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Abstract

Background: Identifying specific residues for protein-DNA interactions are of considerable importance to better
recognize the binding mechanism of protein-DNA complexes. Despite the fact that many computational
DNA-binding residue prediction approaches have been developed, there is still significant room for improvement
concerning overall performance and availability.

Results: Here, we present an efficient approach termed PDRLGB that uses a light gradient boosting machine
(LightGBM) to predict binding residues in protein-DNA complexes. Initially, we extract a wide variety of 913 sequence
and structure features with a sliding window of 11. Then, we apply the random forest algorithm to sort the features in
descending order of importance and obtain the optimal subset of features using incremental feature selection. Based
on the selected feature set, we use a light gradient boosting machine to build the prediction model for DNA-binding
residues. Our PDRLGB method shows better overall predictive accuracy and relatively less training time than other
widely used machine learning (ML) methods such as random forest (RF), Adaboost and support vector machine (SVM).
We further compare PDRLGB with various existing approaches on the independent test datasets and show
improvement in results over the existing state-of-the-art approaches.

Conclusions: PDRLGB is an efficient approach to predict specific residues for protein-DNA interactions.
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Introduction
Th protein-DNA interaction is one of the central issues
in molecular biology and widely exists in various biolog-
ical activities in living organisms, such as DNA replica-
tion, repair, and modification processes. To understand
the recognition mechanism of protein-DNA complexes,
researchers often focus on protein-DNA binding sites
especially the interface residues that bind DNA. Exper-
imental approach such as electrophoretic mobility shift
assays (EMSAs) [1, 2], conventional chromatin immuno-
precipitation (ChIP) [3], X-ray crystallography [4], PNA
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(peptide nucleic acid)-assisted identification of RNA bind-
ing proteins (PAIR) [5], and NMR spectroscopy [6]
have been applied to expose the DNA binding amino
acids. However, these laboratory methods are expensive
and time-consuming. Alternatively, low-cost and effi-
cient computational methods are particularly important
in discovering specific interface residues of protein-DNA
complexes.

A number of computational approaches have been
focused on applying machine learning algorithms to build
prediction models based on sequence and structural infor-
mation. Wei [7] proposed novel evolutionary features for
DNA-binding proteins prediction. Jones and his cowork-
ers [8] proposed a simple method to identify DNA-
binding residues using the positive electrostatic patches
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on the protein surface. Ahmad et al. [9] developed a neu-
ral network classifier to predict DNA-binding residues
using a variety of composition, sequence and structural
information. Wang et al. [10] built SVM-based models
to predict DNA-binding residues by using data examples
represented with three sequence characteristics. Ferrer-
Costa et al. [11] implemented an effective linear predictor
to determine the DNA-binding sites in protein sequences.
Yan and his coworkers [12] trained a Naive Bayes classifier
to predict whether a given amino acid is a DNA-binding
site based on its characteristics and the features of its
sequence neighbors. Wang and Yang [13] developed a
random forest (RF) classifier according to the evolution-
ary information to detect the DNA-binding sites. Song
et al. [14] employed imbalanced classification techniques
for this problem. Carson et al. [15] combined the C4.5
algorithm with bootstrap aggregation and cost-sensitive
learning to identify binding residues in protein-RNA com-
plexes. Zou et al. [16] focused on the feature selection
techniques and improved the performance. Ozbek et al.
[17] presented a prediction method based on residue
variations in high frequency forms using the Gaussian
network. Other protein-DNA binding residue prediction
tools such as DR_bind [18] and PreDNA [19] have also
been developed.

Although a lot of studies has been performed, the prob-
lem of accurately identifying protein-DNA binding sites
still has huge room for improvement. Firstly, effective
features to detect DNA-binding interface residues from
non-binding amino acids are not fully exploited. Sec-
ondly, the imbalanced problem exists since the numbers
of DNA-binding and non-binding amino acids in pro-
teins are extremely unbalanced, and will cause over-fitting
and poor performance in the prediction of DNA-binding
amino acids.

