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Abstract

Background: Canonical correlation analysis (CCA) is a classic statistical tool for investigating complex multivariate
data. Correspondingly, it has found many diverse applications, ranging from molecular biology and medicine to social
science and finance. Intriguingly, despite the importance and pervasiveness of CCA, only recently a probabilistic
understanding of CCA is developing, moving from an algorithmic to a model-based perspective and enabling its
application to large-scale settings.

Results: Here, we revisit CCA from the perspective of statistical whitening of random variables and propose a simple
yet flexible probabilistic model for CCA in the form of a two-layer latent variable generative model. The advantages of
this variant of probabilistic CCA include non-ambiguity of the latent variables, provisions for negative canonical
correlations, possibility of non-normal generative variables, as well as ease of interpretation on all levels of the model.
In addition, we show that it lends itself to computationally efficient estimation in high-dimensional settings using
regularized inference. We test our approach to CCA analysis in simulations and apply it to two omics data sets
illustrating the integration of gene expression data, lipid concentrations and methylation levels.

Conclusions: Our whitening approach to CCA provides a unifying perspective on CCA, linking together sphering
procedures, multivariate regression and corresponding probabilistic generative models. Furthermore, we offer an
efficient computer implementation in the “whitening” R package available at https://CRAN.R-project.org/package=
whitening.
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Background
Canonical correlation analysis (CCA) is a classic and
highly versatile statistical approach to investigate the lin-
ear relationship between two sets of variables [1, 2]. CCA
helps to decode complex dependency structures in multi-
variate data and to identify groups of interacting variables.
Consequently, it has numerous practical applications in
molecular biology, for example omics data integration [3]
and network analysis [4], but also inmany other areas such
as econometrics or social science.
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In its original formulation CCA is viewed as an algo-
rithmic procedure optimizing a set of objective functions,
rather than as a probablistic model for the data. Only rel-
atively recently this perspective has changed. Bach and
Jordan [5] proposed a latent variable model for CCA
building on earlier work on probabilistic principal compo-
nent analysis (PCA) by [6]. The probabilistic approach to
CCA not only allows to derive the classic CCA algorithm
but also provide an avenue for Bayesian variants [7, 8].
In parallel to establishing probabilistic CCA the clas-

sic CCA approach has also been further developed in the
last decade by introducing variants of the CCA algorithm
that are more pertinent for high-dimensional data sets
now routinely collected in the life and physical sciences. In
particular, the problem of singularity in the original CCA
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algorithm is resolved by introducing sparsity and regular-
ization [9–13] and, similarly, large-scale computation is
addressed by new algorithms [14, 15].
In this note, we revisit both classic and probabilistic

CCA from the perspective of whitening of random vari-
ables [16]. As a result, we propose a simple yet flexible
probabilistic model for CCA linking together multivariate
regression, latent variable models, and high-dimensional
estimation. Crucially, this model for CCA not only facil-
itates comprehensive understanding of both classic and
probabilistic CCA via the process of whitening but also
extends CCA by allowing for negative canonical correla-
tions and providing the flexibility to include non-normal
latent variables.
The remainder of this paper is as follows. First, we

present our main results. After reviewing classical CCA
we demonstrate that the classic CCA algorithm is spe-
cial form of whitening. Next, we show that the link of
CCA with multivariate regression leads to a probabilis-
tic two-level latent variable model for CCA that directly
reproduces classic CCA without any rotational ambiguity.
Subsequently, we discuss our approach by applying it to
both synthetic data as well as to multiple integrated omics
data sets. Finally, we describe our implementation in R and
highlight computational and algorithmic aspects.
Much of our discussion is framed in terms of random

vectors and their properties rather than in terms of data
matrices. This allows us to study the probabilistic model
underlying CCA separate from associated statistical pro-
cedures for estimation.

Multivariate notation
We consider two random vectors X = (

X1, . . . ,Xp
)T and

Y = (
Y1, . . . ,Yq

)T of dimension p and q. Their respec-
tive multivariate distributions FX and FY have expectation
E(X) = μX and E(Y ) = μY and covariance var(X) = �X
and var(Y ) = �Y . The cross-covariance between X and
Y is given by cov(X,Y ) = �XY . The corresponding cor-
relation matrices are denoted by PX , PY , and PXY . By
VX = diag(�X) and VY = diag(�Y ) we refer to the diag-
onal matrices containing the variances only, allowing to
decompose covariances as � = V 1/2PV 1/2. The compos-
ite vector

(
XT ,YT)T has therefore mean

(
μT
X ,μ

T
Y
)T and

covariance
(

�X �XY
�T

XY �Y

)
.

