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Abstract

Background: Distinction between pre-microRNAs (precursor microRNAs) and length-similar pseudo pre-microRNAs
can reveal more about the regulatory mechanism of RNA biological processes. Machine learning techniques have been
widely applied to deal with this challenging problem. However, most of them mainly focus on secondary structure
information of pre-microRNAs, while ignoring sequence-order information and sequence evolution information.

Results: We use new features for the machine learning algorithms to improve the classification performance by
characterizing both sequence order evolution information and secondary structure graphs. We developed three steps
to extract these features of pre-microRNAs. We first extract features from PSI-BLAST profiles and Hilbert-Huang
transforms, which contain rich sequence evolution information and sequence-order information respectively. We
then obtain properties of small molecular networks of pre-microRNAs, which contain refined secondary structure
information. These structural features are carefully generated so that they can depict both global and local
characteristics of pre-microRNAs. In total, our feature space covers 591 features. The maximum relevance and
minimum redundancy (mRMR) feature selection method is adopted before support vector machine (SVM) is applied
as our classifier. The constructed classification model is named MicroRNA−NHPred. The performance of
MicroRNA−NHPred is high and stable, which is better than that of those state-of-the-art methods, achieving an
accuracy of up to 94.83% on same benchmark datasets.

Conclusions: The high prediction accuracy achieved by our proposed method is attributed to the design of a
comprehensive feature set on the sequences and secondary structures, which are capable of characterizing the
sequence evolution information and sequence-order information, and global and local information of pre-microRNAs
secondary structures. MicroRNA−NHPred is a valuable method for pre-microRNAs identification. The source codes of
our method can be downloaded from https://github.com/myl446/MicroRNA−NHPred.
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Background
Mature microRNAs (miRNAs) are small single-stranded,
non-coding RNAs (about 22 nucleotides in length), which
play significant regulatory roles in various biological pro-
cesses of animals, plants and viruses [1, 2]. There are two
other forms of miRNAs: primary miRNAs (pri-miRNAs)
and precursor microRNAs (pre-miRNAs). Mature miR-
NAs are cleaved from ∼ 90nt pre-miRNAs which are
derived from the processing of a long pri-miRNA by a
ribonucluease [3]. Precursor miRNAs have been widely
studied at the earliest time, and many commercialized
miRNA libraries take this form. With the advent of the
post genome era and the development of sequencing tech-
nology, how to find all forms of miRNAs from millions
of reads has become one of the challenging topics in
bioinformatics. It is also difficult to experimentally iden-
tify the lowly expressed miRNAs or the miRNAs that
are expressed in the specific tissues or in the develop-
mental stage. On the other hand, as mature miRNAs are
very short, the traditional feature engineering approaches
[4] are usually failed to extract effective features from
their sequences and structures. Therefore, current com-
putational methods are focusing on the identification of
pre-miRNAs instead of mature miRNAs.

These methods to identify pre-microRNAs can be
grouped into four categories. The first category con-
tains the earliest methods which are based on searching
homologous genes [5]. The search process is a typical
alignment problem of sequences and structures. The main
alignment algorithms include the Smith-Waterman algo-
rithm [5], the FASTA algorithm, and the BLAST algo-
rithm [6–9]. However, these methods can only find highly
homologous miRNAs with known miRNA sequences and
require a large amount of computational resource for
whole genomes. The second category contains compara-
tive genome methods which predict miRNAs in the study
of species of early stages. These methods mainly uti-
lize the conservation characteristics of miRNAs and their
precursor sequences in multiple species to search for
the conserved sequences in the intergenic region. These
sequences have a better secondary structure of stem ring.
Based on comparative genomics, the limitation of pre-
dicting miRNAs is that the predicted miRNA candidates
are highly conserved in multiple species, and these meth-
ods cannot be used to predict miRNAs which are not
conserved [10–13]. At the same time, these methods are
also subject to challenges of both time complexity and
space complexity. The third category is based on conser-
vation of binding sites of miRNAs which are the short
sequences of miRNA binding the target mRNAs. These
short sequences have conserved properties among multi-
ple species [14–16]. The miRNAs and the target mRNAs
usually have perfect complementary features in plants,
while it does not match well in animals. Therefore, this

category of methods is usually used in plants. The fourth
category is based on machine learning methods [17–21].