In this work, we develop a innovative computa-
tional pipeline, named PDRLGB, for predicting interface
residues in protein-DNA complexes. We extract many
sequence and structure features and use the random
forest to select a subset of optimal features. Based on
the selected characteristics, we train the DNA-binding
residue prediction models using a new implementation
of Gradient boosting decision tree (LightGBM) [20]. Our
experiments show that PDRLGB significantly outper-
forms other state-of-the-art DNA-binding residue predic-
tion approaches.

Materials and methods
Datasets
To access the performance of the PDRLGB method and
other existing approaches, two benchmarking datasets
(PDNA-62 and PDNA-224) and two independent datasets
(TS-72 and TS-61) are used. PDNA-62 was built by
Ahmad et al. [9]. It consists of 67 sequences obtained

from 62 protein-DNA complexes in the Protein Data
Bank (PDB) [21] and the sequence identity between any
two sequences is ≤ 25%. PDNA-224 was generated by Li
et al. [19], which contains 224 proteins and the redundant
sequences was removed by using the sequence identity
cutoff of 25%. The independent test dataset called TS-
72 was extracted by Ma et al. [22]. It contains 72 protein
chains. TS-61 was constructed by Zhou et al. [23]. Redun-
dant proteins are removed by using the CD-HIT [24], and
the remaining 61 non-redundant DNA-binding protein
sequences have ≤30% sequence identity with the protein
sequences in PDNA-62, PDNA-224, and TS-72.

Similar to previous researches [10, 18], a residue of a
protein is defined as a binding amino acid if the clos-
est distance between atoms of the protein and its binding
DNA is ≤3.5Å. The whole positive samples and negative
samples of the four datasets are summarized in Table 1.

Performance measures
To evaluate the performance, we use several typical mea-
sures, including accuracy (ACC), sensitivity (SN/Recall),
specificity (SP), strength (ST), precision (PRE), F1-score
(F1), and Matthews Correlation Coefficient (MCC) score.
These measurements are defined as:

ACC = TP + TN
TP + TN + FP + FN

(1)

SN = TP/(TP + FN) (2)

SP = TN/(TN + FP) (3)

ST = (SN + SP)/2 (4)

PRE = TP/(TP + FP) (5)

F1 = 2 × SN × PRE
SN + PRE

(6)

MCC = TP × TN − FP × FN√
(TP+FP)(TP + FN)(TN + FP)(TN + FN)

(7)

In these equations, the TP, FP, TN, and FN represent
the number of true positives, the number of false posi-
tives, the number of true negatives, and the number of

Table 1 Number of positive samples (binding sites) and negative
samples (non-binding sites) of the four datasets

Dataset Positive samples Negative samples

PDNA-62 1215 6948

PDNA-224 3778 53,570

TS-72 1040 13,226

TS-61 1078 13,175
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false negatives, respectively. Because of the imbalanced
problem in the data sets, the strength (ST) is the average
score of sensitivity and specificity which is used to obtain
a fair measure of the model. Additionally, there are two
broadly employed measurement to estimate prediction
performance including the receiver operating character-
istic (ROC) [25] and the area under ROC curve (AUC)
[26]. The ROC curve is plotted with the false positive rate
against the true positive rate. When AUC takes the max-
imum value of 1, it represents a perfect predictor, and
the values of AUC of random guessing is usually close
to 0.5.

The prediction pipeline
The pipeline of PDRLGB is showed in Fig. 1. It is made
up of several steps: A) feature extraction: a total of 83
sequence and structure features are extracted, and the
feature vectors are generated using a sliding window of

w; B) feature selection: the features are sorted with ran-
dom forest and the optimal feature set is selected using
the incremental feature selection approach; C) building
prediction classifiers: the DNA-binding residue predic-
tion models are built using the light gradient boosting
machine. These processes are described in details in the
following subsections.

