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Abstract

Background: Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological
functions and has become a popular method in bioinformatics and biomedical research. However, most current
GCNA algorithms use correlation to build gene co-expression networks and identify modules with highly correlated
genes. There is a need to look beyond correlation and identify gene modules using other similarity measures for
finding novel biologically meaningful modules.

Results: We propose a new generalized gene co-expression analysis algorithm via subspace clustering that can
identify biologically meaningful gene co-expression modules with genes that are not all highly correlated. We use
low-rank representation to construct gene co-expression networks and local maximal quasi-clique merger to identify
gene co-expression modules. We applied our method on three large microarray datasets and a single-cell RNA
sequencing dataset. We demonstrate that our method can identify gene modules with different biological functions
than current GCNA methods and find gene modules with prognostic values.

Conclusions: The presented method takes advantage of subspace clustering to generate gene co-expression
networks rather than using correlation as the similarity measure between genes. Our generalized GCNA method can
provide new insights from gene expression datasets and serve as a complement to current GCNA algorithms.
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Background
Gene Co-expression Network Analysis (GCNA) is a pop-
ular method in bioinformatics and biomedical research
to construct gene co-expression networks and detect co-
expressed genes. It has been widely utilized in many
applications, such as gene function prediction [1–3], dis-
ease biomarker discovery [4, 5], protein-protein interac-
tion (PPI) inference [6] and genetic variants detection in
cancers [7, 8].
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Many GCNA algorithms have been developed to iden-
tify modules of co-expressed genes [3, 9–13]. One of the
widely used GCNA tools is the WGCNA package devel-
oped by Horvath’s group [10], which finds modules of
highly correlated genes in weighted gene co-expression
networks. Local maximal Quasi-Clique Merger (lmQCM)
[13] is another weighted GCNA algorithm that allows
overlap between gene modules, which is consistent with
the fact that the same gene may participate in multiple
biological processes.

Mathematically, given the expression matrix G for K
genes and N samples
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G =

⎡
⎢⎢⎣

g1
g2
...
gK

⎤
⎥⎥⎦ ∈ �K×N

with giT ∈ �N being the expression profile for gene i
(i ∈ {1, 2, ..., K}), the geneco-expression network can be
represented by a matrix W ∈ �K×K , where entry Wi,j
represents the co-expression similarity between expres-
sion profiles of a pair of genes gi and gj (i, j ∈ {1, 2, ..., K}).
Commonly, this similarity is measured using correlation
coefficients, with Pearson Correlation Coefficient (PCC)
or Spearman Correlation Coefficient (SCC) being the
most widely used ones [3, 9, 13]. When using PCC to
measure co-expression similarity, we obtain gene mod-
ules with linearly correlated gene expression profiles. In
this case, expression profiles of gene i and j (i �= j) from
the same co-expression module differ by a scale and a
shift, i.e.,

gi = αjgj + βj · 11×N (1)

where αj and βj are scalars. It can be easily shown that the
rank of such expression matrix for a co-expression module
Gc is 2. In other words, expression profiles for genes in a
co-expression module can be approximated as a subspace
with dimensionality of two in a N-dimensional space. In
addition, if we designate

ḡi = gi − ḡi · 11×N

as the centralized version of gi, where ḡi is the mean of
entries in gi, then ḡis from the same co-expression module
can be approximated by a 1-dimensional subspace.

However, apart from grouping genes that are linearly
correlated into modules, simple relationships such as

gi = αjgj + αkgk + αmgm (2)

where gj, gk and gm are linearly independent and
αj, αk , αm �= 0, cannot be captured using the tradi-
tional PCC based co-expression formulation. In this case,
expression profiles for gene i, j, k and m cannot be approx-
imated using a 2-dimensional subspace (in this example,
they form a 3-dimensional subspace). However, it can be
conceived that in biology, such coordinated gene activi-
ties may play important roles in complex processes and
pathways. Therefore, there is a need to generalize the
co-expression formulation to accommodate relationships
between genes beyond pairwise relationships.

Discovering gene modules with such coherent relation-
ships implies detecting low-dimensional subspaces in a
higher dimensional space. Subspace clustering [14] is a
research field in signal processing and machine learning
for such purpose. The goal of subspace clustering is sepa-
rating data according to their underlying subspaces, which
could have different dimensionalities that are larger than
one. Subspace clustering has found numerous applications

in image processing and computer vision [15–18], as well
as in bioinformatics [19–21].