Machine learning uses the information on sequences,
structural and thermodynamic energy of pre-microRNAs.
These methods can discover new, non-homologous pre-
microRNAs. So, machine learning is the main approach
for miRNA prediction and identification at present. The
difficulty of the method is how to select the posi-
tive/negative samples which are able to describe suffi-
ciently the whole sample space and how to find a better
distinction between true/false pre-miRNAs. In addition,
high false positive rates and computational complexity
likely occur in the prediction of whole genome data. Thus,
further improvement in sensitivity and specificity of the
pre-miRNA classification is necessary. It is also a desir-
able task to explore a solution based on machine learning
prediction.

By the problem of pre-microRNA identification, two
major procedures are required: feature extraction and
machine learning. In the past few decades, extracted fea-
tures of pre-microRNAs are related to three sources:
primary sequences, secondary structures and thermody-
namical properties. Among them, the k-mer sequence
composition (based on the primary sequence) is the
most successful approach for the representation of pre-
microRNAs [22]. Many studies have shown that most of
pre-microRNAs have the properties of stem loop hair-
pin structures [19]. Therefore, secondary structures can
be predicted, and features derived from these structures,
for instance, Xue et al. extracted 32 local structure fea-
tures in triplet-SVM to predict human pre-microRNAs
[19]. Energy characteristics are another kind of important
features of pre-microRNAs [23, 24]. It is well studied that
good features and positive/ negative (real/ pseudo pre-
microRNA) datasets are the basis of constructing effective
classification models.

In this study, we extract some novel features of pre-
microRNAs for improving the current classification per-
formance. To describe local or short-range sequence
order information and evolution information of pre-
microRNAs, we introduce PSI-BLAST profiles into the
analysis of pre-microRNAs for the first time. And also,
we introduce the Hilbert-Huang transform [25] for the
first time, which is a time-frequency analysis method.
Hilbert-Huang transforms are capable of capturing the
local and long-range relationship between sequence bases.
We obtain the topological parameters of small molecu-
lar networks constructed from the secondary structures of
pre-microRNAs, which contain refined secondary struc-
ture information. These features are carefully selected so
that they can depict both global and local characteristics
of pre-microRNA structures. After these feature extrac-
tion, we apply support vector machine (SVM) as our
classifier, and use the maximum relevance and minimum
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redundancy (mRMR) [26] method in the feature selec-
tion. Then, a new predictor MicroRNA−NHPred is con-
structed using the optimal feature set, which achieves an
accuracy of up to 94.83% on a benchmark dataset. Our
newly constructed predictor also improves the sensitivity
and specificity of precursor miRNA identification.

Methods
Datasets
The benchmark dataset is adopted from [27–31], which
consists of positive samples (true pre-microRNAs) and
negative samples (pseudo pre-microRNAs). The set of
positive samples is originated from the miRBase (released
on 20 June, 2013) [32], composed of 1872 experimen-
tally confirmed pre-microRNA sequences of homo sapi-
ens. These sequences were filtered by the CD-HIT
software [33], and the redundant sequences were fil-
tered out with a threshold of 80% sequence identity.
Finally, we obtained 1612 true pre-microRNA sequences
as positive samples. Exactly as done by the literature
works [17–19, 24], we used 8494 human pseudo pre-
microRNAs. This set of negative samples collected from
human protein coding regions was downloaded from
[19]. These sequences are very similar to the real pre-
microRNAs in the sequence length, the minimum base
pair of their stem of hairpin structure and the maxi-
mum energy of secondary structure. In the same way
as positive samples, we used the CD-HIT software to
filter the sequences so that sequence similarity of the
negative samples is kept below 80%. To overcome the
sample imbalance problem [27, 28], 1612 sequences are
selected randomly as negative samples from the filtered
sequences.

The classification performance of our method in com-
parison with other methods was also tested on an inde-
pendent test set. This test set comes from the latest
released miRBase 22 [34] (released on March 2018) which
contains 1917 pre-microRNA sequences of homo sapi-
ens. Note that miRBase 20 (released on June 2013) con-
tains only 1872 homo sapiens pre-microRNA sequences.
The 78 new homo sapiens pre-microRNA sequences are
used as the independent test set, which is named hsa
dataset. We also used 410 non-coding datasets filtered out
by us in Reference [18] as our negative test set (named
ncRNA dataset). Meanwhile, we randomly selected 1000
human pseudo pre-microRNAs from the remaining 6882
sequences as our second negative test set (named human
negative dataset).

