts for the multiple comparisons) of
this score was calculated using permutation tests to de-
termine the significance level of a gene. There are two
sets of monotonically expressed genes, namely a mono-
tonically increasing/ascending set and the monotonically
decreasing/descending set. The MGSelector method was
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described briefly as below using the ascending set as an
example.
Suppose there are K levels/time points, it is natural to

expect subjects in the lower levels have smaller expression
values compared to the subjects in the remaining levels
for a monotonically increasing expressed gene. First, n1
(here, n1 is the number of patients at the first level) dis-
criminating lines may be drawn over the expression value
of each patient at the first level. The samples at level I
above this line and the patients at other levels below this
line were misclassified into their opposite classes, and the
number of misclassified samples (i.e., “discriminating
errors”) was counted. The final discriminating line to dif-
ferentiate the level I from the other levels corresponded to
the line with the least number of discriminating errors.
This step was repeated for K-1 times to discriminate the
patients at the first k (k = 1,2, … K-1) levels apart from the
remaining patients, resulting in K-1 discriminating lines. If
a gene has K-1 distinct discriminating lines and the lines
for a higher level are above the lines for a lower level, the
expression change pattern of this specific gene presents a
perfect monotonically increasing expression tendency. For
the monotonically decreasing expression pattern, the
discriminating lines taking the reversed orders with the
line for a higher level below the line for a lower level
were made.
The DEtotal score is the sum of discriminating errors

for all these K-1 segmentations. Given the DEtotal score
does not make any distributional assumption on the
data, it is less sensitive to the biases caused by outliers.

A

B

Fig. 1 Graphical illustrations on what a MEG is and the MFSelector method. a The definition for a MEG. b The flowchart of the MFSelector method

Table 1 The top-ranked genes across the pathologic stages by
the MFSelector method

AC SCC

Ascending Descending Ascending Descending

DGCR14 * AIMP1 GRHL3 CD97

SART1 * CXADR KIAA0907 DUSP23

SLC34A1 * SOCS6 TM4SF1 FBXW7

TYR * TM2D1 AKAP7 GKN2

CDH4 * ZBTB43 CFL1 PAG1

CNTROB * ALCAM DBF4B PAX5

CRYBA1 * ATP5L F11R RILPL2

GCK * DYNC2H1 PHF12 SFTPB

L1CAM * PARD6B PIP5K1A TNNC1

LILRA3 * POLI RGS7 TSPAN1

MATN4 * RAB22A RPL8

NPAS4 * RND3 TFAP2A

NR4A3 * RPS21

SCNN1A * SCP2

SLC39A2 * UBE2E1

SMARCD3 *

STMN4 *

TPSAB1 *

Note: * the corresponding q-value of DEtotal < 0.1; ** q-value< 0.05; AC: lung
adenocarcinoma; SCC: lung squamous cell carcinoma; Ascending: a
monotonically expressed gene in the increasing order; descending: a
monotonically expressed gene in the decreasing order
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Furthermore, a p-value and/or a q-value of the DEtotal
score were calculated using permutation tests to deter-
mine if a gene was a statistically significant MEG or not.
Figure 1 provides a graphical illustration for the defin-
ition of a MEG and the flowchart of the MFSelector
method.

Biological relevance and gene set analysis
The biological relevance of the identified AC-specific
MEGs and SCC-specific MEGs was investigated by
searching the GeneCards database [19]. Then, the gene
set enrichment analysis were carried out using the String
software [20].

Statistical language and packages
All statistical analyses were carried out in the R language
version 3.3.3 (www.r-project.org), and the R codes of the
MFSelector algorithm were downloaded from the following
webpage (http://microarray.ym.edu.tw/tools/MFSelector).

Additionally, the Venn-diagrams were made with the aid of
an online bioinformatics tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/).

Results
Integrated microarray data
MEGs across pathologic stages
Using the integrated microarray data and the MFSelec-
tor method, the MEGs across pathologic stages for the
AC and SCC subtypes were separately identified. First,
the AC patients and SCC patients were rearranged in an
ascending order according to their pathologic stages,
respectively.
The top-ranked genes are listed separately for the AC

and SCC subtypes in Table 1, and then within each sub-
type the genes are listed separately for the ascending
expressed pattern and the descending expressed pattern.
From this table, it was observed that if the cutoff of the
corresponding p-value was set at 0.05, there were no

Table 2 The top-ranked genes across the risk levels of death by the MFSelector method

