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Abstract

Background: Protein sequence alignment analyses have become a crucial step for many bioinformatics studies
during the past decades. Multiple sequence alignment (MSA) and pair-wise sequence alignment (PSA) are two
major approaches in sequence alignment. Former benchmark studies revealed drawbacks of MSA methods on
nucleotide sequence alignments. To test whether similar drawbacks also influence protein sequence alignment
analyses, we propose a new benchmark framework for protein clustering based on cluster validity. This new framework
directly reflects the biological ground truth of the application scenarios that adopt sequence alignments, and evaluates
the alignment quality according to the achievement of the biological goal, rather than the comparison on sequence
level only, which averts the biases introduced by alignment scores or manual alignment templates. Compared with
former studies, we calculate the cluster validity score based on sequence distances instead of clustering results. This
strategy could avoid the influence brought by different clustering methods thus make results more dependable.

Results: Results showed that PSA methods performed better than MSA methods on most of the BAliBASE benchmark
datasets. Analyses on the 80 re-sampled benchmark datasets constructed by randomly choosing 90% of each dataset
10 times showed similar results.

Conclusions: These results validated that the drawbacks of MSA methods revealed in nucleotide level also existed in
protein sequence alignment analyses and affect the accuracy of results.

Keywords: Multiple sequence alignment, Pair-wise sequence alignment, Benchmark

Background
Protein sequence alignments, as an effective and intui-
tive way of identifying homologous regions among se-
quences, play a fundamental role in various biomedical
researches such as database construction and query, pre-
diction of protein structure and function, etc. [1]. Pro-
tein sequence alignments could identify regions of
similarity that may reflect biological relationships among
the input sequences. As a result, protein sequence align-
ments analyses become a crucial step for many bioinfor-
matics analysis studies during the past decades. Many
protein databases covered protein family information
had been built based on sequence alignments such as
PROSITE [2], Pfam [3], and ProDom [4], etc. In the field

of database query, protein sequence alignment algo-
rithms such as BLAST [5], FASTA [6], dynamic pro-
gramming methods [7] and other methods [8–10]
enable researchers to compare a query protein sequence
with databases or library to get similar sequences of the
input sequence. Sequence alignment could detect motifs
and important functional or structural residues such as
binding sites, etc. [11–15]. Such information got from
sequence alignment analyses could be used to map onto
protein 3D structure and help deducing potential func-
tion of the protein [16, 17].
Various kinds of methods have been proposed for cre-

ating an alignment, including pair-wise sequence align-
ment (PSA), multiple sequence alignments (MSA),
profile-based methods, prediction-based methods, and
structure-based methods, etc. Of which, PSA and MSA
are most widely used. PSA aligns each pair of sequences
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once at a time. It is the simplest form of an alignment
which can be performed with two approaches: global or
local. The computational definition of PSA is to find the
alignment that maximizes the two input protein se-
quences’ similarity. PSA methods are usually used to cal-
culate the sequence similarity on function, structure
and/or evolution levels [7, 18]. Many PSA methods have
been developed such as EMBOSS [19], BLAST [20],
CD-HIT [21], ESPRIT [22], and UCLUST [23], etc. The
procedure of MSA can also be performed with global
and/or local approaches and it is more complex: the
MSA methods arrange multiple protein sequences into a
rectangular array aiming to make residues in a same col-
umn homologous or with similar functions. Many trad-
itional methods have been developed such as MUSCLE
[24, 25], MAFFT [26, 27], CLUSTALW [28], Clustal
Omega [29], ProbCons [30], T-Coffee [31], PROMALS
[32], SPEM [33], Expresso [34], PROMALS3D [35],
Align-M [36], KAlign [37], DIALIGN [38], POA [39],
HAlign [40], ProDA [41], 3DCOFFEE [42], NAST [43],
and Mothur [44], etc. These MSA methods are often
used to assess sequence conservation, tertiary and sec-
ondary structures of protein. Homology and evolution-
ary relationships could be inferred from the output of
MSA methods because there is an underlying assump-
tion for MSA: all the sequences to be aligned may share
recognizable evolutionary homology.
The reliability of alignment results is an indispensable