Vector-valued samples of the random vectors X and Y
are denoted by xi and yi so that (x1, . . . , xi, . . . , xn)T is the
n×p datamatrix forX containing n observed samples (one
in each row). Correspondingly, the empirical mean for X
is given by μ̂X = x̄ = 1

n
∑n

i=1 xi, the unbiased covari-
ance estimate is �̂X = SX = 1

n−1
∑n

i=1(xi − x̄) (xi − x̄)T ,
and the corresponding correlation estimate is denoted by
P̂X = RX .

Results
We first introduce CCA from a classical perspective, then
we demonstrate that CCA is best understood as a special
and uniquely defined type of whitening transformation.
Next, we investigate the close link of CCA with multi-
variate regression. This not only allows to interpret CCA
as regression model and to better understand canonical
correlations, but also provides the basis for a probabilis-
tic generative latent variable model of CCA based on
whitening. Thismodel is introduced in the last subsection.

Classical CCA
In canonical correlation analysis the aim is to find mutu-
ally orthogonal pairs of maximally correlated linear com-
binations of the components of X and of Y . Specifically,
we seek canonical directions αi and β j (i.e. vectors of
dimension p and q, respectively) for which

cor
(
αT
i X,βT

j Y
)

=
{

λi maximal for i = j
0 otherwise, (1)

where λi are the canonical correlations, and simultaneously

cor
(
αT
i X,αT

j X
)

=
{
1 for i = j
0 otherwise, (2)

and

cor
(
βT
i Y ,βT

j Y
)

=
{
1 for i = j
0 otherwise. (3)

In matrix notation, with A = (
α1, . . . ,αp

)T , B =
(
β1, . . . ,βq

)T , and � = diag(λi), the above can be writ-
ten as cor(AX,BY ) = � as well as cor(AX) = I and
cor(BY ) = I. The projected vectors AX and BY are also
called the CCA scores or the canonical variables.
Hotelling (1936) [1] showed that there are, assuming

full rank covariance matrices �X and �Y , exactly m =
min(p, q) canonical correlations and pairs of canonical
directions αi and β i, and that these can be computed ana-
lytically from a generalized eigenvalue problem (e.g., [2]).
Further below we will see how canonical directions and
correlations follow almost effortlessly from a whitening
perspective of CCA.
Since correlations are invariant against rescaling, opti-

mizing Eq. 1 determines the canonical directions αi and
β i only up to their respective lengths, and we can thus
arbitrarily fix the magnitude of the vectors αi and β i. A
common choice is to simply normalize them to unit length
so that αT

i αi = 1 and βT
i β i = 1.

Similarly, the overall sign of the canonical directions αi
and β j is also undetermined. As a result, different imple-
mentations of CCA may yield canonical directions with
different signs, and depending on the adopted conven-
tion this can be used either to enforce positive or to allow
negative canonical correlations, see below for further dis-
cussion in the light of CCA as a regression model.
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Because it optimizes correlation, CCA is invariant
against location translation of the original vectors X and
Y , yielding identical canonical directions and correlations
in this case. However, under scale transformation of X
and Y only the canonical correlations λi remain invariant
whereas the directions will differ as they depend on the
variances VX and VY . Therefore, to facilitate comparative
analysis and interpretation the canonical directions the
random vectors X and Y (and associated data) are often
standardized.
Classical CCA uses the empirical covariance matrix S

to obtain canonical correlations and directions. However,
S can only be safely employed if the number of obser-
vations is much larger than the dimensions of either of
the two random vectors X and Y , since otherwise S
constitutes only a poor estimate of the underlying covari-
ance structure and in addition may also become singular.
Therefore, to render CCA applicable to small sample high-
dimensional data two main strategies are common: one is
to directly employ regularization on the level of the covari-
ance and correlation matrices to stabilize and improve
their estimation; the other is to devise probabilistic mod-
els for CCA to facilitate application of Bayesian inference
and other regularized statistical procedures.