Feature extraction
We extract a variety of features including position-specific
scoring matrices (PSSMs) (20 features), physicochemical
properties (10 features), disordered features (3 features),
side-chain environment (pKa) (2 features), identity vec-
tor (20 features), net charge (1 feature), the information
from DSSP (15 features), the information from NACCESS
(10 features), H-bonds (1 feature) and B-factor(1 fea-
ture). These features can be grouped into two categories:
sequence and structure features.

Fig. 1 Flowchart of PDRLGB. It includes three steps: a extract a variety of sequence and structure features; b apply the random forest algorithm to
sort the features in descending order and select a subset of essential features using the incremental feature selection approach; c build
DNA-binding residue prediction models using LightGBM
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Sequence features:

1) Position-specific scoring matrices (PSSMs): PSSM
based evolutionary information is obtained from
multiple sequence alignment calculated by
PSI-BLAST [27] searching against the NCBI
non-redundant (NR) database, with iteration
number as 3 and e-value as 0.001.

2) Physicochemical properties: The physicochemical
properties of a residue include atom numbers,
electrostatic charge numbers, potential hydrogen
bonds, molecular mass (Mmass), hydrophobicity,
hydrophilicity, polarity, polarizability, propensities
and average accessible surface area [28]. The original
values of the ten physicochemical attributes for each
residue are obtained from the AAindex database [29].

3) Disordered regions: Predicted disordered regions
within a protein is also a significant property.
Avoiding possibly disordered fragments in protein
expression constructs can enhance expression,
foldability, and stability of the protein. DisEMBL [30]
is a useful tool for identifying disordered regions,
which is needed for many biochemical studies,
particularly structural biology, and structural
genomics projects. In this study, DisEMBL is used to
indentify dynamically disordered regions of the
protein sequence.

4) Side-chain environment (pKa): The value of pKa is
an effective metric in determining environmental
features of a protein. The side-chain pKa rates are
collected from Nelson and Cox [31] representing
protein side-chain environmental factors and are
broadly used by previous studies.

5) Identity vector: There is a 20-feature vector with 1
when the residue type occurs at the corresponding

position and 0 for the remaining amino acid
types.

6) Net charge of a residue: Twenty amino acids can be
divided into non-polar amino acids, polar charged
amino acids, polar uncharged amino acids. The DNA
backbone is negatively charged, so the sequence of
polar positively charged amino acids is thought to be
characteristic of DNA binding. A charge of +1 is
assigned to Arg and Lys and -1 to Asp and Glu. His is
assigned a charge of +0.5 and all other residues are
regarded as neutral.

Structure features:

1) Features from DSSP: we use DSSP [32] to obtain the
secondary structures, including solvent accessible
surface area (ASA), hydrogen bonds, atom
coordinates and backbone torsion angles.

2) Features from NACCESS: We use NACCESS [33] to
compute the absolute and relative ASA of all atoms,
total side chain, main chain, non-polar side chain
and allpolar side chain, respectively. ASA related
features has been shown to be a important feature in
identifying protein functional sites [34–37].

3) Number of H-bonds: The number of Hydrogen
bonds (Hbond) is computed by HBPLUS [38].

4) B-factor of a residue: The B-factor [39] of protein
crystal structures, including the B-factor of the Cα

and that of the Cβ of the amino acids in the
sequence, was adopted.