One of the popular approaches for subspace clustering
is Sparse Subspace Clustering (SSC) [22]. SSC is based on
the affinity matrix defined by the sparsest representation
produced by l1-minimization and subspace segmentation
using spectral clustering. However, SSC may not be able to
capture the global structure of the data accurately, which
could affect the performance of the algorithm when data
is highly corrupted. However, large biomedical datasets
often contain large amount of noise and outliers. In addi-
tion, spectral clustering assigns every data point to a
certain cluster, which can potentially bias the clustering
structure.

Therefore, in this paper, we propose to use Low-Rank
Representation (LRR) approach to construct gene co-
expression networks from high-throughput gene expres-
sion data and use lmQCM to further group genes from the
same subspace into gene modules. The lmQCM algorithm
is developed by us as an extension of the QCM algorithm.
It is a greedy algorithm for identifying highly connected
modules in a large network with high efficiency. In addi-
tion, it allows overlap between clusters, which fits well
with the notion that genes can participate in different
functions and pathways.

Comparing to traditional GCNA algorithms based on
correlation, our method provides a generalized formula-
tion and can be applied to identify gene modules with
expression matrices of higher intrinsic dimensionalities.
This will help to discover new biological relationships,
functions and pathways. Our method can also serve as
a complement to current GCNA algorithms. Moreover,
since LRR finds the lowest rank representation of all data
jointly [18] and the corruption of data will largely increase
the rank, LRR is robust to noise and outliers, making it
suitable for analyzing high-throughput gene expression
data. The contribution of this paper is a generalized gene
co-expression network mining approach that is based on
subspace clustering and demonstration of the effective-
ness of this approach using real biomedical data.

Methods
Subspace clustering of gene expression data using LRR
and lmQCM
Consider a data matrix X ∈ �D×N (each column is a sam-
ple) where each sample can be represented by a linear
combination of columns in a dictionary A ∈ �D×M.

X = AZ (3)

Z ∈ �M×N is a matrix with the i-th column being the
representation of the i-th column in X. Introduced by Liu
et al., LRR [18] uses low rankness of a matrix to capture
the structure of the data and looks for a representation Z
of data X by solving the following problem.
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min
Z

rank(Z)

s.t. X = AZ
(4)

However, due to the discrete nature of the rank function,
Problem (4) is difficult to solve. Instead, the following con-
vex optimization problem is suggested as a surrogate for
Problem (4) by matrix completion methods,

min
Z

‖Z‖∗

s.t. X = AZ
(5)

where ‖·‖∗ is the nuclear norm of a matrix.
Inthecase of gene expression data, we represent a dataset

with K genes and N samples using a matrix G of size
K × N . In order to cluster genes into their respective sub-
spaces, we need to compute an affinity matrix encoding
the pairwise similarities between genes by using the gene
expression matrix itself as the dictionary [18]. We use GT

to substitute X in Problem (5) and Problem (5) becomes:

min
Z

‖Z‖∗

s.t. GT = GT Z
(6)

In reality, gene expression data often contains noise that
could not be neglected. To take noise into account, we
could modify the objective of Problem (6) into

min
Z,E

‖Z‖∗ + λ ‖E‖2,1

s.t. GT = GT Z + E
(7)

where λ > 0 is used to balance the effect of low rank-
ness and noise. Problem (7) could be solved by solving
an Augmented Lagrange Multiplier (ALM) problem using
inexact ALM algorithms. After solving Problem (7), we
define the adjacency matrix W of a weighted, undirected
graph between genes based on the “lowest-rank repre-
sentation" Z∗. The weight between gene i and j, Wij, is
computed by |Z∗

ij| + |Z∗
ji|. As in [17], to deal with different

norms of gene expression levels in G and ensure that the
largest weights for all the genes are of the same scale, we
also normalize the columns of Z∗ as zi = zi/ ‖zi‖∞, where
zi is the i-th column of Z∗.