Feature extraction
We take three steps to extract different features of pre-
microRNAs from PSI-BLAST profiles [35, 36], parameters
of networks [37] and spectrum analysis based on the
Hilbert-Huang transform [25].

PSI−BLAST profile−based features
The PSI-BLAST profile is represented as a so-called posi-
tion specific score matrix (PSSM), which is acquired
through aligning a query amino acid sequence to the
NCBI’s nonredundant (NR) database using PSI-BLAST
[35]. In this work, we apply this idea to nucleotide
sequences.

First, we build a new database, which is composed
of all the pre-microRNA sequences in the miRBase
(http://www.mirbase.org/) and the 8494 human pseudo
pre-microRNAs [19] and 754 non-coding RNAs studied
in [18].

Second, we use PSI-BLAST to align a query nucleotide
sequence in the dataset to the newly built database and to
get the PSSM for the sequence. The PSSM is a matrix of
size L×5, where L is the length of the query sequence and
5 is due to the 4 nucleotide symbols (A, C, G, U) and the
symbol −. Its elements are 10× loge of the ratios between
the observed base frequencies and the background base
frequencies, and rounded down to the nearest integer.

Third, our feature extraction method also starts by
transforming each element sij of the PSSM into s′

ij using

s
′
ij = 20.1×sij . (1)

The resulting value s′
ij is guaranteed to be non-negative

even when sij is negative. We further apply normalization
to the values s′

ij so that each row sums to one. Let fij denote
the normalized value of s′

ij. All the values fij form a matrix,
which are called the frequency matrix (FM).

Fourth, to extract PSI-BLAST profile features, a so-
called concensus sequence (CS) [38] is constructed from
the FM as follows:

μ(i) = arg max{fij : 1 ≤ j ≤ 4}, 1 ≤ i ≤ L. (2)

The i-th base CS(i) of the consensus sequence is set to
be the μ(i)-th nucleotide in the nucleotide alphabet. It
can be seen that a consensus sequence retains the most
valuable evolutionary information from the PSSM.

Fifth, we compute

NCCS(j) = n(j)
L

, 1 ≤ j ≤ 4, (3)

where n(j) is the number of the nucleotide j occurring in
the CS. It gives 4 features corresponding to the nucleotide
of the CS. Moreover, we include the entropy into our
feature set, that is,

ECS = −
5∑

j=1
NCCS(j) loge NCCS(j). (4)

http://www.mirbase.org/
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Another entropy-based feature is directly computed
from FM to reflect the global characteristic of the PSSM:

EFM = − 1
L

L∑

i=1

5∑

j=1
fij loge fij. (5)

Most of the extracted features of k-mer features shown
in many articles are based on the original sequences.
In this study, we extract their features from the CS of
the original nucleotide sequences. Since a pre-microRNA
sequence is too short (about 60bp-130bp), longer k are
less likely to be exactly conserved among species. So, we
computed k-mers with k = 2, 3 resulting in 80 (16+64) dif-
ferent features. At the same time, we calculate the content
of GC from the consensus sequences.

In summary, for each query sequence, a total of 87
features are extracted from its PSI-BLAST profile. Our
experimental results show that the features extracted from
CS are more effective to discriminate between real pre-
miRNAs and pseudo pre-miRNAs than those from the
original nucleotide sequences.

Topological parameters of small molecular networks
extracted from secondary structures
The pre-microRNA has a very significant secondary struc-
ture in the hairpin shape. There are many methods based
machine-learning to identify pre-microRNAs which take
advantage of the hairpin shape, so that the prediction
accuracy has been greatly improved. There are more rep-
resentative Triplet-SVM [19], iMiRNA-PseDpc [27], and
properties based on networks [37] in these methods. In
Refs. [39, 40], the authors have verified that the features
based on networks have higher prediction accuracies.
Meanwhile, in Ref. [37], Childs et al. further discussed the
topological properties of the networks, which can reflect
more essential characteristics of the pre-microRNAs.
Therefore, in this work, we extract features based on net-
works constructed from the secondary structure, and the
process is as follows:

Firstly, each nucleotide sequence of positive and nega-
tive samples is folded into a stem-loop secondary struc-
ture by RNAfold [41]. Secondly, we use a two-dimensional
network (graph) to represent the RNA secondary struc-
ture, where all nucleotides are converted to nodes and all
bonds between nucleotides are converted to edges. Net-
work elements, including nodes and edges, can be defined
by the network itself or parameters which may relate to
limited or full knowledge of the network. According to
[37], Childs et al. classified the network parameters into
three types: local, local-global and global structural prop-
erties that can be used as a method in identification of
RNA family. Here we use the summary statistics for the
local-global properties, since they provide insight not only
on the global level of the graph itself, but also on the

level of its nodes and edges. Thirdly, all properties were
calculated using the igraph R package (http://igraph.org)
for complex networks. In this study, 24 network parame-
ters are extracted to describe the stem-loop structure of
pre-microRNAs based on previous works and experimen-
tal criteria [37] although a number of network parame-
ters are available. We also choose the following features:
degree, path length, shortest path, graph motifs, articula-
tion point, modularity, graph density, coreness, closeness,
centrality, bibliographic coupling, transitivity, cocitation
coupling, diameter, node betweenness, edge betweenness,
grith, constraint, hub score, and so on. A brief definition of
all graph properties used in this study is provided in [37].

Extraction of sequence-order features based on the
Hilbert-Huang transform
The features of the pre-microRNAs based on k-mers,
with k small, they can only describe the short-range rela-
tionship between the nucleotide sequences. When k is
larger, they can describe the long-range relationship of the
nucleotide sequences, but the dimension of extracted fea-
ture vector is too large, which leads to the curse of dimen-
sionality, and the classifier’s performance will be reduced.
Since most of the previous methods extracted k-mer
composition information from a nucleotide sequence (for
pre-microRNAs, k generally takes the values 2, 3, 4), the
sequence-order information is missing. Although Chen
and Li [42] considered local sequence-order information
based on Chou’s concept of pseudo amino acid composi-
tion, the overall prediction accuracy was not significantly
improved. In order to depict the long range relationship
and order information of the sequence, we introduce the
Hilbert-Huang transform [25] based on the physical and
chemical properties of the known dinucleotides.

The Hilbert-Huang transformation consists of two
parts: empirical mode decomposition (EMD) and Hilbert
spectral analysis (HSA). The EMD method, which was
originally proposed by Huang et al. [25] for the study of
ocean waves, is a time-frequency analysis, and has been
used by our group to simulate geomagnetic field data
[43] and to predict protein subnuclear localization [44].
In EMD, the base functions, which are called intrinsic
mode functions (IMFs), are obtained adaptively from the
original signal. The principle and details of Hilbert spec-
tral analysis can be found in [25, 44]. Combining the
sequences of the pre-microRNAs and the physical and
chemical characteristics of the dinucleotides, the feature
extraction method based on the Hilbert-Huang transform
is described as follows:

1 According to the physical and chemical properties of
dinucleotides and the intrinsic characteristics of
Hilbert-Huang transform, we selected 15 physical
and chemical properties for RNAs from the database

http://igraph.org
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[45], including: enthalpy, enthalpy2, entropy,
entropy2, free energy, free energy2, hydrophilicity,
hydrophilicity2, rise, roll, shift, slide, stackingenergy,
tilt, twist.

2 According to the physical and chemical properties of
dinucleotides, the sequence of each pre-microRNA
was converted into 15 time series by sliding a
window along the sequence.

3 At first, we got the intrinsic mode functions of each
time series by EMD. The EMD for a hydrophilicity2
time series of the pre-microRNA hsa-mir-6843 is
shown in Fig. 1. And then we applied HSA to every
intrinsic mode function to obtain the analysis signals.
Finally, we obtained 32 features for each time series.
The specific signal analysis process can be found
in [44].

In this study, we transformed all the RNA sequences
into time series according to the 15 physical and chemi-
cal properties of dinucleotides. In total, we extracted 480
Hilbert-Huang features.

Feature selection method
After the feature extraction, some extracted features may
be redundant and some may not be related to any class.
There are many ways to remove redundant or useless fea-
tures (in the sense that they have no significant relation to
a class), such as mRMR [26], FOCUS [46], Wrapper [47],
and so on. In this work, we choose the mRMR method as
our feature selection method.