prerequisite for most downstream analyses. Nevertheless, it
has been observed that the alignment results produced by
different tools can be quite diversified [45]. Evaluation of se-
quence alignment methods is often quite a complicated
problem due to the unavailability of ground truth. As a re-
sult, systematic benchmarks that provide clear guidance
about the capabilities and limitations of these sequences
alignment algorithms are crucial since the conclusions are
based on objective, quantitative comparisons [46]. Early in
1994, a study compared the ability of different MSA
methods of finding the highly conserved functional motifs
throughout a given protein family. Due to the limitation of
datasets, this study used only four protein family as test
datasets [47]. Constructing standard, high-quality protein
sequences’ benchmark datasets become a crucial step in
the fields. Some datasets were developed to solve such
problems as follows: BAliBASE datasets were constructed
based on 3D structural super-positions that were manually
refined to ensure the correct alignment of conserved resi-
dues [48–51]. HOMSTRAD [52] provided combined pro-
tein sequence and structure information extracted from
PDB [53], Pfam [3] and SCOP [54], and so on. OXBench
was built automatically using structure and sequence align-
ment methods and was divided into three datasets [55].
SABmark was built based on sequences derived from the
SCOP protein structure classification and it only provided

‘gold standard’ alignments for pairs of sequences [56]. Pre-
fab was built using a fully automatic protocol and pairs of
sequences with known 3D structures were selected and
aligned [24]. IRMBase was designed to test local multiple
alignment methods and the benchmark datasets were syn-
thesized [57, 58].
Several studies have focused on the performance of

MSA method using these benchmark datasets [59–64]
by analyzing the alignment accuracy [65, 66], computing
time and memory usage [67], etc. The results of these
studies indicated that there all MSA methods have their
own strengths and weaknesses and no MSA method was
perfect on all benchmark datasets. However, these indi-
cated us that there were some common drawbacks
among all the MSA methods. Uncertainty was one dis-
advantage of MSA methods that cannot be ignored. A
study showed that uncertainty in the MSA alignments
can lead to several problems, including different align-
ment methods resulting in different conclusions [45].
The presence of a large proportion of highly diverse se-
quences was shown to affect the alignment of sequences
with a small genetic distance while using MSA methods
[22]. Negative effects on clustering results were another
kind of drawback when compared with PSA methods. A
study showed that MSA-based clustering methods get
worse results than PSA-based clustering methods on 16
s rRNA datasets [68].
The reasons causing these drawbacks of MSA methods

may be as follows: (1) The evolutionary relationships of in-
put sequences were often unknown thus the assumption of
MSA methods were not met. (2) The design of some MSA
methods’ alignment evaluation scores focused on math
sense instead of biological meanings. (3) Many MSA
methods adopted heuristic search in order to deal with
massive sequences which made themselves easier to fall
into local optimization. Compared with this, PSA methods
could identify similar regions of protein sequences in a fast
and flexible way when applied on nucleotide level [69, 70].
Thus it is valuable to test whether such conditions also ex-
ists on protein level by comparing MSA and PSA methods
in a systematically way.
Normally, a benchmark study is based on some kind