Features selection
We encode the features with a sliding window of w and
generate a large feature vector. To eliminate uninformative
variables and obtain more cost-effective models, a reli-
able feature selection approach was applied. Firstly, we use

Fig. 2 The effect of window size w on performance
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Fig. 3 The Rc values of top − k feature sets obtained by using the LightGBM algorithm

the random forest algorithm [40] to sort the features by
using the mean decrease Gini index (MDGI) Z-Score [41].
MDGI Z-Score measures the importance of individual
features. Features with higher MDGI Z-Scores are more
sensitive to random shuffling of their values, and thus
are more important for correctly classifying a residue into
DNA-binding site and non-DNA binding site. After rank-
ing the features in descending order of MDGI Z-Score,
we utilize the incremental feature selection approach to
select the top-k features. We construct the feature sub-
set by incremental adding the features in the ranked list
to the subset, and evaluate the performance of the top-k
subset using the LightGBM classifier with 5-fold cross-
validation. We use a comprehensive evaluation score (Rc)
to measure the performance of the feature subset. The Rc
score is defined as follows:

Rc = 1
n

n∑

i=1
{ACCi + SNi + SPi + AUCi} , (8)

where n is the repeat times of the 5-fold cross-validation.

Building prediction classifiers
Gradient boosting decision tree (GBDT) [20] is a widely
used and useful algorithm that can be used for both classi
fication and regression problems [42–47]. Recently, Ke et al.
proposed a novel GBDT algorithm named LightGBM
[48], which utilize two novel techniques: Gradient-based
One-Side Sampling (GOSS) along with Exclusive Feature
Bundling (EFB) to deal with the huge number of data
samples along with massive amount of features respec-
tively. GOSS keeps all the examples with large gradients
and conducts random sampling on the examples with
small gradients. EFB algorithm can bundle many exclusive
characteristics to the much fewer dense characteristics,
which can dramatically avoid unnecessary calculation for
zero feature values. Here we apply LightGBM to build
the DNA-binding residue prediction models. The detailed
steps of the LightGBM algorithm is shown in Algorithm 1.

Results
Parameter selection
The sliding window describes the target residue’s
sequence neighborhood, and the window size w should be

Table 2 Performance comparison of LightGBM with other machine learning methods

Dataset Methods ACC SN SP ST PRE F1 MCC AUC

PDNA-62 SVM 0.817 0.745 0.829 0.787 0.433 0.547 0.468 0.873

Adaboost 0.814 0.791 0.818 0.804 0.431 0.558 0.485 0.881

RF 0.817 0.782 0.822 0.802 0.435 0.559 0.486 0.883

LightGBM 0.815 0.863 0.806 0.835 0.438 0.581 0.523 0.912

PDNA-224 SVM 0.786 0.765 0.776 0.771 0.194 0.310 0.306 0.847

Adaboost 0.773 0.761 0.774 0.768 0.192 0.307 0.320 0.851

RF 0.814 0.750 0.819 0.784 0.226 0.347 0.351 0.864

LightGBM 0.800 0.833 0.797 0.815 0.224 0.353 0.383 0.896
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Algorithm 1 The LightGBM algorithm
Input:

Training data: D = {(χ1, y1), (χ2, y2), ..., (χN , yN )}, χiεχ , χ ⊆ R, yiε{−1, +1}; loss function: L(y, �(χ)); iterations:
M; sampling ratio of large gradient data: a; sampling ratio of small gradient data: b;

1: Merge mutually exclusive features(i.e. features never take nonzero values simultaneously) of χi, i = {1, ..., N} by
exclusive feature bundling(EFB) method;

2: Initialize �0(χ) = arg minc
∑N

i L(yi, c);
3: for m = 1 to M do
4: Compute absolute values of gradients:

ri =
∣∣∣ ∂L(yi,�(χi))

∂�(χi)

∣∣∣
�(χ)=�m−1(χ)

, i = {1, ..., N}
5: Resampled dataset by Gradient-based One-Side Sampling (GOSS) method:

topN = a × len(D); randN = b × len(D);
sorted = GetSortedIndices(abs(r));
A = sorted[ 1 : topN]; B = RandomPick(sorted[ topN : len(D)] , randN); D′ = A + B;

6: Compute information gains:

Vj(d) = 1
n

(
(
∑

χiεAl
ri+ 1−a

b
∑

χiεBl
ri)2

nj
l(d)