Whitening transformations and CCA
Background onwhitening
Whitening, or sphering, is a linear statistical transforma-
tion that converts a random vector X with covariance
matrix �X into a random vector

X̃ = WXX (4)

with unit diagonal covariance var
(
X̃

) = �X̃ = Ip. The
matrix WX is called the whitening matrix or sphering
matrix for X, also known as the unmixing matrix. In order
to achieve whitening the matrix WX has to satisfy the
condition WX�XWT

X = Ip, but this by itself is not suffi-
cient to completely identify WX . There are still infinitely
many possible whitening transformations, and the family
of whitening matrices for X can be written as

WX = QXP
−1/2
X V−1/2

X . (5)

Here,QX is an orthogonal matrix; therefore the whitening
matrixWX itself is not orthogonal unless PX = VX = Ip.
The choice of QX determines the type of whitening [16].
For example, using QX = Ip leads to ZCA-cor whitening,
also known as Mahalanobis whitening based on the cor-
relation matrix. PCA-cor whitening, another widely used
sphering technique, is obtained by setting QX = GT ,
where G is the eigensystem resulting from the spectral
decomposition of the correlation matrix PX = G�GT .
Since there is a sign ambiguity in the eigenvectors G we
adopt the convention of [16] to adjust columns signs of G,

or equivalently row signs ofQx, so that the rotationmatrix
QX has a positive diagonal.
The corresponding inverse relation X = W−1

X X̃ =
�T

XX̃ is called a coloring transformation, where the matrix
W−1

X = �T
X is the mixing matrix, or coloring matrix that

we can write in terms of rotation matrix QX as

�X = QXP
1/2
X V 1/2

X (6)

Like WX the mixing matrix �X is not orthogonal. The
entries of the matrix �X are called the loadings, i.e.
the coefficients linking the whitened variable X̃ with
the original x. Since X̃ is a white random vector with
cov

(
X̃

) = Ip the loadings are equivalent to the covari-
ance cov

(
X̃,X

) = �X . The corresponding correlations,
also known as correlation-loadings, are

cor
(
X̃,X

) = �X = �XV−1/2
X = QXP

1/2
X . (7)

Note that the sum of squared correlations in each column
of �X sum up to 1, as diag

(
�T

X�X
) = diag(PX) = Ip.

CCAwhitening
We will show now that CCA has a very close relation-
ship to whitening. In particular, the objective of CCA
can be seen to be equivalent to simultaneous whitening
of both X and Y , with a diagonality constraint on the
cross-correlation matrix between the whitened X̃ and Ỹ .
First, we make the choice to standardize the canonical

directions αi and β i according to var
(
αT
i X

) = αT
i �Xαi =

1 and var
(
βT
i Y

)
= βT

i �Yβ i = 1. As a result αi and
β i form the basis of two whitening matrices, WX =
(
α1, . . . ,αp

)T = A and WY = (
β1, . . . ,βq

)T = B, with
rows containing the canonical directions. The length con-
straint αT

i �Xαi = 1 thus becomes WX�XWT
X = Ip

meaning that WX (and WY ) is indeed a valid whitening
matrix.
Second, after whitening X and Y individually to X̃ and

Ỹ using WX and WY , respectively, the joint covariance

of
(
X̃T , ỸT)T

is
(

Ip PX̃Ỹ
PT
X̃Ỹ Iq

)
. Note that whitening of

(
XT ,YT)T simultaneously would in contrast lead to a
fully diagonal covariance matrix. In the above PX̃Ỹ =
cor

(
X̃, Ỹ

) = cov
(
X̃, Ỹ

)
is the cross-correlation matrix

between the two whitened vectors and can be expressed as

PX̃Ỹ = WX�XYWT
Y = QXKQT

Y = (ρ̃ij) (8)

and

K = P−1/2
X PXYP−1/2

Y = (kij). (9)

Following the terminology in [17] we may call K the
correlation-adjusted cross-correlation matrix between X
and Y .
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With this setup the CCA objective can be framed simply
as the demand that cor

(
X̃, Ỹ

) = PX̃Ỹ must be diago-
nal. Since in whitening the orthogonal matrices QX and
QY can be freely selected we can achieve diagonality of
PX̃Ỹ and hence pinpoint the CCA whitening matrices by
applying singular value decomposition to

K =
(
QCCA
X

)T
�QCCA

Y . (10)

This provides the rotation matrices QCCA
X and the QCCA

Y
of dimensions m × p and m × q, respectively, and the
m × m matrix � = diag(λi) containing the singular val-
ues of K , which are also the singular values of PX̃Ỹ . Since
m = min(p, q) the larger of the two rotation matrices will
not be a square matrix but it can nonetheless be used for
whitening via Eqs. 4 and 5 since it still is semi-orthogonal
with QCCA