Once we obtain the weighted network of genes, we need
to cluster genes into their respective subspaces and per-
form further analysis on gene modules. Instead of using
normalized cuts in [18] or spectral clustering in [17],
we apply a recently developed weighted network mining
algorithm called lmQCM [13]. Unlike normalized cuts
or spectral clustering, which partitions genes into dis-
joint sets and does not allow overlaps between clusters,
lmQCM is a greedy approach that allows genes to be
shared among multiple clusters or not included in any
cluster. This is consistent with subspace clustering prob-
lems where two subspace clusters can share some com-
mon genes or some genes may not belong to any subspace

cluster [23]. Also, genes can participate in multiple bio-
logical processes, which could be represented by different
clusters. Another advantage of lmQCM is that it can find
gene co-expression modules potentially associated with
Copy Number Variations (CNVs) in cancer development
[13]. The lmQCM algorithm has four parameters γ , α, t
and β . γ determines if a new module can be initiated by
setting the weight threshold for the first edge of the mod-
ule, and has the largest influence on the results. We use
the default setting of α = 1, t = 1, β = 0.4 in this paper
and tune γ empirically.

Our method combines the strength of LRR and
lmQCM, which we outline in Algorithm 1.

Algorithm 1 Subspace clustering of gene expression data
Input: gene expression matrix G, parameter λ, γ
Output: gene co-expression modules C =
{C1, C2, ..., Cm}
1: Pre-process G to select highly expressed genes.
2: Solve Problem (7) by inexact ALM and obtain solu-
tion Z∗.
3: Build adjacency matrix W of the gene co-expression
network based on Z∗.
4: Apply lmQCM on W to identify gene co-expression
modules C.

There are two parameters we need to choose in our
method: λ for LRR and γ for lmQCM. In order to choose a
set of parameters that is able to produce robust results, we
randomly partition the dataset into 10 folds with the same
size. Each time we use 9 folds to generate gene modules an
d we can get 10 sets of gene modules. We use g10 to denote the
number of genes that appear in all 10 sets of gene modules
and use g1 to denote the number of genes that appear in
at least one set of gene modules. The value of g10/g1 can
indicate the stability of the results under a certain set of
parameters. We do not consider the parameters that can
only identify less than nMdlthr modules and choose the
parameters that can produce the highest g10/g1 value.

Functional enrichment analysis
Gene set functional enrichment analysis is a method to
find biological annotations that are significant in a set of
genes. In this study, we use annotations of Gene Ontology
Biological Process (GO BP) terms from Gene Ontology
Consortium and annotations of chromosome bands of
protein coding genes from HGNC database. Hypergeo-
metric probability density function from MATLAB Statis-
tics and Machine Learning Toolbox with false discovery
rate correction from MATLAB Bioinformatics Toolbox is
used to determine the statistical significance. To provide
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meaningful results, we only perform functional enrich-
ment analysis on gene modules with at least 10 genes and
at most 500 genes.

For chromosome regions enriched by the identified
gene modules, we are interested in if patients in other
cohorts with the same disease have CNVs in these regions.
We use OncoPrint visualization from the cBioPortal [24]
website to investigate the Copy Number Alternations
(CNAs) in selected genes. The Cancer Genome Atlas
(TCGA) bladder cancer dataset (406 patients) was used
to validate chromosome bands enrichment results of
GSE31684. TCGA breast cancer dataset (996 patients)
and METABRIC [25] breast cancer dataset (2051 patients)
were used to validate chromosome bands enrichment
results of GSE54002 and GSE102484.

Gene expression data
Three large gene expression datasets were obtained from
the NCBI Gene Expression Omnibus (GEO) and all
datasets were generated using the Affymetrix Human
Genome U133 Plus 2.0 Array Genechip with more
than 54,000 probesets. Details of these datasets are
summarized in Table 1.

To reduce the size of affinity matrix between genes, pre-
processing of each dataset is performed to select highly
expressed genes. Firstly, only probesets with known asso-
ciated genes are selected. If multiple probesets correspond
to the same gene, only the probeset with the highest mean
expression value is retained. Next, genes with low mean
expression levels (bottom 20%) and low variance (bottom
10%) are removed using functions from MATLAB Bioin-
formatics Toolbox. Finally, we retain 10,000 genes with the
highest mean expression levels for further analysis.

Results
LRR finds gene modules with different structures
Centralized Concordance Index (CCI) [26] is a linear alge-
braic based index for evaluating the concordance of gene
co-expression modules from GCNA. A high CCI value
suggests genes in a gene module are highly correlated,
while a low CCI value suggests higher intrinsic dimension-
ality of expression profiles in a module. For example, when
PCC between each pair of genes in a module is 1, CCI of
this module is 1.