+ (
∑

χiεAr ri+ 1−a
b

∑
χiεBr ri)2

nj
r(d)

)

7: Get a new decision tree �m(χ)′ on set D′.
8: Update �m(χ) = �m−1(χ) + �m(χ)′
9: end for

10: return �̃(χ) = �M(χ)

selected properly. The predictive performance of a variety
of different local window sizes (1, 3, ..., 25) is evaluated.
As shown in Fig. 2, the ST score increases when the win-
dow size increases from 1 to 11, and the highest ST score
is achieved when the window size is 11. So we select

the optimal window size as 11 in the proposed PDRLGB
method.

The number of features (k) is another important param-
eter. We build LightGBM classifiers for each top−k subset
and calculate the performance of 5-fold cross-validation.

Fig. 4 Performanc of LightGBM, SVM, Random Forest and Adaboost on the benchmark datasets. a shows the ROC curves on the PDNA-62 dataset. b
shows the ROC curves on the PDNA-224 dataset
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Table 3 Performance comparison of various prediction methods on PDNA-62 with 5-fold cross-validation

Methods ACC SN SP ST PRE F1 MCC AUC P-value

Dps-pred 0.791 0.403 0.818 0.611 0.279 0.330 0.191 - -

Dbs-pssm 0.664 0.682 0.660 0.671 0.210 0.376 0.249 - -

BindN 0.703 0.694 0.705 0.700 0.291 0.410 0.297 0.752 -

Dp-bind 0.781 0.792 0.772 0.782 0.378 0.512 0.490 - -

BindN-RF 0.782 0.781 0.782 0.782 0.385 0.516 0.436 0.861 -

BindN+ 0.790 0.773 0.793 0.783 0.395 0.523 0.443 0.859 -

PreDNA 0.794 0.768 0.797 0.783 0.398 0.524 0.424 - -

EL_PSSM-RT 0.808 0.854 0.801 0.826 0.428 0.569 0.507 0.901 **

PDRLGB 0.815 0.863 0.806 0.835 0.438 0.581 0.523 0.912 1.79×10−5

The results are shown in Fig. 3. As the dimension of the
features increases, the highest RC score of 0.85 is obtained
when using the top 800 features. Finally, we select a sub-
set of features (Top 800) that contribute the most to the
classification as the optimal feature set.

Performance comparison with other machine learning
techniques
In this section, we conduct a comparison experiment
of LightGBM with existing machine learning techniques,
including Support Vector Machine (SVM) [49], Random
Forest (RF) [40] and AdaBoost [50]. The performance of
these classifiers are listed in Table 2. It is worth emphasiz-
ing that these classifiers are trained on the same bench-
mark with the same feature set. The ROC curves are
shown in Fig. 4. It is obvious that LightGBM achieves
significant performance improvement on both PDNA-
62 and PDNA-224 when it compares to these classifiers.
Concretely, on the PDNA-62 dataset, LightGBM obtains
at least 3.1% increase on ST, 2.2% increase on F1, 3.7%
increase on MCC and 2.9% increase on AUC when com-
paring with SVM, RF and AdaBoost. As for the PDNA-224
dataset, LightGBM achieves at least 3.1% increase on ST,
0.6% increase on F1, 3.2% increase on MCC and 3.0%
increase on AUC. Due to the imbalanced problem on
both datasets, the ROC curve is regarded as the use-
ful estimation for the overall performance. Higher ROC
curve denotes better prediction performance. Figure 4a
and b also show that LightGBM obtains the best ROC
curves on the two datasets (PDNA-62 and PDNA-224).
The results imply that the LightGBM algorithm we used is
more superior than other widely used classifiers.