AC SCC

Ascending Descending Ascending Descending

GNL3L** FKBP3 ** RGS2 ** ARF6a MMP1 ATIC

RALY** FRAT1 ** POLK** C21orf91a S100A2 SART3

TBC1D10A** GRK7** SHOC2 ** ELK3 a TP53AIP1 CRLS1

CDK19 ** HINFP ** ADD3 ** EPS15a DEFB1 DST

CRY2 ** INPP5K ** EXOC1 ** IBTKa EIF2S1 EMG1

EPHB2 ** KLF13 ** KRAS ** KPNA5a HSPG2 FES

MARK4 ** MC4R ** SLC4A1AP** MTF2 a IBTK HSP90AB1

NAT6 ** MDH2 ** DMTF1** MYL12Aa PAK2 PEBP1

PLEKHJ1 ** MKNK2 ** FRYL** PPP1CBa SH2D3C PMS1

RAB1B ** NARF ** ITGAV** RUFY2a SPHK1 PPP6C

RHOT2 ** PACSIN2 ** KIF5B** RWDD1a UBR7

TMEM222 ** PRKACA ** SOD2** STX7a

ANP32A ** RARA ** USO1** TBK1a

CORO1B ** RFXANK **

FNTB ** SIRT2 **

MAP 7D1 ** STAT3 **

PI4KA ** TACR2 **

SHBG ** TMEM39B**

THRA ** TPPP **

TINF2 ** TSSC4 **

UPF1 ** TUFM **

ZNF142 ** URGCP **

DLG5 ** WASF2 **

EP400 ** YIF1A **

Note: * the corresponding q-value of DEtotal < 0.1; ** q-value< 0.05; a q-value = 0.05; AC: lung adenocarcinoma; SCC: lung squamous cell carcinoma; Ascending: a
monotonically expressed gene in the ascending order; descending: a monotonically expressed gene in the descending order. If the cutoff of q-value was set at
0.1, there were 166 ascending MEGs and 172 descending MEGs for the AC subtype. However, no MEGs exist for the SCC subtype at the level of 0.1
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statistically significant MEGs for AC and SCC subtypes.
If a less stringent threshold of 0.1 was chosen, only 18
genes in the AC ascending category were deemed to be
statistically significant. As expected, no MEGs across
pathologic stages can be identified if the cutoff for
p-values/q-values is set at 0.05, a predominant default
value used in the field of statistics.

MEGs across risk levels of death
For this objective, the MFSelector method was used to
identify MEGs across risk strata separately for the AC
and SCC subtypes. Using the first quartile, the median
and the third quartile of overall survival time for those
73 AC patients as cutoffs, AC patients were divided into
four groups with approximately 18 patients in each cat-
egory. Likewise, SCC patients were also categorized into
four groups with the number of patients in each group
being approximately eight.
The most significant genes (with the least q-values) in

this analysis are presented in Table 2. From this table, it
was observed that for the AC subtype, 74 genes (48 were
ascending expressed and 26 were descending expressed)
were identified as the MEGs even with the more strin-
gent cutoff (i.e., 0.05 for the q-value) being chosen.
Nevertheless, for the SCC subtype, no genes were met
with the less stringent cutoff of 0.1, let alone 0.05. The
following two reasons may explain why no statistically

significant MEGs were identified for this subtype. One is
that the sample size of SCC patients in the experimental
data was not big enough to have statistically significant
results. The other possible explanation is the evolution
of this disease is not a process of quantitative accumula-
tion, implying the non-existence of MEGs indeed for the
SCC subtype. Further investigation is warranted.
A Venn-diagram among these four categories is given

in Fig. 2. There was only one overlapped gene, i.e., IBTK
between the SCC & risk and AC & risk categories.
The lack of overlapping between these two categories
may imply two things. The first implication is that
the identified MEGs are indeed subtype-specific.
Therefore, either separate analyses for the AC and
SCC subtypes or the utilization of statistical methods
capable of identifying subtype-specific genes is highly
recommended. The other is that the histological stage
may not be a good representation of the risk status
for overall mortality.
Besides the pathologic stage and the risk level of death,

one clinical variable, i.e., a patient’s age was considered.
Similarly, using the first quartile, the median and the
third quartile of age as cutoffs, both AC patients SCC
patients were divided into four approximate equal-sized
categories. For this index, no significant MEGs were
identified for either AC subtype or SCC subtype, even at
the less stringent cutoff for p-value of 0.1.