X
(
QCCA
X

)T = QCCA
Y

(
QCCA
Y

)T = Im. As a result,
we obtain cor

(
X̃CCA
i , ỸCCA

i
) = λi for i = 1 . . .m, i.e. the

canonical correlations are identical to the singular values
of K .
Hence, CCA may be viewed as the outcome of

a uniquely determined whitening transformation with
underlying sphering matrices WCCA

X and WCCA
Y induced

by the rotation matrices QCCA
X and QCCA

Y . Thus, the dis-
tinctive feature of CCA whitening, in contrast to other
common forms of whitening described in [16], is that by
construction it is not only informed by PX and PY but also
by PXY , which fixes all remaining rotational freedom.

CCA andmultivariate regression
Optimal linearmultivariate predictor
In multivariate regression the aim is to build a model that,
given an input vector X, predicts a vector Y as well as
possible according to a specific measure such as squared
error. Assuming a linear relationship Y � = a + bTX is
the predictor random variable, with mean E(Y �) = μY � =
a + bTμX . The expected squared difference between Y
and Y �, i.e. the mean squared prediction error

MSE = Tr
(
E

((
Y − Y �

) (
Y − Y �

)T))

=
q∑

i=1
E

((
Yi − Y �

i
)2) ,

(11)

is a natural measure of how well Y � predicts Y . As a func-
tion of the model parameters a and b the predictive MSE
becomes

MSE(a, b) =Tr
(
(μY − μY � ) (μY − μY � )T +

�Y + bT�Xb − 2bT�XY
)
.

(12)

Optimal parameters for best linear predictor are found by
minimizing this MSE function. For the offset a this yields

a. = μY − (b.)TμX (13)

which regardless of the value of b. ensures μY � − μY = 0.
Likewise, for the matrix of regression coefficients mini-
mization results in

ball = �−1
X �XY (14)

with minimum achieved MSE
(
aall, ball

)
= Tr (�Y ) −

Tr
(
�YX�−1

X �XY
)
.

If we exclude predictors from the model by setting
regression coefficients bzero = 0 then the correspond-
ing optimal intercept is azero = μY and the minimum
achieved MSE

(
azero, bzero

) = Tr(�Y ). Thus, by adding
predictors X to the model the predictive MSE is reduced,
and hence the fit of the model correspondingly improved,
by the amount

� = MSE
(
azero, bzero

) − MSE
(
aall, ball

)

= Tr
(
�YX�−1

X �XY
)

= Tr
(
cov

(
Y ,Y all�

))
.

(15)

If the response Y is univariate (q = 1) then �

reduces to the variance-scaled coefficient of determina-
tion σ 2

YPYXP−1
X PXY . Note that in the above no distribu-

tional assumptions are made other than specification of
means and covariances.

Regression view of CCA
The first step to understand CCA as a regression model is
to consider multivariate regression between two whitened
vectors X̃ and Ỹ (considering whitening of any type,
including but not limited to CCA-whitening). Since �X̃ =
Ip and �X̃Ỹ = PX̃Ỹ the optimal regression coefficients to
predict Ỹ from X̃ are given by

ball = PX̃Ỹ , (16)

i.e. the pairwise correlations between the elements of the
two vectors X̃ and Ỹ . Correspondingly, the decrease in
predictive MSE due to including the predictors X̃ is

� = Tr
(
PT
X̃Ỹ PX̃Ỹ

)
=

∑

i,j
ρ̃2
ij

= Tr
(
KTK

)
=

∑

i,j
k2ij

= Tr
(
�2) =

∑

i
λ2i .