Let � be the whole feature space which contains all
of the aforementioned 591 features in this work; each
sequence is represented by a vector consisting of the val-
ues of these 591 features. We assume that E and F are two
disjoint subsets of � and � = E ∪ F . In order to select
a feature fj in E with maximum relevance and minimum
redundancy in F, we use the following formula:

max
fj∈E

[
I(fj, θ) − D(fj, F)

]
, j = 1, 2, . . . , �E, (6)

where θ is a vector characterizing the class of all
nucleotide sequences in the sample set, �E denotes the
cardinality of the subset E, I(fj, θ) measures the relevance
of characteristic fj and class vectors θ , D(fj, F) measures
the redundancy of characteristic fj and the feature sub-
set F. The definitions of I(fj, θ) and D(fj, F) are given in
Ref. [26].

In the actual computation process, we regard E as a fea-
ture set to be selected, and F as an already selected feature
set. At the beginning, E is the feature space, F is the null
space, the process of the mRMR method is as follows:
First, we select a feature that is most relevant to the class
vector in E, then remove it from E and add it to F. Second,
according to the mRMR function, repeat the first step.
After �� cycles, E is null and F is the entire feature set.
According to the order in which the feature is added to F,
the features in the whole feature set are reordered, and we
use S to represent the ordered feature set:

S = {
fi1 , fi2 , fi3 , . . . , fi��

}
. (7)

Fig. 1 Six IMF components and the residual obtained by EMD of hydrophilicity2 time series of the pre-microRNA hsa-mir-6843
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After all features are ranked, we can determine the
optimal feature components by an incremental feature
selection (IFS) method [48]. For the ranked feature set S,
we can construct the feature component sets by adding
one component at a time in an ascending order as follows:

Sk = {fi1 , fi2 , fi3 , . . . , fik } (1 � k � ��). (8)

For each feature component set, a predictor is con-
structed and the accuracy is obtained by the rigorous
jackknife validation. Finally, we choose the feature compo-
nent set for the best jackknife validation accuracy as the
optimal feature set.

Support vector machine
A Support Vector Machine (SVM) is a class of supervised
learning algorithms first introduced in [49]. It is based on
statistical theory, and has a good general application. In
this work, we use an SVM as a classifier to identify the real
and pseudo pre-microRNAs.

Given a set of labelled training vectors (positive and neg-
ative input samples), SVM learns a linear decision bound-
ary from both positive and negative training samples to
discriminate between the unknown RNA sequences. The
RNA sequence in the training set and the test set are
transformed into fixed-dimension feature vectors follow-
ing the process introduced above, and then the training
vectors are input into SVM to construct the classifier. The
SVM gives a predicted class for each RNA sequence in the
test set.

The LIBSVM algorithm [50] was employed, which is a
type of software for SVM classification and regression.
The radial basis function (RBF) defined as

k(xi, xj) = exp
(−γ (‖ xi − xj ‖)2) , γ > 0 (9)

is used as the kernel function k (x, y) in the SVM. Here,
{x1, . . . , xn} is a given dataset. For a Gaussian RBF, γ is
parametrized as γ = 1

2σ 2 . The parameter γ and the soft
margin parameter C are optimized on the benchmark
dataset by adopting the grid tool provided by LIBSVM
[50]. The parameters of the predictor constructed by dif-
ferent feature sets are shown in Table 1. More details are
provided in [51].

The proposed identification method
Figure 2 illustrates the overall architecture of our pro-
posed method which is called MicroRNA-NHPred. Firstly,
the query nucleotide (RNA) sequences are input into PSI-
BLAST to obtain PSSM, and entropy of sequences and
consensus sequences (CS) [38]. We then obtain k-mer
composition of CS. The query nucleotide sequence is
submitted to RNAfold software to generate a secondary
structure.

We build a single molecule network from the secondary
structure, then extract network topological parameters.

Table 1 The performance of different feature sets

Method Mcc Accuracy Sn Sp

PSI-BLAST
(C=512, γ = 0.00)

0.5129 0.7564 0.7681 0.7446

HHT (C=2, γ = 0.03) 0.4887 0.7440 0.7731 0.7148

Network
(C=1024, γ = 0.03)

0.7589 0.8785 0.9144 0.8425

PSI-BLAST+Network
(C=1024, γ = 0.00)

0.7707 0.8853 0.8909 0.8797

Network+HHT
(C=1, γ = 0.03)

0.7212 0.8802 0.8783 0.8841

PSI-BLAST+HHT+Network
(C=4, γ = 0.02)

0.7850 0.8973 0.9028 0.8718

Each RNA molecule is represented by the topological
parameters of a single molecule network.