To compare our method with current correlation based
GCNA algorithms, besides LRR, we also used PCC to
generate the adjacency matrix of a gene co-expression

Table 1 Summary of microarray datasets

Dataset Disease Number of samples Platform

GSE31684 bladder cancer 93 GPL570

GSE54002 breast cancer 433 GPL570

GSE102484 breast cancer 683 GPL570

network and applied lmQCM to identify gene co-
expression modules. We calculated CCI of each gene
module identified using PCC based method and our
LRR based method. We observe that gene modules iden-
tified by LRR based method have significantly lower
CCI values than those identified by PCC based method
using Kolmogorov-Smirnov test (Table 2). This suggests
that LRR, combined with lmQCM, can find gene co-
expression modules from subspaces with higher dimen-
sionality than current linear correlation based GCNA
algorithms.

Wealsoappliedoneofthestate-of-the-artGCNAalgorithms,
WGCNA [10], for comparison. Since WGCNA partitions
all the genes after pre-processing into disjoint sets rather
than just identifies highly connected modules, CCI val-
ues of modules identified by WGCNA are not comparable
with our lmQCM based results and we did not apply
Kolmogorov-Smirnov tests on CCI values of identified
gene modules between our method and WGCNA.

Difference in CCI contributes to difference in enriched
biological annotations
In the previous section, we have shown that gene modules
identified by LRR based method have different structures
from those identified by PCC based method, indicated by
lower CCI values. In this section, we further demonstrate
that such difference could lead to different enrichment
results in biological annotations, such as GO BPs and
chromosome bands. This suggests that our method is able
to provide different biological insights than current corre-
lation based GCNA algorithms and serve as a complement
to current methods.

We first compare three similar gene co-expression mod-
ules identified in GSE54002 dataset: LRR21 identified by
our method, PCC30 identified by PCC based method and
WGCNA44 identified by WGCNA. These three mod-
ules share a large fraction of the same genes and a Venn
diagram of genes in these modules is shown in Fig. 1.

Figure 1 also shows heatmaps of gene expression pro-
files in these three modules. Expression levels of each
gene have been standardized across different samples in

Table 2 Gene modules identified by LRR, PCC and WGCNA

Dataset GSE31684 GSE54002 GSE102484

nMdlLRR 26 76 63

CCILRR 0.487 0.471 0.457

nMdlPCC 97 100 81

CCIPCC 0.552 0.518 0.496

Kolmogorov-Smirnov
test P value

2.43e-02 1.09e-04 9.22e-04

nMdlWGCNA 56 147 81

nMdl: number of gene modules identified
CCI: mean of CCI values of gene modules identified
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Fig. 1 Comparison between LRR21, PCC30 and WGCNA44 in GSE54002. a. Venn diagram of genes in LRR21, PCC30 and WGCNA44; b-d. Heatmaps of
expression profiles of LRR21, PCC30 and WGCNA44. Red bars beside gene symbols indicate genes on 9q34.11

order to show the correlation patterns between genes.
We observe that PCC30 and WGCNA44 show a stronger
correlation pattern between genes than LRR21, which is
confirmed by higher CCI values (Table 3). However, some
biological annotations are more enriched in LRR21 than in
PCC30 or WGCNA44. For example, Table 3 shows chro-
mosome band 9q34.11 is more enriched in LRR21 with P
value = 2.01 × 10−26. Figure 2 further shows that genes
on the enriched 9q34.11 chromosome band in LRR21

Table 3 Summary of LRR21, PCC30 and WGCNA44 in GSE54002

Module LRR21 PCC30 WGCNA44

number of genes 37 21 40

CCI 0.385 0.486 0.420

number of genes on 9q34.11 14 2 10

P value of enrichment analysis of 9q34.11 2.01e-26 2.38e-3 4.57e-17

share similar CNV patterns in the TCGA and METABRIC
breast cancer patient cohorts.

