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Abstract

Background: Deep Learning (DL) has advanced the state-of-the-art capabilities in bioinformatics applications which
has resulted in trends of increasingly sophisticated and computationally demanding models trained by larger and
larger data sets. This vastly increased computational demand challenges the feasibility of conducting cutting-edge
research. One solution is to distribute the vast computational workload across multiple computing cluster nodes
with data parallelism algorithms. In this study, we used a High-Performance Computing environment and implemented
the Downpour Stochastic Gradient Descent algorithm for data parallelism to train a Convolutional Neural Network (CNN)
for the natural language processing task of information extraction from a massive dataset of cancer pathology reports.
We evaluated the scalability improvements using data parallelism training and the Titan supercomputer at Oak Ridge
Leadership Computing Facility. To evaluate scalability, we used different numbers of worker nodes and performed a set
of experiments comparing the effects of different training batch sizes and optimizer functions.

Results: We found that Adadelta would consistently converge at a lower validation loss, though requiring over twice as
many training epochs as the fastest converging optimizer, RMSProp. The Adam optimizer consistently achieved a close
2nd place minimum validation loss significantly faster; using a batch size of 16 and 32 allowed the network to converge
in only 4.5 training epochs.

Conclusions: We demonstrated that the networked training process is scalable across multiple compute nodes
communicating with message passing interface while achieving higher classification accuracy compared to a traditional
machine learning algorithm.

Background
Introduction
Deep Learning (DL) has recently advanced the
state-of-the-art in bioinformatics applications ranging
from medical imaging, drug discovery, to genomic
medicine [1]. Deep learning models or Deep Neural
Networks (DNNs) are characterized by their ability to
automatically discover and abstract highly effective la-
tent features from a wide variety of data [2]. Though

deep learning alleviates traditional statistical machine
learning’s need for manual, task-specific feature engin-
eering, DL models can have thousands, sometimes a
million or more times more numerical parameters to
optimize during model training. Though the accumula-
tion of massive training datasets has made training DL
models possible, it compounds the practical issue of re-
quired computational resources. Although the compu-
tational challenge was initially addressed by utilizing
specialized Graphics Processing Units (GPUs) [3], the
exponential growth of dataset sizes enabled the use of
these DL models in many domains.
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One such domain to benefit from these advances in
modeling is cancer surveillance – the timely, systematic
collection and analysis of information relating to new
cancer cases, extent of disease, treatment, survival, and
cancer deaths [4]. In cancer surveillance, the scale of
the data comes from the number of individuals affected.
Over 1,685,000 new cases were diagnosed and there
were over 595,000 deaths in 2016 in the United States
alone [5]. Massive datasets aggregated over the course
of each individual’s cancer diagnosis, treatment, and
outcomes can help identify long-term trends and
underlying patterns across widespread populations of
people and ultimately demonstrate effectiveness of
treatments and other control measures. The automa-
tion of information extraction and other tasks with ad-
vanced DL methods require new, scalable approaches
to successfully acquire insights from these growing
datasets in a feasible amount of time.
One solution to increase performance is to increase the

computational resources with additional machines. Previ-
ous researchers have observed the effectiveness of running
the stochastic gradient descent (SGD) optimization algo-
rithm on multiple computational units reading and updat-
ing asynchronously from parameter weights in a shared
memory configuration [6]. This approach’s theoretical
basis was shown by Tsitsiklis et al. who demonstrated that
asynchronous SGD optimization would converge if the
delay between parameter updates and reads are bounded
[7]. Subsequent researchers applied asynchronous training
on the multi-layer perceptron DL model in a distributed
memory computing environment by distributing data sub-
sets to worker cluster nodes, known as data parallelism
[8]. Recently more advanced alternatives to SGD were
shown to improve performance rapidly by decreasing the
number of optimization steps required for model conver-
gence [9–11], though usage in a distributed environment
remain underexplored.
In this paper, we applied data parallelism for the dis-

tributed training of an advanced deep learning model
with large-scale datasets using a High-Performance
Computing (HPC) environment. We implemented the
distributed training of a DL model for the natural lan-
guage processing (NLP) task of information extraction
from a cancer pathology dataset too large to train feas-
ibly on a single machine. We evaluated algorithm scal-
ability by comparing time and performance variation
across different optimization schemes, the number of
compute nodes, and other training options.