(17)

In the special case of CCA-whitening the regression
coefficients further simplify to ballii = λi, i.e. the canoni-
cal correlations λi act as the regression coefficients linking
CCA-whitened Ỹ and X̃. Furthermore, as the decrease
in predictive MSE � is the sum of the squared canon-
ical correlations (cf. Eq. 17), each λ2i can be interpreted
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as the variable importance of the corresponding vari-
able in X̃CCA to predict the outcome ỸCCA. Thus, CCA
directly results from multivariate regression between
CCA-whitened random vectors, where the canonical cor-
relations λi assume the role of regression coefficients
and λ2i provides a natural measure to rank the canon-
ical components in order of their respective predictive
capability.
A key difference between classical CCA and regression

is that in the latter both positive and negative coeffi-
cients are allowed to account for the directionality of
the influence of the predictors. In contrast, in classical
CCA only positive canonical correlations are permitted by
convention. To reflect that CCA analysis is inherently a
regression model we advocate here that canonical corre-
lations should indeed be allowed to assume both positive
and negative values, as fundamentally they are regres-
sion coefficients. This can be implemented by exploiting
the sign ambiguity in the singular value decomposition
of K (Eq. 10). In particular, the rows signs of QCCA

X
and QCCA

Y and the signs of λi can be revised simul-
taneously without affecting K . We propose to choose
QCCA
X and QCCA

Y such that both rotation matrices have
a positive diagonal, and then to adjust the signs of the
λi accordingly. Note that orthogonal matrices with pos-
itive diagonals are closest to the identity matrix (e.g. in
terms of the Frobenius norm) and thus constitute minimal
rotations.

Generative latent variable model for CCA
With the link of CCA to whitening and multivariate
regression established it is straightforward to arrive at
simple and easily interpretable generative probabilistic
latent variable model for CCA. This model has two levels
of hidden variables: it uses uncorrelated latent variables
ZX , ZY , Zshared (level 1) with zero mean and unit variance
to generate the CCA-whitened variables X̃CCA and ỸCCA

(level 2) which in turn produce the observed vectorsX and
Y – see Fig. 1

Specifically, on the first level we have latent variables

ZX ∼ FZX ,
ZY ∼ FZY , and

Zshared ∼ FZshared ,

(18)

with E
(
ZX) = E

(
ZY ) = E

(
Zshared) = 0 and var

(
ZX) =

Ip, var
(
ZY ) = Iq, and var

(
Zshared) = Im and no mutual

correlation among the components of ZX , ZY , and Zshared.
The second level latent variables are then generated by
mixing shared and non-shared variables according to

X̃CCA
i = √

1 − |λi|ZX
i + √|λi|Zshared

i

ỸCCA
i = √

1 − |λi| ZY
i + √|λi|Zshared

i sign(λi)
(19)

where the parameters λ1, . . . , λm can be positive as well as
negative and range from -1 to 1. The components i > m
are always non-shared and taken from ZX or ZY as appro-
priate, i.e. as above but with λi>m = 0. By construction,
this results in var

(
X̃CCA)

= Ip, var
(
ỸCCA)

= Iq and
cov

(
X̃CCA
i , ỸCCA

i
) = λi. Finally, the observed variables are

produced by a coloring transformation and subsequent
translation

X = �T
XX̃

CCA + μX

Y = �T
Y Ỹ

CCA + μY

(20)

To clarify the workings behind Eq. 19 assume there
are three uncorrelated random variables Z1, Z2, and Z3
with mean 0 and variance 1. We construct X1 as a mix-
ture of Z1 and Z3 according to X1 = √

1 − αZ1 + √
αZ3

where α ∈[ 0, 1], and, correspondingly, X2 as a mixture
of Z2 and Z3 via X2 = √

1 − αZ2 + √
αZ3. If α = 0

then X1 = Z1 and X2 = Z2, and if α = 1 then X1 =
X2 = Z3. By design, the new variables have mean zero
(E(X1) = E(X2) = 0) and unit variance (var(X1) =
var(X2) = 1). Crucially, the weight α of the latent vari-
able Z3 common to both mixtures induces a correlation
between X1 and X2. The covariance between X1 and X2 is
cov(X1,X2) = cov

(√
αZ3,

√
αZ3

) = α, and since X1 and

Fig. 1 Probabilistic CCA as a two layer latent variable generative model. The middle layer contains the CCA-whitened variables X̃CCA
and ỸCCA

, and
the top layer the uncorrelated generative latent variables ZX , ZY , and Zshared
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X2 have variance 1 we have cor(X1,X2) = α. In Eq. 19 this
is further extended to allow a signed α and hence negative
correlations.
Note that the above probabilistic model for CCA is in

fact not a single model but a family of models, since we
do not completely specify the underlying distributions,
only their means and (co)variances. While in practice
we will typically assume normally distributed generative
latent variables, and hence normally distributed observa-
tions, it is equally possible to employ other distributions
for the first level latent variables. For example, a rescaled
t-distribution with a wider tail than the normal distribu-
tion may be employed to obtain a robustified version of
CCA [18].