Fig. 2 Venn-diagram of the top-ranked genes among the four categories based on subtype and risk status/stage. AC_stage: across stages for
lung adenocarcinoma subtype; SCC_stage: across stages for lung squamous cell carcinoma subtype; AC_risk: across risk levels of death for lung
adenocarcinoma subtype; SCC_stage: across risk levels of death for lung squamous cell carcinoma subtype. There is only one overlapped gene
between the SCC_risk and the AC_risk categories, i.e., IBTK that is indirectly related to lung cancer due to its association with KRAS, AKT1, BRAF
and MAPK1 according to the GeneCards database
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RNA-seq data
Focusing on the pathologic stages and the risk levels of
being death, the MFSelector method was applied to the
RNA-seq data to find the MEGs. Then, a comparison
between the MEGs identified using microarray data and
the MEGs identified using RNA-seq data was made.
Unfortunately, there were no statistically significant
MEGs identified for all four categories— the AC & stage
category, the AC & risk category, the SCC & stage cat-
egory and the SCC & risk category at the level of 0.1.
Nevertheless, the top-ranked genes in the risk categories
tended to have smaller p-values than those in the stage
categories. For example, the corresponding p-value of
the first-ranked descending gene for the SCC & stage
category was 0.149 whereas that of the descending gene
on the top of the SCC & risk category was only 0.116.
Additionally, two other potential indices of the disease

advancement were considered, namely, the number of
packs of cigarettes smoked per year and the age at which
the disease was diagnosed. Of note, such information is
not available for the integrated microarray dataset. For
both of these indices, no significant MEGs were identi-
fied for either AC or SCC at the level of 0.1.
Since the RNA-seq data included more hetero-generous

patients in terms of adjuvant treatment option (including
those that had adjuvant treatments and the status was un-
known, in addition to those who remained adjuvant treat-
ments naïve), it is unsurprising to observe the inconsistent
results between the RNA-seq data and the microarray data.

Discussion
The biological relevance of those top-ranked genes listed
on Tables 1 and 2 was searched in the GeneCards data-
base. Focusing on the direct association supported by
the literature, the searching results elucidated that for
the AC & stage category, only ALCAM, TYR and
SART1 are related to lung adenocarcinoma but with
very low confidence scores (1.60, 0.25 and 0.25 respect-
ively). By contrast, for the AC & risk category KRAS,
STAT3, SOD2, KIF5B, ITGAV, EPHB2, RALY, ARF6,
TBC1D10S, UPF1 and RARA are indicated to be directly
related to lung adenocarcinoma. Among them, KRAS
has the highest confidence score. It is well known that
KRAS mutations are the most frequently oncogene aber-
rations in NSCLC patients [21, 22]. In this study, the
identification of KRAS as a significant MEG points out a
new direction to view the roles it may play during AC
progression, from the perspective of expression values
instead of somatic mutations. Likewise, STAT3 has a
very high confidence score and many articles in the lit-
erature support its association with AC. For instance, a
study by Qu et al. [23] stated that “… in both lung can-
cer and chronic obstructive pulmonary disease, the
STAT3 gene was up-regulated” and “… STAT3 and its

Table 3 The overlapped GO terms

Category GO terms

All Cytosol

All but AC_risk translational termination

translational elongation

translational initiation

nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay

SRP-dependent cotranslational protein targeting to
membrane

viral life cycle

viral transcription

cellular protein complex disassembly

viral gene expression

cytosolic ribosome

cellular macromolecule catabolic process

protein localization to membrane

focal adhesion

AC_stage & SCC_risk structural constituent of ribosome

cellular component disassembly

mRNA metabolic process

Translation

SCC_risk & SCC_stage establishment of protein localization to membrane

viral process

eyelid development in camera-type eye

large ribosomal subunit

cytosolic large ribosomal subunit

establishment of protein localization to plasma
membrane

ribosome

intracellular protein transport

multi-organism process

protein targeting to membrane

AC_risk & SCC_risk enzyme binding

purine ribonucleoside triphosphate binding

single-organism intracellular transport

purine ribonucleotide binding

single-organism transport

cytoplasmic transport

localization

kinase binding

purine ribonucleoside binding

nucleotide binding

cellular protein metabolic process

cellular protein localization

Note: AC_stage represents across stages for lung adenocarcinoma
subtype; SCC_stage represents across stages for lung squamous cell
carcinoma subtype; AC_risk represents across risk levels of overall
mortality for lung adenocarcinoma subtype; SCC_stage represents across
risk levels of overall mortality for lung squamous cell carcinoma subtype
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downstream genes can serve as biomarkers for lung
adenocarcinoma …” . Therefore, many top-ranked genes
in this category not only are statistically significant but
also have meaningful biological interpretation.
For the SCC & stage category, none of the top-ranked