The aforementioned results suggest that by using LRR
and allowing expression profiles of gene modules to have
higher subspace dimensionality, we can identify biological
annotations such as chromosome bands that are missed
by correlation based GCNA algorithms. This may fur-
ther lead to new discoveries of cancer-related structural
mutations such as CNVs. Figure 3 provides the number
of enriched GO BPs and chromosome bands using LRR,
PCC based methods and WGCNA with a 0.01 P value cut-
off. Our method not only produces results with substan-
tial overlap between current GCNA methods in finding
enriched biological annotations, but can also discover new
related biological annotations. Such advantages give our
method the potential to be combined with current GCNA
methods to a get better understanding of gene expres-
sion data. Tables 4 and 5 list the most significant GO BPs
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Fig. 2 OncoPrint visualization of breast cancer patients with genetic mutations. Genes are from LRR21 which are also on 9q34.11

Fig. 3 Number of enriched GO BPs and chromosome bands in microarray datasets. P value cutoff = 0.01
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Table 4 The most significant GO BPs only enriched in our
method

GO ID Name P value Module ID

GSE31684

GO:0043547 positive regulation
of GTPase activity

3.59e-06 4

GO:0036336 dendritic cell
migration

7.73e-06 4

GO:0043087 regulation of
GTPase activity

2.89e-05 4

GO:0006929 substrate-
dependent cell
migration

9.66e-05 13

GO:0070232 regulation of T cell
apoptotic process

1.07e-04 4

GSE54002

GO:0000082 G1/S transition of
mitotic cell cycle

1.27e-07 6

GO:0031109 microtubule
polymerization or
depolymerization

7.13e-07 6

GO:0000083 regulation of
transcription
involved in

8.48e-07 6

G1/S transition of
mitotic cell cycle

GO:0007019 microtubule
depolymerization

6.00e-06 6

GO:0051783 regulation of
nuclear division

7.21e-06 6

GSE102484

GO:0050766 positive regulation
of phagocytosis

1.70e-06 1

GO:0006271 DNA strand
elongation
involved in DNA
replication

1.95e-06 10

GO:0022616 DNA strand
elongation

1.95e-06 10

GO:0050764 regulation of
phagocytosis

3.18e-06 1

GO:0070374 positive regulation
of ERK1 and ERK2
cascade

8.79e-06 1

P value cutoff = 0.01

and chromosome bands that are only enriched when using
our method.

We also observe that for most chromosome bands that
are only enriched in our method, genes on these chromo-
some bands in the corresponding co-expression modules
often share similar CNV patterns among patients in the
TCGA and METABRIC cohorts.

We also compare overlap of enrichment analysis results
between two breast cancer datasets, GSE54002 and
GSE102484, using different GCNA methods, which is

Table 5 The most significant chromosome bands only enriched
in our method

Chromosome band P value Module ID CNVs validated in separate
cohorts(TCGA, METABRIC)

GSE31684

4q13.3 2.47e-06 13 Yes,NA

Yp11.2 8.25e-04 12 No,NA

Yq11.223 8.25e-04 12 No,NA

4q21.1 8.35e-04 4 Yes,NA

19p13.12 1.25e-03 5 No,NA

GSE54002

11p15.1 1.92e-12 44 Yes,Yes

11q12.2 1.61e-06 19 Yes,Yes

19q13.31 1.03e-05 61 Yes,Yes

9q31.3 2.12e-05 26 No,Yes

9q22.33 2.28e-05 26 No,Yes

GSE102484

8p11.23 3.97e-19 53 Yes,Yes

9q34.3 1.36e-09 14 Yes,Yes

15q22.31 4.21e-09 27 Yes,Yes

13q14.3 2.27e-08 18 Yes,Yes

7q36.3 4.12e-08 7 Yes,Yes

P value cutoff = 0.01

shown in Fig. 4. We observe that LRR and PCC based
methods obtain similar fractions of overlap between two
datasets, which indicates that our LRR based approach
can achieve similar stability with the commonly used PCC
based methods. WGCNA produced results with larger
overlaps, which may be due to the fact that gene mod-
ules detected by WGCNA contains all the genes after
pre-processing rather than just densely connected gene
modules as in lmQCM. Since information of specific sub-
types of breast cancer are unavailable for GSE54002 and
GSE102484 on GEO, the difference of the enrichment
analysis across these two datasets may come from the
difference in breast cancer subtypes.