of understanding of what the correct result should be,
thus a specific and significant definition of what ‘correct’
or ‘gold standard’ and measures used to reflect the re-
sults are crucial. Two commonly used scores in MSA
benchmark studies are Sum-of Pairs score (SP) and Col-
umn Score (CS). SP increases with the number of cor-
rectly aligned sequences and is used to determine the
extent of MSAs succeed in an alignment. CS is a binary
score that shows the ability of MSA methods to align all
the input sequences correctly. However, SP and CS only
consider the correctly aligned residues. To overcome
this limitation, an alternative approach is Position Shift
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Error (PSE) score, which is used to measure the average
magnitude of error. This score could ensure misalign-
ments that caused a small shift between two sequences
are penalized less than large shifts. Other metrics such
as fD and fM have been developed to distinguish the re-
gions that were homologous from the unrelated regions.
These metrics may reflect the ability of MSA methods
through a computational perspective; however, the
underlying assumption is that all the input protein se-
quences are globally align-able, which means that only
substitutions, small insertions, and deletions are consid-
ered to be the mutational events separating those pro-
tein sequences. However, most protein benchmark
datasets are grouped into different sub-datasets which
contain several protein families. This indicated us that
the ‘correct’ or ‘gold standard’ results should be consist-
ent with the protein family divided on biological levels.
Each benchmark dataset contain several protein families
which could be considered as classes and the proteins in
them can be considered as samples with known class la-
bels. Each benchmark dataset could thus be considered
as a clustering result and the ‘correct’ results given by
MSA or PSA methods should be the one best fit with it.
Cluster validity criteria which are quantitative measures
are suitable here [71] to evaluate the fitness between re-
sults generated from MSA or PSA methods and the cor-
rect results (real protein family divisions). A higher
cluster validity value means the corresponding alignment
method shows better performance. Several cluster valid-
ity measures have been developed to assess the quality
of clustering algorithms such as Dunn and Dunn like In-
dices [72], Davies Bouldin Index [73], SD Validity Index
[74], S_Dbw Validity Index [75], Silhouette Width [76],
and R Squared index [77]. Dunn is time consuming and
very sensitive to noise since the score is closely related
to the maximum and minimum distances between sam-
ples. Davies Bouldin Index, SD Validity Index, and
S_Dbw Validity Index need to choose a representative
point from each cluster.
In this paper we propose a new benchmark framework

for protein sequence alignment methods based on clus-
ter validity. This new framework directly reflects the bio-
logical ground truth of the application scenarios that
adopt sequence alignments, and evaluates the alignment
quality according to the achievement of the biological
goal, rather than the comparison on sequence level only,
which averts the biases introduced by alignment scores
or manual alignment templates. In contrast to former
studies, we calculated the cluster validity scores based
on sequence distances directly instead of clustering re-
sults, which avoids the influence brought by different
clustering methods, and makes the comparison fairer for
both MSA and PSA methods. Results showed that PSA
methods have higher cluster validity score than MSA

methods on most of the benchmark datasets. These re-
sults validated that the drawbacks of MSA methods re-
vealed in nucleotide level also existed in protein
sequence alignment analyses and affect the accuracy of
results.

Methods
Figure 1 depicts the pipeline of the benchmark proced-
ure carried out in this paper, which comprises four main
steps as follows: (1) Data Generation; (2) Alignment
Analyses; (3) Evaluation Calculation; (4) Significance
Analyses. Firstly, sequences with different class labels
were combined to generate each benchmark dataset.
Then, the alignment analyses were performed using 6
MSA and 1 PSA methods and the aligned sequence
matrices with gaps inserted are generated as outputs.
Based on this, evaluation calculation was performed by
cluster validity calculation using SW and RS scores,
based on distances calculation results. Finally, Signifi-
cance analyses were performed on biological and statis-
tical levels to determine whether the performance
differences between algorithms produces essential dis-
criminations on application scope.
One major difficulty for comparing alignment methods

against biological backgrounds is that de-novo sequence
binning relies heavily on the choice of clustering
methods, which is independent of the alignment itself
but greatly impacts the outcome. To avert this influence,
we adopt a clustering-free approach on the evaluation
step. Instead of creating clusters and matching them
with real taxonomy, we directly evaluate how the taxa
are separated by the alignment results. An optimal align-
ment will be expected to maximally separate sequences
of different family, while on the other hand group se-
quences of the same family together. In this manner the
alignment quality of different algorithms are evaluated.