genes were found to correlate with SCC directly. On the
other hand, three genes, i.e., PEBP1, S100A2 and
HSP90AB1, are directly related to SCC for the SCC & risk
status category according to the GeneCards database.
Even though the top-ranked genes identified in both cat-
egories are not statistically significant, the genes in the risk

category have apparently better biological relevance. This
is in consistent with the results for AC, implying that
histological stage may not be a good representative for the
risk of death and thus may only have a limited prognostic
value for the NSCLC patients at early stages.
As far as the enriched pathways were concerned, the

degree of stability increased. The String software (www.
string-db.org) indicated 89, 37, 81 and 24 GO terms
were enriched by the identified genes for the AC & risk
category, the AC & stage category, the SCC & risk cat-
egory and SCC & stage category, respectively. Among

A B

Fig. 3 Venn-diagram of the enriched KEGG pathways and GO terms between the four categories based on subtype and risk status/stage. a The
enriched KEGG pathways; b The GO terms. Overall, the consistency level at the pathway level is higher. For the KEGG pathways, the ribosome
pathway was commonly enriched in the AC_stage, SCC_stage and SCC_risk categories. For the GO terms, there is one term enriched by all four
categories, 13 terms by all categories but the AC_risk category, 4 terms by the AC_stage and SCC_risk categories and 12 terms by the AC_risk
and SCC_risk categories. AC_stage: across stages for lung adenocarcinoma subtype; SCC_stage: across stages for lung squamous cell carcinoma
subtype; AC_risk: across risk levels of death for lung adenocarcinoma subtype; SCC_stage: across risk levels of death for lung squamous cell
carcinoma subtype

A B

Fig. 4 Kaplan-Meier plots for the overall survival of non-small cell lung cancer stratified by the pathologic stages. a The AC subtype; b The SCC
subtype. Here, p stands for the p-values of corresponding log-rank tests. AC: lung adenocarcinoma; SCC: lung squamous cell carcinoma
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165 unique enriched GO terms, only one term was com-
monly enriched by all four categories. Moreover, 13
terms were enriched by three categories and 14 terms
were enriched by two categories, summing up to 40
overlapped terms. The 40 (40/165 ≅ 24.2%) overlapped
GO terms are listed in Table 3. For the KEGG pathways,
there were 2 enriched pathways for the AC & risk cat-
egory, 1 for AC & stage, 5 for SCC & risk and 1 for SCC
& stage. Only one overlapped pathway (1/7 ≅ 14.3%), the
ribosome pathway, was commonly enriched in the AC &
stage, SCC & stage and SCC & risk categories. The
Venn-diagrams of the KEGG pathways and the GO
terms enriched in these four categories are given in
Fig. 3. Although the overlapping proportion showed
some increment compared to that at the gene level, it
was still not substantially large. Therefore, the
subtype-specific-gene conclusion remains true at the
pathway level, namely the enriched pathways tend to be
unique for AC and SCC subtypes.
To further explore whether the pathologic stage may

serve as a surrogate for the risk of death, the Spearman’s
correlation coefficient between the risk level and the
pathologic stage of patients was calculated, and
Kaplan-Meier plots were made to compare the survival
curves of different pathologic stages and log-rank tests
were carried out to determine if the differences between
those survival curves were statistically significant. The
Spearman’s correlation coefficient for the AC subtype
was estimated as 0.19 with a p-value of 0.11, and for the
SCC subtype it was 0.02 with a p-value of 0.91. Figure 4
presents the Kaplan-Meier plots, the p-value of the
log-rank test for AC was 0.303, and for SCC it was
0.838. Based on these tests, it was concluded that there
is no significant association between pathologic stage
and risk of death for the NSCLC patients at early stages.

Conclusions
With the aid of a feature selection algorithm capable of
identifying MEGs, namely the MFSelector method [15],
two research hypotheses were investigated. Using an in-
tegrated microarray dataset, the analyses showed that
across pathologic stages there were no statistically sig-
nificant MEGs whereas dozens of MEGs across risk
levels of death were identified for the AC subtype. For
the SCC subtype, however, there were no statistically sig-
nificant MEGs in either stage or risk level categories.
This may be explained by that either the sample size of
the SCC subtype in this study is too small to guarantee
an adequate statistical power or the disease progression
of SCC differs.
The results of this study suggest that the pathologic

stage is not well correlated with the risk of death and
thus necessitate that the construction of prognostic gene
signatures for NSCLC patients. More work is especially

needed to develop more machine learning models cap-
able of selecting subtype-specific prognostic genes read-
ily and to boost the real-world applications of those
models.
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