On the other hand, the query nucleotide sequence is
converted into a time series based on the physicochemical
properties of the RNA. The obtained time series are trans-
formed and 480 characteristics are obtained. Ultimately,
we get 591 features in total. These features are finally put
into an SVM-based classifier for pre-microRNA classifier
recognition.

Performance evaluation
The performance of the predictor should be objectively
evaluated. In statistical prediction, three cross-validation
tests are often used to evaluate the prediction perfor-
mance: independent dataset test, sub-sampling (or K-fold
crossover validation) test and jackknife test. Only the jack-
knife test is the least arbitrary that can always yield a
unique result for a given benchmark dataset [52, 53]. That
is why researchers have a preference for the jackknife
test for examining the quality of various machine learn-
ing based predictors such as [30, 31, 44]. Hence, in this
paper we also use the jackknife test to evaluate the accu-
racy of the current predictor, and use independent test
samples to further verify the reliability of our method. In
the jackknife test, each sequence in the samples is singled
out in turn as a test sample and the remaining sequences
are used as training samples. Although the jackknife test
consumes more computing resources, it is worthwhile to
have a single output for a given set of samples.

When the cross-validation method is selected, we need
to choose the performance metrics of the predictor. The
identification of pre-microRNAs is a binary classifica-
tion problem. For this problem, we select the following
indicators to evaluate our predictor: Sn (sensitivity), Sp
(specificity), Acc (overall accuracy), Mcc (Mathew corre-
lation coefficient) [54], calculated by Sn = TP/(TP + FN),
Sp = TN/(TN +FP), Acc = (TP+TN)/(TP+TN +FP+
FN), and

Mcc = (TP × TN) − (FP × FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.
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Fig. 2 Flow chart of the identification method in this study

In the above equations, TP means the true positive, TN
the true negative, FP the false positive and FN the false
negative. The sensitivity denotes correct identification of
positive pre-microRNAs by avoiding false negative, while
the specificity denotes correct identification of negative
pre-microRNAs by avoiding false positive. The sensitiv-
ity and the specificity range between 0 and 1, the bigger
the value, the better the predictor. The Mathew correla-
tion coefficient (Mcc) ranges between -1 and 1, the overall
accuracy (Acc) ranges between 0 and 1.

Discussion and results
Parameter selection by mRMR
We develop three steps to extract 591 features, and those
features are shown in Additional file 1. Since some of these
features are not essential and may not be significantly
related to the classes of pre-microRNAs, we used the
method in subsection “Feature selection method” to sort
the features first and used the increment feature selec-
tion method to select the optimal feature set. For each
feature subset, we constructed a classifier and derived its

jackknife validation accuracy. Finally, we obtained the best
feature subset corresponding to the best jackknife vali-
dation accuracy as the optimal feature subset. And the
optimal feature set is shown in Additional file 2. We used
all the feature sets to construct the predictor, whose jack-
knife validation accuracy turns out to be 89.73%. We used
the optimal feature subset to construct a predictor with a
jackknife validation accuracy of 94.83% being achieved.

At the same time, we also enumerate the top 30 fea-
tures in the optimal feature set, as shown in Table 2. We
can see from the Table 2 that the most relevant category
of true / false pre-microRNAs is the Efm (the entropy of
the frequency matrix) feature which is extracted by PSI-
BLAST profiles. The average degree of node which can
portray the base pairing property of RNA sequence is the
second most relevant feature. In addition, we can also
see that 11 features of the top 30 come from network
features, 13 from HHT features, and 6 from PSI-BLAST
profiles. This shows that we use three different methods to
extract different levels of pre-microRNA features, which
are informative and complementary.
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Table 2 The top 30 features by feature selection