Data generation
We downloaded eight datasets from BAliBase v3.0. Two
steps of analyses were performed on these datasets to gen-
erate eight groups of benchmark datasets as follows: (1)
For each dataset, we combined protein sequences of dif-
ferent protein families into one file. All the protein fam-
ilies and sequences were included in the analyses except
for the sequences belonged to more than one protein fam-
ilies since they would cause the confusion of the following
steps. Each protein sequence was considered as a sample
and the family it belonged to was considered as the sam-
ple’s class label. The original family labels of the sequences
are considered as the ground truth of the clustering re-
sults. (2) For each dataset, we randomly chose 90% of the
sequences from the file generated in the above step to
construct a re-sampled benchmark dataset. This proced-
ure was repeated 10 times for each dataset. Thus eight

Wang et al. BMC Bioinformatics 2018, 19(Suppl 19):529 Page 97 of 188



groups of benchmark datasets were generated and each
group contained 11 datasets including one benchmark
datasets downloaded from BAliBase and 10 re-sampled
datasets. The details of these eight benchmark datasets
groups were listed as follows and Table 1.
Reference 1 (including RV11 and RV12) contained

full-length equidistant sequences with two different levels
of conservation: RV11 contained very divergent sequences
with < 20% residue identity and any two sequences shared
20–40% residue identity were included in the dataset
RV12. Sequences having large internal insertions or exten-
sions were excluded. The average number of sequences
(309) and the average sequence length (346.9332) in this
dataset were both the smallest of all the datasets
Reference 2 (RV20) contained full-length families

aligned with a highly divergent ‘orphan’ sequence. A
family was included in this dataset if all the sequences
shared > 40% residue identity and for which at least one
3D structure was known. ‘Orphan’ was referred to a se-
quence that shared < 20% residue identity with all mem-
bers in the family. The numbers of sequences in the
dataset was 1706 with average sequence length 384.3581
Reference 3 (RV30) contained full-length sequences

with < 25% residue identity between any two sequences
from different families. It was designed to demonstrate
the ability of the programs to correctly align equidistant
divergent families into a single alignment. The numbers
of sequences in the dataset was 1723 with average se-
quence length 387.9745

For References 1–3, the percent identity was calculated
over the homologous region only, and no sequences
contain large internal insertions.
References 4 (RV40) and 5 (RV50) contained full-

length sequences shared > 20% residue identity that con-
tained large N/C-terminal extensions or internal inser-
tions respectively. The two datasets were designed to
evaluate a program’s ability to identify the presence of
the insertions not to judge the overall quality of an
alignment. The numbers of sequences in the two data-
sets were 1113 and 443 with average sequence length
480.0952 and 516.6546
Reference 9 (including RV911 and RV912) contained

full-length sequences with linear motif alignment.
RV911 contained sequences with < 20% residue identity
and RV912 contained sequences with 20–40% residue
identity. The average number of sequences was 325.5
and the average sequence length was 577.8071 in this
dataset

Alignment methods tested
Six MSA programs including MUSCLE (default),
MUSCLE (iters = 2), MAFFT (FFT-NS-2), MAFFT
(L-INS-i), Clustal Omega, and KAlign were chosen
based on different algorithmic approaches beyond down-
load availability and popularity. ESPRIT was used on be-
half of PSA methods. The details of these methods were
listed as follows:

Fig. 1 Framework of this benchmark study This benchmark study is performed following four main steps including data generation, alignments,
evaluation calculation, and significance analyses