Discussion
Synthetic data
In order to test whether our algorithm allows to correctly
identify negative canonical correlations we conducted
simulations using simulated data. Specifically, we gener-
ated data X i and yi from a p + q dimensional multivari-
ate normal distribution with zero mean and covariance
matrix

(
�X �XY
�T

XY �Y

)
where �X = Ip, �Y = Iq and

�XY = diag(λi). The canonical correlations where set to
have alternating positive and negative signs λ1 = λ3 =
λ5 = λ7 = λ9 = λ and λ2 = λ4 = λ6 = λ8 = λ10 = −λ

with varying strength λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
A similar setup was used in [14]. The dimensions were
fixed at p = 60 and q = 10 and the sample size
was n ∈ {20, 30, 50, 100, 200, 500} so that both the small
and large sample regime was covered. For each com-
bination of n and λ the simulations were repeated 500
times, and our algorithm using shrinkage estimation of
the underlying covariance matrices was employed to
each of the 500 data sets to fit the CCA model. The
resulting estimated canonical correlations were then com-
pared with the corresponding true canonical correla-
tions, and the proportion of correctly estimated signs was
recorded.
The outcome from this simulation study is summarized

graphically in Fig. 2. The key finding is that, depend-
ing on the strength of correlation λ and sample size n,
our algorithm correctly determines the sign of both neg-
ative and positive canonical correlations. As expected,
the proportion of correctly classified canonical correla-
tions increases with sample size and with the strength
of correlation. Remarkably, even for comparatively weak
correlation such as λ = 0.5 and low sample size still
the majority of canonical correction were estimated with
the true sign. In short, this simulation demonstrates
that if there are negative canonical correlations between
pairs of canonical variables these will be detected by our
approach.

Nutrimouse data
We now analyze two experimental omics data sets to illus-
trate our approach. Specifically, we demonstrate the capa-
bility of our variant of CCA to identify negative canonical
correlations among canonical variates as well its appli-
cation to high-dimensional data where the number of
samples n is smaller than the number of variables p and q.
The first data set is due to [19] and results from a

nutrigenomic study in the mouse studying n = 40 ani-
mals. The X variable collects the measurements of the
gene expression of p = 120 genes in liver cells. These were
selected a priori considering the biological relevance for
the study. The Y variable contains lipid concentrations of
q = 21 hepatic fatty acids, measured on the same animals.
Before further analysis we standardized both X and Y .
Since the number of available samples n is smaller than

the number of genes p we used shrinkage estimation
to obtain the joint correlation matrix which resulted in
a shrinkage intensity of λcor = 0.16. Subsequently, we
computed canonical directions and associated canonical
correlations λ1, . . . , λ21. The canonical correlations are
shown in Fig. 3, and range in value between -0.96 and 0.87.
As can be seen, 16 of the 21 canonical correlations are neg-
ative, including the first three top ranking correlations. In
Fig. 4 we depict the squared correlation loadings between
the first 5 components of the canonical covariates X̃CCA

and ỸCCA and the corresponding observed variables X
and Y . This visualization shows that most information
about the correlation structure within and between the
two data sets (gene expression and lipid concentrations) is
concentrated in the first few latent components.
This is confirmed by further investigation of the scat-

ter plots both between corresponding pairs of X̃CCA and
ỸCCA canonical variates (Fig. 5) as well as within each
variate (Fig. 6). Specifically, the first CCA component
allow to identify the genotype of the mice (wt: wild type;
ppar: PPAR-α deficient) whereas the subsequent few com-
ponents reveal the imprint of the effect of the various diets
(COC: coconut oil; FISH: fish oils; LIN: linseed oils; REF:
reference diet; SUN: sunflower oil) on gene expression and
lipid concentrations.