Difference in CCI contributes to difference in PPI networks
To further validate our method, we use PINA2 plat-
form [27] to verify whether LRR could identify gene
co-expression modules that form PPI networks with dif-
ferent density. We use the Homo sapiens PPIs database
from PINA2 website and map UniProtKB entries to gene
symbols through UniProt website (uniprot.org). For a
gene co-expression module with n genes and nPPI PPIs
within the module, we define PPI density of the module as
2nPPI/(n(n+1)) since the PINA2 database allows a protein
to interact with itself. We found several cases where mod-
ules identified by LRR have lower CCI values and higher
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Fig. 4 Number of overlapping enriched GO BPs and chromosome bands. GSE54002 and GSE102484 are two breast cancer datasets

PPI densities than those identified by PCC or WGCNA.
Some examples are shown in Table 6. This suggests that
by identifying gene co-expression modules with higher
intrinsic dimensionalities, we can find modules that are
more densely connected in PPI networks, which indicates
that genes in these modules share more similarities in
biological functions.

LRR helps identify prognostic gene modules
To determine whether a gene module has prognostic
value, we use a lasso-regularized Cox proportional haz-
ards model to calculate the risk index of each sample based
on the expression profiles of the gene module. A leave-
one-out cross validation strategy is used to validate our
method, where each sample is used as a test sample and
classified into a low-risk or a high-risk group. We then use
Kaplan-Meier estimator and log-rank test to determine
if these two groups have significantly distinct survival.
We applied this method on GSE31684, using recur-
rence free survival months as survival time and recur-
rence/dod events as censoring information. We removed
samples with survival time less than one month from
analysis.

Table 6 Examples of modules identified by our method with
lower CCIs and higher PPI densities

Dataset Module(nGenes) nGenesOverlap CCI PPI density

GSE54002
LRR5(86)

16
0.457 3.81e-03

PCC14(28) 0.498 0

GSE54002
LRR5(86)

54
0.457 3.81e-03

WGCNA18(94) 0.467 2.38e-03

GSE54002
LRR7(78)

18
0.340 3.12e-03

PCC33(20) 0.534 0

GSE54002
LRR7(78)

38
0.340 3.12e-03

WGCNA26(77) 0.389 1.42e-03

GSE102484
LRR17(65)

15
0.291 2.46e-03

PCC24(28) 0.400 0

GSE102484
LRR17(65)

28
0.291 2.46e-03

WGCNA23(47) 0.382 1.03e-03

GSE102484
LRR8(96)

83
0.359 5.68e-03

WGCNA12(115) 0.367 4.17e-03

nGenes: number of genes in the module
nGenesOverlap: number of genes in both modules
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Fig. 5 Kaplan-Meier curve of two groups of samples stratified using
gene module LRR2 in GSE31684. GSE31684 is a bladder cancer dataset

Figure 5 shows that gene co-expression module LRR2,
which contains 189 genes, is strongly associated with sur-
vival (P value = 0.00260). Although gene module PCC2
identified by PCC based method has substantial overlap
with LRR2 (PCC2 contains 268 genes, where 101 genes
are also in LRR2), it is not significantly associated with
survival (P value = 0.200).

Application to single-cell RNA sequencing data
Single-cell RNA sequencing (scRNA-seq) techniques have
provided powerful tools in studying cellular heterogene-
ity. In this section, we demonstrate that our method
can be extended to scRNA-seq data by applying it on a
large scRNA-seq dataset of melanoma cells (GSE72056)
[28]. GSE72056 contains 1257 malignant cells, 3256 non-
malignant cells and 132 unresolved cells with expression
profiles of 23,686 genes. Only the malignant cells were
used for gene co-expression analysis.

Expression level of gene i in cell j is quantified as
Gij = log2(TPMij/10+1), where TPMij is Transcript-Per-
Million (TPM) for gene i in cell j. In scRNA-seq, dropout

event often occurs due to the low number of RNA tran-
scriptomes, which means that expression measurements
of some random sampling of transcripts can be missed as
zeroes. To account for the dropout events and noise in
scRNA-seq data, a different pre-processing method was
applied. Firstly, we remove genes with zero expression lev-
els in all cells. Then, we filter out genes with the lowest
80% of mean expression level or genes with the lowest 80%
of variance. In GSE72056, 3630 genes were retained after
pre-processing.