Table 1 Benchmark datasets list

Reference Name Dataset IDa Number of
sequencesb

Number of
classesc

Average
length

Reference1 RV11 236 38 301.178

RV12 382 44 392.6885

Reference2 RV20 1706 41 384.3581

Reference3 RV30 1723 30 387.9745

Reference4 RV40 1113 49 480.0952

Reference5 RV50 443 16 516.6546

Reference9 RV911 423 29 701.5792

RV912 228 28 454.0351
aDataset IDs are abbreviation for the datasets and are used to refer the corresponding dataset in this paper. bNumber of sequences means the number of
sequences with only one class label in the raw datasets. cNumber of classes means the number of pre-defined protein clusters in each benchmark dataset
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MSA method-MUSCLE (MUltiple Sequence Comparison by
Log-Expectation)
MUSCLE had three stages: draft progressive, improved
progressive, and refinement. The first stage calculated
the similarity of each pair of input sequences using
k-mer counting or by constructing a global alignment of
the pair to get a triangular distance matrix constructed a
tree based on it. After this, a progressive alignment was
built. The second stage attempted to improve the tree
constructed in the first step and built a new progressive
alignment according to this tree. The third stage per-
formed iterative refinement using a variant of
tree-dependent restricted partitioning. At the comple-
tion of each stage, a multiple alignment was available
and the algorithm can be terminated. MUSCLE was
shown to be suitable for medium alignments. In this
paper, we chose two parameter settings of MUSCLE
based on the consideration of accuracy and speed:
MUSCLE (default) and MUSCLE (iters = 2). The default
settings were designed for best accuracy rather than
making any compromises for speed, and the option
‘iters = 2’ (short for maxiters two Iterations) was de-
signed for large datasets where long execution times be-
comes an issue.

MSA method-MAFFT (Multiple sequence Alignment based
on the Fast Fourier Transform)
MAFFT offered various multiple alignment strategies
which were classified into three types: (1) progressive
method (including FFT-NS-1, FFT-NS-2), (2) iterative
refinement method (including FFT-NS-i, NW-NS-i), (3)
iterative refinement method using both the WSP and
consistency scores (including L-INS-i, E-INS-i, G-INS-i).
Strategies in type1 ran the fastest in speed and strategies
in type3 was the most accurate. The same as MUSCLE,
we chose two parameter settings of MAFFT based on
the consideration of accuracy and speed: MAFFT
(FFT-NS-2) and MAFFT (L-INS-i).

MSA method-Clustal Omega
Clustal Omega was the latest member of the ‘Clustal
family’. Compared with previous versions, Clustal
Omega offered a significant increase in scalability, allow-
ing virtually any number of protein sequences to be
aligned quickly with similar accuracy of other MSA
methods.

MSA method-KAlign
KAlign was a global, progressive alignment method
which employed an approximate string-matching algo-
rithm to calculate sequence distances and incorporated
local matches into the global alignment. It was designed
to deal with large-scale sequences with quickly speed
and accuracy.

PSA method-ESPRIT
ESPRIT performed global pair-wise sequence alignment
using Needleman-Wunsch algorithm.

Evaluation calculation
To evaluate the performance of different methods we
analyzed in this study, we performed evaluation calcula-
tion using three procedures: similarity calculation, dis-
tance calculation, and cluster validation calculation. The
input of this step was the aligned sequence matrices
generated by each alignment method and the output
was a cluster validity value. The ‘distance calculation’
was calculated based on ‘similarity calculation’ while the
‘cluster validation calculation’ was calculated based on
‘distance calculation’. The detailed way of the three pro-
cedures were as follows:

Similarity and distance calculation
The percent identify (ID) score was used to calculate the
similarity between two sequences in the aligned matrixes
generated in the step named ‘alignment analyses’ as
follows:

ID ¼ number of matched residuesð Þ=
whole length of aligned sequencesð Þ

ð1Þ

The ID score was adopted by BLAST programs and it
could reflect the percentage of identical residues in the
aligned sequence pairs.
Based on the similarity ID score, the distance between

two protein sequences was calculated as follows:

dis ¼ 1−ID ð2Þ

For PSA method, if two sequences were exactly the
same, the ID score would be the maximum value 1.0 and
the distance score dis will be 0. It should be noted that,
however, for MSA methods, the ID score may not be the
maximum value 1.0 even when two sequences are identi-
cal, because MSA algorithms may produce different align-
ment results for identical sequences within one run.

Cluster validity calculation
Since cluster validity index were designed to evaluate
the fitness degree MSA or PSA aligned results and the
real protein family divisions, the index should not be too
sensitive to noise such as Dunn and Dunn like indices
and should not add burden to the calculation such as
importing the representative point for each cluster as
many index required. We chose two cluster validity indi-
ces which met the above criteria: silhouette width and
RS to evaluate the performance of each MSA and PSA
methods.