Feature I(fj , θ) Number Feature I(fj , θ) Number

Efm 0.84881 1 CCA% 0.1727 16

A-degree 0.48748 2 hht125 0.17185 17

A-Burts 0.4461 3 hht381 0.17139 18

A-coreness 0.44058 4 hht93 0.17045 19

A-cocitation 0.31875 5 hht445 0.16982 20

A-bibliographic 0.31875 6 hht61 0.16125 21

V-coreness 0.31703 7 hht285 0.16055 22

V-coreness 0.31703 8 hht66 0.15998 23

Densith 0.31196 9 hht82 0.15998 24

Modularity 0.23591 10 (G+C)% 0.13625 25

Ecs 0.12031 11 hht94 0.15456 26

hht413 0.20155 12 CC% 0.15225 27

hht253 0.1994 13 hht157 0.15029 28

N-atriculation 0.19644 14 hht189 0.14989 29

Var-Vbetweenness 0.18213 15 GAA% 0.14786 30

Performance of predictor on different feature sets
As shown in subsection “Feature extraction methods”, we
used 3 different methods to extract 3 different feature sets.
In order to study the effect of different feature sets on the
performance of the predictor, we tested the single feature
set and different feature combinations respectively on pre-
diction performance, as shown in Table 1. We can see that
the three feature sets have different contributions to the
recognition of pre-microRNAs, of which the contribution
of the network feature set is the most significant and the
accuracy of the predictor is 87.85%.

We firstly introduced PSI-BLAST to the prediction of
pre-microRNAs. In order to verify the performance con-
tribution of the k-mers from CS, we separately extracted
k-mers (k=2, 3) from the original sequence and the CS for
jackknife test verification. The result of the test is shown
in Table 3. The accuracy of jackknife test validation shows
that the consensus sequences contain much more evolu-
tion information than the nucleotide sequences, thereby
leading to more accurate pre-microRNA identification.

Secondary structure features have a variety of different
representations, e.g, triplet-SVM [19], iMcRNA-PseSSC
[27], network [37], and so on. To verify the effect of
three secondary structure features on the problem of pre-
microRNA classification, we used the jackknife test on
the same benchmark dataset. As shown in Table 4, we

Table 3 The performance of different k-mers: (k = 2, 3)

Predictors Mcc Accuracy Sn Sp

PSI-BLAST-K-mer 0.5129 0.7205 0.7329 0.7132

K-mer 0.4582 0.6990 0.6780 0.7120

Table 4 The performance of different features of secondary
structure

Predictors Mcc Accuracy Sn Sp

Network 0.7589 0.8785 0.9144 0.8425

Triplet-SVM [19] 0.64 0.8185 0.7847 0.8520

IMcRNA-PseSSC [27] 0.72 0.8576 0.8836 0.8350

found that the parameters of networks reflect the pre-
microRNA secondary structure. So, we used the param-
eters of networks to depict the secondary structure of
pre-microRNAs in this work.

Comparison with other methods
We compared our predictor with the best and most accu-
rate predictors in this field, triplet-SVM [19], miPred [24],
iMcRNA-EXPseSSC [27], microR-Pred (SVM) [31]. The
comparison indicates that the accuracy of our predictor
is higher than other predictors in the same larger and
more stringent benchmark dataset using rigorous jack-
knife tests. As can be seen from Table 5, we have the
highest prediction accuracy on Mcc, Accuracy and Sn, and
only Sp is lower than miPred [24] and microR-Pred (SVM)
[31], but also higher than 90%.

Performance evaluation on an independent test set
The benchmark dataset was constructed based on miR-
Base released 20 (June 2013). At present, compared with
miRBase released 20, the latest miRBase released 22
reports 78 new homo sapiens pre-microRNAs, which
were treated as an independent test set to further evalu-
ate the performance of the proposed MicroRNA-NHPred.
The test results are shown in Table 6. This method trained
with the benchmark dataset can correctly predict 75 test-
ing samples in the independent dataset as true sapiens
pre-microRNAs. The accuracy of the proposed method
can reach 96.15%, which demonstrates the stable predic-
tion performance of microRNA-NHPred for predicting
sapiens pre-microRNAs.

MicroR-Pred (SVM) [31] and iMcRNA-EXPseSSC [27],
which are the most accurate predictors in this field as
we know, were also tested on the same independent test

Table 5 The performance of different methods on the same
benchmark dataset

Predictors Mcc Accuracy Sn Sp

Triplet-SVM [19] 0.64 0.8185 0.7847 0.8520

MiPred [24] 0.75 0.8730 0.84 0.9060

IMcRNA-EXPseSSC [27] 0.80 0.8986 0.8993 0.8978

MicroR-Pred(SVM) [31] 0.88 0.9390 0.93 0.9470

MicroRNA-NHPred (C=8, γ = 0.03) 0.8965 0.9483 0.9490 0.9010

The boldface represents the maximum value of each column
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Table 6 The result of different methods on an independent test set