The Cancer Genome Atlas LUSC data
As a further illustrative example we studied genomic
data from The Cancer Genome Atlas (TCGA), a pub-
lic resource that catalogues clinical data and molecular
characterizations of many cancer types [20]. We used the
TCGA2STAT tool to access the TCGA database from
within R [21].
Specifically, we retrieved gene expression (RNASeq2)

and methylation data for lung squamous cell carcinoma
(LUSC) which is one of the most common types of lung
cancer. After download, calibration and filtering as well
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Fig. 2 Percentage of estimated canonical correlations with correctly identified signs in dependence of the sample size and the strength of the true
canonical correlation
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Fig. 3 Plot of the estimated canonical correlations for the Nutrimouse data. The majority of the correlations indicate a negative assocation between
the corresponding canonical variables
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Fig. 4 Squared correlations loadings between the first 5 components of the canonical covariates X̃CCA
and ỸCCA

and the corresponding observed
variables X and Y for the Nutrimouse data

Fig. 5 Scatter plots between corresponding pairs of canonical covariates for the Nutrimouse data
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Fig. 6 Scatter plots between first and second components within each canonical covariate for the Nutrimouse data

as matching the two data types to 130 common patients
following the guidelines in [21] we obtained two data
matrices, one (X) measuring gene expression of p = 206
genes and one (Y ) containing methylation levels corre-
sponding to q = 234 probes. As clinical covariates the
sex of each of the 130 patients (97 males, 33 females) was
downloaded as well as the vital status (46 events in males,
and 11 in females) and cancer end points, i.e. the number
of days to last follow-up or the days to death. In addi-
tion, since smoking cigarettes is a key risk factor for lung
cancer, the number of packs per year smoked was also
recorded. The number of packs ranged from 7 to 240, so
all of the patients for which this information was available
were smokers.
As above we applied the shrinkage CCA approach to

the LUSC data which resulted in a correlation shrink-
age intensity of λcor = 0.19. Subsequently, we computed
canonical directions and associated canonical correlations
λ1, . . . , λ21. The canonical correlations are shown in Fig. 7,
and range in value between -0.92 and 0.98. Among the top
10 strongest correlated pairs of canonical covariates only
one has a negative coefficient. The plot of the squared cor-
relation loadings (Fig. 8) for these 10 components already
indicates that the data can be sufficiently summarized by
a few canonical covariates.
Scatter plots between the first pair of canonical compo-

nents and between the first two components of X̃CCA are
presented in Fig. 9. These plots show that the first canoni-
cal component corresponds to the sex of the patients, with
males and females being clearly separated by underlying
patterns in gene expression and methylation. The survival
probabilities computed for both groups show that there
is a statistically significant different risk pattern between

males and females (Fig. 10). However, inspection of the
second order canonical variates reveals that the difference
in risk is likely due to overrepresentation of strong smok-
ers in male patients rather than being directly attributed
to the sex of the patient (Fig. 9 right).

Conclusions
CCA is crucially important procedure for integration of
multivariate data. Here, we have revisited CCA from the
perspective of whitening that allows a better understand-
ing of both classical CCA and its probabilistic variant. In
particular, our main contributions in this paper are:

• first, we show that CCA is procedurally equivalent to
a special whitening transformation, that unlike other
general whitening procedures, is uniquely defined
and without any rotational ambiguity;

• second, we demonstrate the direct connection of
CCA with multivariate regression and demonstrate
that CCA is effectively a linear model between
whitened variables, and that correspondingly
canonical correlations are best understood as
regression coefficients;

• third, the regression perspective advocates for
permitting both positive and negative canonical
correlations and we show that this also allows to
resolve the sign ambiguity present in the canonical
directions;

• fourth, we propose an easily interpretable
probabilistic generative model for CCA as a two-layer
latent variable framework that not only admits
canonical correlations of both signs but also allows
non-normal latent variables;
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Fig. 7 Plot of the estimated canonical correlations for the TCGA LUSC data

• and fifth, we provide a computationally effective
computer implementation in the “whitening” R
package based on high-dimensional shrinkage
estimation of the underlying covariance and
correlation matrices and show that this approach
performs well both for simulated data as well as in

application to the analysis of various types of omics
data.

In short, this work provides a unifying perspective on
CCA, linking together sphering procedures, multivari-
ate regression and corresponding probabilistic generative

Fig. 8 Squared correlations loadings between the first 10 components of the canonical covariates X̃CCA
and ỸCCA

and the corresponding observed
variables X and Y for the TCGA LUSC data
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Fig. 9 Scatter plots between first component of X̃CCA
and ỸCCA