Wang et al. BMC Bioinformatics 2018, 19(Suppl 19):529 Page 99 of 188



SW score
Silhouette was used to find the partitioning that best fit-
ted the underlying data and was not easily affected by
noise data. If one sequence alignment method got
well-clustered results, the value will near 1.0; otherwise
the value will near − 1 if it was poorly-clustered results.
Higher silhouette value meant intra-distances (distances
among the same class) were much smaller than
inter-distances (distances among different classes) which
proved the partitioning to be a good one. The Silhouette
Width (SW) score for a partition was calculated as

SW ¼
Pn

i¼1S ið Þ
n

ð3Þ

where for each sequence i, the silhouette value was de-
fined as

S ið Þ ¼ b ið Þ−a ið Þ
max a ið Þ; b ið Þf g ð4Þ

where a(i) was the average distance between sequence i
and other sequences in the same cluster; b(i) was the
minimum average distance between sequence i and any
other clusters where i was not a member. The cluster
with this minimum distance was called ‘nearest neigh-
boring cluster’ of i because it was the next best fit cluster
for sequence i.

RS score
RS score was used to measure the dissimilarity of clus-
ters. The values of RS ranged from 0 to 1. A higher RS
value meant better clustering. It was calculated as:

RS ¼ SSt−SSw
SSt

ð5Þ

Of which SSt referred to the total sum of squares of
the whole dataset, SSw referred to the sum of squares
within cluster. The sum of squares was calculated as
Pn

k¼1ðxk−xÞ , where xk stood for the distance between
two sequences, x stood for the mean distances of all the
sequences, and n stood for the number of the combin-
ation among different sequences.
It should be noted that, although PSA methods are

likely to produce smaller distance for a sequence pair
compared with MSA methods, the above criterion is es-
sentially fair for both type of methods. The reason is that
both the SW score and the RS score are not measured
by the sole sequence distances, but by the contrasts be-
tween intra-cluster and inter-cluster distances. Although
PSA achieves smaller pair-wise distances, this applies to
both within-cluster and between-cluster comparisons. If
the intra-cluster and intra-cluster distances are shrinks
by the same degree, the SW and RS scores won’t be
increased.

Significance analyses
For each benchmark group, the cluster validity results of
different alignment methods calculated on the 10
re-sampled datasets were compared using t test. A
higher p-value meant the performance of the two align-
ment methods was of no difference while a smaller
p-value meant there were significant differences between
the two alignment methods.

Results
We performed protein sequence alignments using 6 MSA
methods and 1 PSA method on the benchmark datasets.
Six hundred sixteen alignment analyses were performed in
total. Results showed that (1) Esprit got the highest scores
on all the datasets based on SW calculation; (2) both Es-
prit and MUSCLE (default) got high scores based on RS
calculation, Esprit performed a little better than MUSCLE
(default) in total. Meanwhile, the computational time
taken by Esprit was less than MUSCLE (default) as shown
in Additional file 1: Table S1.
Esprit got the highest SW scores on all the benchmark

datasets (See Fig. 2 for details) indicating that PSA
methods may be a good choice when performing protein
sequence analyses. Statistical analyses showed that all the
differences between Esprit and other MSA methods were
significant (with small p values). Taken MUSCLE (default)
as a representation of MSA methods, all the p values were
less than 0.1 indicating the significant differences between
these alignment methods (See Table 2 for details). The de-
tailed results of each benchmark group were as follows:
Benchmark dataset reference1 was composed of two