Method Accuracy Pre-microRNAs which were
not correctly identified

IMcRNA-EXPseSSC [27] 0.8590(67/78) hsa-mir-8069-2,
hsa-mir-1843, hsa-mir-10393,
hsa-mir-10394,

hsa-mir-10395, hsa-mir-
10400, hsa-mir-10527,
hsa-mir-11401,

hsa-mir-12115,
hsa-mir-12128, hsa-mir-9500;

MicroR-Pred(SVM) [31] 0.9103(71/78) hsa-mir-10395, hsa-mir-9500,
hsa-mir-8069-2,
hsa-mir-12115,

hsa-mir-10400,
hsa-mir-11401,
hsa-mir-12128;

MicroRNA-NHPred 0.9615(75/78) hsa-mir-1843, hsa-mir-12115,
hsa-mir-11401.

set. It is worth noting that microR-Pred (SVM) [31] and
iMcRNA-EXPseSSC [27] correctly identified 71 and 67
homo spaeins pre-microRNAs with an accuracy of 91.03%
(71/78) and 85.90% (67/78) respectively. Our method is
more accurate on these two negative independent test
datasets than IMcRNA-EXPseSSC [27], but slightly less
accurate than MicroR-Pred (SVM) [31], as shown in
Table 7. This further confirms the reliability and validity
of our method.

Conclusion
Distinction between pre-microRNAs and length-similar
pseudo pre-microRNAs is a biologically important prob-
lem which can help understand more about RNA reg-
ulatory mechanisms. In this study, we have developed
a new classification method called MicroRNA-NHPred
for pre-microRNA identification. It exploits the sequence
evolution information extensively from PSI-BLAST pro-
files, the sequence order information from Hilbert-Huang
transforms and the secondary structure information from
small molecule networks. A comprehensive set of 591

Table 7 Classification accuracy of different methods on
independent test sets

Test sets Label Test
set size

MicroRNA-
NHPred

IMcRNA-
EXPseSSC

MicroR-
Pred(SVM)

hsa
dataset

True 78 0.9615 0.8590 0.9103

ncRNA
dataset

Pseudo 410 0.9313 0.8976 0.9390

Human
negative
dateset

Pseudo 1000 0.9663 0.9197 0.9726

features is thus constructed, which depicts both global
and local characteristics of sequence and secondary struc-
ture. An optimal set of 268 selected features is used by
our MicroRNA−NHPred for the classification, and it has
achieved an accuracy of up to 94.83% on same benchmark
datasets.

Literature works have also used machine learning tech-
niques to identify pre-microRNA. Our research is differ-
ent in several ways, as summarized below:

1 We introduced PSI-BLAST into the analysis of
pre-microRNAs. We extracted features from the
consensus sequences constructed from PSSMs rather
than from their respective nucleotide sequences. The
former retains richer sequence evolution information.
To our best knowledge, this is the first attempt to
extract features from the consensus sequences.

2 We introduced the Hilbert-Huang transform into
pre-microRNA identification for the first time, and
used it to describe the local and long-range
relationships between sequence bases.

3 We used the network parameters from the single
molecule network of a pre-microRNA rather than
use the triplet structure to represent the secondary
structure of the pre-microRNA. These network
parameters can describe more completely the local
and global characteristics of RNAs. Under the same
benchmark dataset, the accuracy of network
parameters can reach 87.85%, while the well-known
triplet-SVM reaches only 81.85%.

4 We introduced feature selection method, mRMR,
into pre-microRNA identification for the first time,
which yields that the accuracy of the predictor
achieves 94.83% while it is 89.73% before the feature
selection. The obtained results verify the significance
of the feature selection.

It was observed via the rigorous cross-validation on a
larger and more stringent benchmark dataset that the new
predictor outperformed or was highly comparable with
the best existing predictor in this area. We also performed
test on an independent dataset, the results indicate that
the new predictor outperforms the two best predictors
for the identification of miRNAs precursor [27, 31]. This
implies that the feature set obtained in this paper is
highly beneficial to pre-microRNA identification. At the
same time, we can conclude that hybrid features (both
the primary and secondary structural features) as well as
mRMR have a key role in performance improvement. If
the method proposed in this paper is only used for human
pre-microRNA identification, its value is limited. So, our
further work is to extend it to identify pre-microRNA for
cross species, and further adds some energy features to the
features set.
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