(left) and within the first two components of X̃CCA
(right) for the TCGA LUSC data

models, and also offers a practical tool for high-
dimensional CCA for practitioners in applied statistical
data analysis.
Methods
Implementation in R
We have implemented our method for high-dimensional
CCA allowing for potential negative canonical correla-
tions in the R package “whitening” that is freely available

from https://CRAN.R-project.org/package=whitening.
The functions provided in this package incorporate
the computational efficiencies described below. The R
package also includes example scripts. The “whitening”
package has been used to conduct the data analysis
described in this paper. Further information and R code
to reproduce the analyses in this paper is available at
http://strimmerlab.org/software/whitening/.
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Fig. 10 Plot of the survival probabilities for male and female patients for the TCGA LUSC data

https://CRAN.R-project.org/package=whitening
http://strimmerlab.org/software/whitening/
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High-dimensional estimation
Practical application of CCA, in both the classical and
probabilistic variants, requires estimation of the joint
covariance of X and Y from data, as well as the computa-
tion of the corresponding underlying whitening matrices
WCCA

X andWCCA
Y (i.e. canonical directions) and canonical

correlations λi.
In moderate dimensions and large sample size n, i.e.

when both p and q are not excessively big and n is larger
than both p and q the classic CCA algorithm is applica-
ble and empirical or maximum likelhood estimates may
be used. Conversely, if the sample size n is small com-
pared to p and q then there exist numerous effective
Bayesian, penalized likelihood and other related regular-
ized estimators to obtain statistically efficient estimates
of the required covariance matrices (e.g., [22–25]). In our
implementation in R and in the analysis below we use the
shrinkage covariance estimation approach developed in
[22] and also employed for CCA analysis in [14]. However,
in principle any other preferred covariance estimator may
be applied.

Algorithmic efficiencies
In addition to statistical issues concerning accurate esti-
mation, high dimensionality also poses substantial chal-
lenges in algorithmic terms, with regard both to memory
requirements as well as to computing time. Specifically,
for large values of p and q directly performing the matrix
operations necessary for CCA, such as computing the
matrix square root or even simple matrix multiplication,
will be prohibitive since these procedures typically scale
in cubic order of p and q.
In particular, in a CCA analysis this affects i) the com-

putation and estimation of the matrixK (Eq. 9) containing
the adjusted cross-correlations, and ii) the calculation of
the whitening matricesWCCA

X andWCCA
Y with the canon-

ical directions αi and β i from the rotation matrices QCCA
X

andQCCA
Y (Eq. 5). These computational steps involve mul-

tiplication and square-root calculations involving possibly
very large matrices of dimension p × p and q × q.
Fortunately, in the small sample domain with n ≤

p, q there exist computational tricks to perform these
matrix operations in a very effective and both time-
and memory-saving manner that avoids to directly com-
pute and handle the large-scale covariance matrices and
their derived quantities [e.g. [26]]. Note this requires the
use of regularized estimators, e.g. shrinkage or ridge-
type estimation. Specifically, in our implementation of
CCA we capitalize on an algorithm described in [27] (see
“Zuber et al. algorithm” section for details) that allows
to compute the matrix product of the inverse matrix
square root of the shrinkage estimate of the correlation
matrix R with a matrix M without the need to store
or compute the full estimated correlation matrices. The

computationals savings due to effective matrix operations
for n < p and n < q can be substantial, going from
O

(
p3

)
and O

(
q3

)
down to O

(
n3

)
in terms of algorith-

mic complexity. Correspondingly, for example for p/n = 3
this implies time savings of factor 27 compared to “naive”
direct computation.

Zuber et al. algorithm
Zuber et al. (2012) [27] describe an algorithm that allows
to compute the matrix product of the inverse matrix
square root of the shrinkage estimate of the correlation
matrix R with a matrix M without the need to store or
compute the full estimated correlation matrices. Specifi-
cally, writing the correlation estimator in the form

R︸︷︷︸
p×p

= λ

⎛

⎝Ip + U︸︷︷︸
p×n

N︸︷︷︸
n×n

UT

⎞

⎠ (21)

allows for algorithmically effective matrix multiplication
of

R−1/2
︸ ︷︷ ︸
p×p

M︸︷︷︸
p×d

= λ−1/2

⎛

⎜
⎝M − U

(
In − (In + N)−1/2)

︸ ︷︷ ︸
n×n

⎛

⎝UTM︸ ︷︷ ︸
n×d

⎞

⎠

⎞

⎟
⎠ .

(22)

Note that on the right-hand side of these two equations no
matrix of dimension p×p appears; instead all matrices are
of much smaller size.
In the CCA context we apply this procedure to Eq. 5

in order to obtain the whitening matrix and the canoni-
cal directions and also to Eq. 9 to efficiently compute the
matrix K .
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