sub-datasets (named RV11 and RV12 in this study) which
were used to reflect the abilities of alignment methods on
dealing with short length sequences. Results showed that
based on SW scores, Esprit performed better than other
MSA methods used in this study in both RV11 and RV12
with SW scores 0.008933 and 0.107577, separately (See Fig.
2(a) for details). This indicated that the PSA methods may
perform better than MSA methods when facing with short
sequences. The average SW scores on the re-sampled
benchmark datasets showed similar results: Esprit got the
highest SW scores compared with other alignment
methods in RV11 with 0.014383 and 0.108044 in RV12
(See Table 2 for details). Both RV 20 and RV30 datasets
contained over a thousand of sequences which made the
alignment procedures time-consuming. Esprit was the best
alignment method in the two datasets with SW scores
0.193477 and 0.125665 (See Fig. 2(a) for details). The aver-
age SW scores on the re-sampled benchmark datasets
showed similar results: Esprit got the highest SW scores
compared with other alignment methods in RV20 with
0.193411 and 0.125547 in RV30 (See Table 2 for details).
RV40 contained sequences sharing at least 20% residue
identity with large N/C-terminal extensions. Esprit got the
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highest SW score 0.072995 in RV40 (See Fig. 2(a) for de-
tails) and the highest average SW score 0.072819 compared
with other alignment methods (See Fig. 2(b) and Table 2
for details). RV50 contains sequences sharing at least 20%
residue identity with internal insertions. Similar with the re-
sults of RV40, Esprit got the highest SW score 0.086898 in
RV50 (See Fig. 2(a) for details) and the highest average SW
score 0.086507 compared with other alignment methods
(See Fig. 2(b) and Table 2 for details). RV911 is similar to
RV11 for they both contain sequences sharing at most 20%
residue identity. The difference is sequences in RV911
cover linear motif alignment. All the alignment methods
got small SW scores and MUSCLE (default) even got a
negative score (− 0.001568). The highest SW score is
achieved by Esprit with 0.013568. For RV912, Esprit got the
highest SW score 0.167747 (See Fig. 2(a) for details). The
highest average SW scores on re-sampled benchmark data-
sets of RV911 and RV912 were both achieved by Esprit
with value 0.01329 and 0.167038, respectively (See Fig. 2(b)
and Table 2 for details).
Results based on RS scores showed similar results with

those calculated using SW score. Since MUSCLE (de-
fault) outperformed other MSA methods by the RS

scores criteria, we chose it as the representation of MSA
methods as the way we analyzed the results based on
SW scores. The average RS scores of Esprit and
MUSCLE (default) in re-sampled benchmark datasets
were listed in Table 2. The p values standing for the dif-
ferences between Esprit and MUSCLE (default) were
small (all less than 0.1) on benchmark groups RV20,
RV30, and RV912 (See Table 2 for details). Esprit got the
highest RS scores in these four re-sampled benchmark
datasets. Compared with this, there was no significant
difference between Esprit and MUSCLE (default) for
re-sampled benchmark datasets RV11, RV12, RV40,
RV50, and RV911 because the p values were at least
0.1271 (See Table 2 for details). Although the highest RS
scores were achieved either by Esprit or MUSCLE (de-
fault), the results were not significant on statistical
levels. This ensured that Esprit performed the best com-
pared with other methods no matter calculated using
SW or RS scores. The detailed results of each bench-
mark group were as follows:
The results based on RS scores showed that the perfor-

mances of all methods were similar on RV11 which was
the same with former researches that the resulting

Table 2 Average SW and RS scores of Esprit and MUSCLE (default) in re-sampled benchmark datasets

Re-sampled
benchmark
dataset

Average SW
score of Esprit

Average SW score of
MUSCLE (default)

P-value
of SW

Average RS
score of Esprit

Average RS score
of MUSCLE (default)