Performance comparison with other state-of-the-art
predictors
There exists many DNA-binding site prediction methods
which trained and tested either on PDNA-62 or PDNA-
224, such as Dps-pred [9], Dbs-pssm [51], BindN [10],
Dp-bind [52], BindN-RF [13], BindN+ [53], PreDNA [19]
and EL_PSSM-RT [23]. Note that some of these meth-
ods are only trained and tested the PDNA-62 dataset, and
others are trained and tested on the two datasets. We cal-
culate P-values using the two-tailed, paired t-test [54]. The
prediction performance of our PDRLGB approach and
other methods on PDNA-62 and PDNA-224 are shown
in Tables 3 and 4, respectively. The results on PDNA-62
are shown in Table 3, PDRLGB achieves the best perfor-
mance, outperforming other approaches by 0.9%-21.4%
on ST, 1.2%-25.1% on F1, 1.6%-33.2% on MCC and 1.1%-
16% on AUC. The results on the PDNA-224 dataset are
shown in Table 4, PDRLGB performs better than PreDNA
and EL_PSSM-RT by 2.7%-6.9% on ST, 2.9%-4.8% on F1,
4.2%-9.4% on MCC and 3.1% on AUC. These enhance-
ments on performance indicate that the LightGBM-based
PDRLGB method based on the optimally selected features
is beneficial for predicting DNA-binding residues.

Performance comparison on the independent test dataset
To further assess the performance, we compare PDRLGB
with seven existing state-of-the-art protein-DNA binding
site prediction methods, DNABR [22], BindN [10], BindN-
RF [13], BindN+ [53], EL_PSSM-RT [23], DRNApred [55]
and CNNsite [56] on the TS-72 dataset. DNABR [22]
and BindN-RF [13] are built using random forest (RF).
BindN [10] and BindN+ [53] are trained using support

Table 4 Performance of PDRLGB Compared with PreDNA and EL_PSSM-RT on PDNA-224 with 5-fold cross-validation

Methods ACC SN SP ST PRE F1 MCC AUC P-value

PreDNA 0.791 0.695 0.798 0.746 0.195 0.305 0.289 - -

EL_PSSM-RT 0.781 0.796 0.780 0.788 0.203 0.324 0.341 0.865 **

PDRLGB 0.800 0.833 0.797 0.815 0.224 0.353 0.383 0.896 4.07×10−5
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Fig. 5 Performance comparison on TS72

vector machines (SVMs). EL_PSSM-RT [23] is built using
a ensemble learning classifier. DRNApred [55] is designed
by using a two-layer predictor, which integrats hidden
Markov model (HMM) and logistic regression models.
CNNsite [56] is built using Convolutional Neural Net-
work. The AUC scores of these approaches are shown in
Fig. 5. DNABR, BindN, BindN-RF, BindN+, EL_PSSM-RT,
DRNApred and CNNsite achieve AUC values of 0.866,
0.748, 0.825, 0.844, 0.879, 0.797 and 0.878, respectively.
Comparing with these methods, our PDRLGB approach
achives the highest AUC value of 0.903 and improves the
AUC score by 2.4%-15.5% on the independent dataset
TS-72.

We also compare our PDRLGB method with DP-Bind
[57], EL_PSSM-RT [23] and DRNApred [55] on the inde-
pendent dataset TS-61. DP-Bind is implemented using
machine learning algorithms including SVM, kernel logis-
tic regression and penalized logistic regression. DP-Bind
also implements two ensemble classifiers by using major-
ity voting (MAJ) and unanimity voting (STR) respectively.
Here we only compare with DP-Bind (STR) since the una-
nimity voting approach achieves the best performance
according to Hwang et al [57]. The results are depicted in
Table 5. We observe that PDRLGB gains the highest AUC
score of 0.850. Although DRNApred has the highest speci-
ficity, PDRLGB has a better balance between recall and
specificity.

Computing time comparison
We present the training time cost comparisons in this sub-
section, which is shown in Fig. 6. Our experiments on the
two datasets show that LightGBM speeds up the training
process of classical methods by up to over 20 times faster
than SVM and is also faster than Adaboost. Although
random forest (RF) and LightGBM have similar calcula-
tion speed, in fact, the performance of the LightGBM-
based method is far better than that of the RF classifier.
Therefore, the PDRLGB is an accurate and fast model in
the prediction of protein-DNA binding residues in the
protein.