In total, 18, 11 and 16 gene co-expression modules
were identified by our method, PCC based lmQCM and
WGCNA respectively. Figure 6 provides the number of
enriched GO BPs and chromosome bands with a 0.01
P value cutoff. Similar to results in microarray datasets,
our method produces results with substantial overlap with
existing GCNA methods, while demonstrating the abil-
ity to discover new related biological annotations. Table 7
and Table 8 list the most significant GO BPs and chro-
mosome bands that are only enriched when using our
method. TCGA skin cutaneous melanoma dataset (363
patients) was used to validate chromosome bands enrich-
ment results. We observe that a large number of patients
(3% - 9%) in the TCGA cohort have CNVs in genes on
the chromosome bands that are uniquely enriched by our
method.

Similar to results in microarray datasets, we also
observe that difference in CCI values of gene co-
expression modules can contributes to difference in
enriched biological annotations and density of PPI net-
works in scRNA-seq data. For example, module LRR2
(112 genes, CCI = 0.282) and module PCC3 (95 genes,
CCI = 0.324) have large overlap with 45 genes in com-
mon. However, GO:0044237 (cellular metabolic process)
is more enriched in LRR2 (P value 5.85e-42 vs. 2.84e-31)
and LRR2 has higher PPI density (0.0786 vs. 0.0708).

Discussion
In this paper, we present a new approach for generalizing
the traditional correlation-based GCNA methods beyond

Fig. 6 Number of enriched GO BPs and chromosome bands in a melanoma cell dataset GSE72056. P value cutoff = 0.01
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Table 7 The most significant GO BPs only enriched using our
method in GSE72056

GO ID Name P value Module ID

GO:0006259 DNA metabolic process 1.32e-10 6

GO:0006260 DNA replication 2.59e-07 6

GO:0006281 DNA repair 3.17e-06 6

GO:0006261 DNA-dependent DNA replication 5.10e-06 6

GO:0046794 transport of virus 8.60e-06 2

P value cutoff = 0.01

pairwise relationships between genes. This generalized
GCNA method greatly expands the scope for explor-
ing complex relationships among genes. This approach
combines a subspace clustering algorithm, LRR, with a
weighted network mining algorithm, lmQCM, and makes
two major improvements comparing with previous meth-
ods. Firstly, comparing with current GCNA algorithms,
which mostly calculates the similarity between genes
based on pairwise correlation coefficients, we introduce
subspace clustering into GCNA to find new biologically
meaningful gene modules that can not be characterized
based on pairwise relationships. Since the LRR approach
does not limit the dimensionality of the subspace, it can
accommodate complex relationships which often imply
multiple gene or pathway interactions or more variable
structural variations. Secondly, comparing with current
subspace clustering algorithms in [17, 18], which assign
every gene into a cluster, we choose to use lmQCM, which
identifies densely connected modules such as quasi-
cliques in weighted networks. Our method is more con-
sistent with the fact that some genes could participate
in multiple biological processes. In addition, our method
can be applied to different kinds of gene expression data,
including microarray data and scRNA-seq data.

Despite the advantages demonstrated in this paper,
there still exists limitations in our method. As mentioned
in [29], when using the data itself as the dictionary, LRR
may not be able to exactly recover the subspaces when
data contains certain types of errors, such as dense noise.
Moreover, a critical issue of LRR is how to estimate or

Table 8 The most significant chromosome bands only enriched
using our method in GSE72056

chromosome band P value Module ID

5p15.33 1.41e-06 18

6p22.1 3.44e-05 15

17q11.2 8.46e-05 11

17q11-q12 1.83e-03 11

6q24.1-q24.2 1.83e-03 11

P value cutoff = 0.01

select the parameter λ. When data is contaminated by
various errors, the selection of λ could be quite chal-
lenging. We used a cross-validation style approach to
overcome this challenge. However, our approach is quite
computationally expensive and efficient ways for parame-
ter estimation should be studied in the future.

Conclusion
In conclusion, we developed a new generalized gene co-
expression analysis algorithm based on subspace clus-
tering that works beyond pairwise relationships between
genes. Correlations between genes have been shown to
be very useful in identifying gene co-expression modules
with biological meanings. However, our method provides
a complement to existing GCNA methods by using
subspace clustering to identify gene co-expression mod-
ules with expression profiles of higher intrinsic dimen-
sionalities. We demonstrate that our method can be
applied to various types of gene expression data, includ-
ing microarray data and the emerging scRNA-seq data.
By combining our method with other GCNA tools, we
can obtain a more comprehensive understanding of gene
expression data.
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