P-value
of RS

RV11 0.014383 0.007808 0.008627 0.91387 0.933349 0.5101

RV12 0.108044 0.003982 < 2.2e-16 0.705558 0.707488 0.8436

RV20 0.193411 0.009224 < 2.2e-16 0.403657 0.365046 0.07816

RV30 0.125547 0.007049 < 2.2e-16 0.407991 0.357121 0.001885

RV40 0.072819 0.000606 < 2.2e-16 0.705149 0.708882 0.7688

RV50 0.086507 0.006049 < 2.2e-16 0.322656 0.331129 0.5612

RV911 0.01329 −0.00131 3.512e-12 0.839489 0.826965 0.1271

RV912 0.167038 0.02381 < 2.2e-16 0.487026 0.37473 4.733e-07

Fig. 2 Cluster validation results based on SW score. a The SW score of benchmark dataset. b The SW scores of benchmark re-sampled benchmark dataset
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alignments were poor no matter which alignment method
was used when dealing with diverse set of sequences.
There was no statistical difference between MUSCLE (de-
fault) and Esprit on the re-sampled datasets of RV11
group, thus both of them could be considered as best per-
formance alignment methods in this dataset group. In
RV12, the highest RS score was achieved by MUSCLE (de-
fault) with 0.735538, the second highest RS score
0.708394 was achieved by Esprit. Considering the p value
for the re-sampled datasets of this benchmark group be-
tween the two methods was not significant (with p value
0.8436), both MUSCLE (default) and Esprit could be con-
sidered as the best performance methods on RV12 bench-
mark dataset group. Same as using SW score, Esprit was
the best alignment method in RV20 and RV30 (See
Fig. 3(a) for details) and the results of statistical analyses
also showed significant difference between Esprit and
other MSA methods. These indicated that PSA methods
may have better performance when dealing with family
containing highly similar sequences and could align equi-
distant divergent families into a single alignment com-
pared with MSA methods. MUSCLE (default) (RS score:
0.73) performed better than Esprit (RS score: 0.70) based
on RS score (See Fig. 3(b) for details) on RV40. However,
this result was not significant on statistical analyses since
the p value was 0.7688 indicating both the top 2 alignment
methods (MUSCLE (default) and Esprit) were good
choices on RV40 benchmark dataset group. For RV50, Es-
prit was the best performance method with RS score
0.318475 (See Fig. 3(b) for details) compared with other
alignment methods included in this study. However, the
big p value (0.5612) indicated that both of the top 2 align-
ment methods (Esprit and MUSCLE (default)) were good
choices when dealing with such datasets. For reference
dataset 9, MUSCLE (default) got the highest RS score
0.848139 and Esprit got the second highest score
(0.840775) in RV911. Similar as the results of RV40 and
RV50, the big p value (0.1271) also indicating the best

performances of both MUSCLE (default) and Esprit on
RV911 benchmark dataset group. For RV912, Esprit got
the highest RS score 0.485991 and the statistical analyses
results was also significant (See Fig. 3(a) and Table 2 for
details).

Discussion
Considering the above results, cluster validity calculation
using SW and RS scores on the datasets indicated that
PSA methods perform better than MSA methods under
most biological conditions. Interestingly, both Esprit and
MUSCLE (default) could be considered as the best
methods based on RS scores under some conditions.
Due to the characters of the two scores, a higher RS
score reflected the big dissimilarity among different pro-
tein families without considering the topological rela-
tionship between families; on the other hand, a higher
SW score reflected a small dissimilarity inside a protein
family and a clear discrimination between the family and
its siblings. Hence, SW score is more sensitive and ra-
tional compared with RS score due to its definition.
However, the representation of PSA methods Esprit still
performed equally or better than the MSA methods ana-
lyzed in this study. These indicated that PSA methods
may be a better choice if researchers focus on a balance
between similarity in a same protein family and dissimi-
larity among different protein families which is often the
option of most researchers.

Conclusions
Protein sequence alignments are essential in many bio-
informatics fields including computational analysis of
protein sequences, structure modeling, functional site
prediction, and sequence database searching, etc. MSA
methods try to minimize the sum of pair-wise scores by
aligning unrelated sequences thus the biological closely
related sequences are given large distances. Compared
with this, PSA could identify similar regions of protein

Fig. 3 Cluster validation results based on RS score. a The RS score of benchmark dataset. b The RS scores of benchmark re-sampled benchmark dataset
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sequences in a fast and flexible way when applied on nu-
cleotide level.
To test the performance of MSA and PSA methods on

protein sequence level, we presented a benchmark study
of sequence alignment methods for protein clustering.
Results showed that PSA methods performed much bet-
ter than MSA methods on all the BAliBASE datasets.
These indicated us that PSA methods were a better
choice of dealing with protein sequence alignment ana-
lyses than MSA methods.

Additional file
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