Case study
In order to further validate the usefulness of PDRLGB
for DNA-binding residue prediction, we apply PDRLGB
trained on PDNA-62 to distinguish the binding residues
from non-binding residues for the ISDra2 transposase/IS
end complex which is not in the training set, namely,
2XMA [58]. Here, we use PDRLGB to investigate the
DNA-binding residues (2XMA:A). PDRLGB achieves
87.05% on ACC, 0.67 on MCC, 86.67% on SP, 87.16% on
SN, 86.91% on ST, which is very precise when compared
with the available experimental data in the PDB database.
The experimentally determined DNA-binding sites and
predicted sites by PDRLGB for complex 2XMA are shown
in Fig. 7. Figure 7a denotes the experimentally determined

Table 5 Performance comparison on TS-61

Methods ACC SN SP ST PRE F1 MCC AUC P-value

DP-Bind(STR) 0.802 0.687 0.811 0.749 0.229 0.344 0.315 - -

DRNApred 0.772 0.337 0.966 0.652 0.450 0.386 0.347 0.822 -

EL_PSSM-RT 0.773 0.726 0.777 0.752 0.211 0.327 0.305 0.839 **

PDRLGB 0.807 0.694 0.817 0.758 0.237 0.353 0.325 0.850 7.83 ×10−5
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Fig. 6 Training time of LightGBM, SVM, Random Forest and Adaboost

Fig. 7 Prediction results on the case study 2XMA. a shows the experimentally determined DNA-binding residues in protein 2XMA:A. b shows the
predicted binding sites by PDRLGB, and the numbers of predicted TP, FP, TN and FN in 2XMA:A are 26, 14, 95, and 4, respectively. The true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) sites are displayed in red, yellow, black and blue, respectively
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binding sites of protein 2XMA:A and the red spheres
represent real DNA-binding sites. Figure 7b presents the
predicting binding sites of protein 2XMA:A. The results
show that the majority of the DNA-binding residues are
correctly predicted by the PDRLGB model.

Discussion
Existing methods for predicting DNA-binding sites are
mainly divided into sequence-based methods, structure-
based methods and hybrid methods. In this study, we
integrate both sequence and structural features to effec-
tively predict DNA-binding residues. A limitation of our
PDRLGB approach is that it requires the protein struc-
tural information, which may limit its application. How-
ever, with the increasing solved protein structures, protein
homology modeling projects and predicted 3D structures,
it is expected that PDRLGB can be used as a powerful tool
to effectively identify DNA-binding residues. We believe
that PDRLGB can be an effective tool for accurately pre-
dicting DNA-binding residues with the increasing avail-
ability of high-quality protein-DNA complex structures.

Conclusion
Targeting specific DNA-binding amino acids that con-
tribute to the strength and specificity of protein-DNA
interactions has broad applications ranging from rational
drug design to the investigation of metabolic and signal
transduction networks. In this paper, we have developed
a novel LightGBM-based algorithm termed PDRLGB, for
DNA-binding residue prediction. The sequence features
and structural characteristics are combined to construct
the feature space, and random forest combined with
incremental feature selection is applied to make a fea-
ture selection. As a result, the prediction performance on
the two datasets PDNA-62 and PDNA-224 with five-fold
cross-validation demonstrate that PDRLGB can acceler-
ate the training process and performs better when com-
pared with other widely used machine learning classifiers.
At the same time, performance comparisons between
PDRLGB and other existing state-of-the-art DNA-binding
site prediction methods demonstrate that our PDRLGB
approach achieves the best performance. We have also
employed our PDRLGB to identify binding sites on a
protein-DNA complex 2XMA and obtained satisfactory
results.
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