Cancer pathology reports and information extraction
Cancer pathology reports are a primary source of informa-
tion for the Surveillance, Epidemiology, and End Results
(SEER) program. The SEER program is the premier popu-
lation cancer surveillance program covering approximately

28% of the United States (US) population [12]. Is the
US, SEER is an important national resource for moni-
toring cancer outcomes across demographic groups,
geographic regions, and over time. Furthermore, SEER
provides unique insights into the impact of oncology
practice outside the clinical trial setting. The informa-
tion collected includes data on patient demographics,
primary tumor site, tumor morphology and stage at
diagnosis, the first course of treatment, follow-up for
vital status, and more. Presently this data is mainly ex-
tracted by human coders, and a machine learning ap-
proach to automate the task would enable not only
faster extraction of quality data, but also enable new
fields to be extracted from historical data.
One such opportunity for automating information ex-

traction from text comes from pathology reports.
Pathology reports are unstructured text documents
containing detailed descriptions of human tissue speci-
mens. They are a standard component of clinical
reporting and management of cancer patients. Much of
this patient data is encoded in plain text pathology
reports, and manual human annotations are labor in-
tensive, costly, and error prone. Therefore, automatic
information extraction from natural language text,
which is an essential application in big data science, has
received much attention from the cancer surveillance
research communities.
In the past few years, text information extraction ap-

proaches to have advanced from strictly defined, manu-
ally tuned, rule-based classification algorithms [13] to
statistical machine learning techniques like Support
Vector Machines, Logistic Regression models, and Ran-
dom Forest classifiers [14]. These previous approaches
used the vector space model which represents docu-
ments as sparse high dimensional vectors with each di-
mension corresponding to a specific word and the
value corresponding to that word’s occurrence or
prevalence within the document [15].
Recently, DL methods have improved upon this

framework in two major ways. First, word embeddings
allow documents to be represented as a sequence of
trainable dense word vectors preserving a document’s
word ordering as in [16]. Secondly, Convolutional
Neural Networks (CNNs) [2], originating in Machine
Vision, have been applied recently to natural language
understanding, achieving superior performance [17].
CNNs for NLP train many convolutional filters to
quantify the relative usefulness of every word vector se-
quence in a document, then use Max-Pooling down
sampling to select and feed forward only the most ef-
fective word features. Although the CNN eliminates the
need for vector space models’ manual feature engineer-
ing, they have vastly more parameters which require
more computationally demanding training.
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Scaling deep networks like the CNN for NLP tasks is
particularly critical for applications such as the one out-
lined above for cancer surveillance. These networks
have the capability to identify complex structures and
relationships between word features and labels that
might be too complex for manual effort. It would not
be feasible to implement these models without ap-
proaches to scale them beyond single-node computers
or small-scale cluster computing environments. This
paper investigates the feasibility of large-scale CNN
training using data parallelism in an HPC environment
with a large natural language text dataset of cancer
pathology reports. The approach presented in this study
is applicable to existing supercomputers as well as up-
coming exascale computers.

Data parallelism and distributed optimization
Data parallelism is a method for distributing a compu-
tational task across multiple compute/worker nodes by
partitioning a training dataset [18]. In the DL context,
this approach is initialized by the parameter server,
which first partitions the training data then distributes
the subsets to each worker node which subsequently
commences local training. Each worker samples with-
out replacement a portion or batch, of the training data
for local network inputs to evaluate a loss function,
then applies the back-propagation algorithms to obtain
network weight gradients to submit to the master or
parameter server. The parameter server accepts the
workers’ gradients scaled by an optimizer function and
returns updated parameter estimates to the workers.
One can design the parallel training algorithm to wait
for each worker node to contribute their gradient
calculation update steps before returning updated par-
ameter estimates back to the workers [8]. This “syn-
chronous” approach is adequate if all the computing
nodes possess the same computational power and have
very similar gradient computation times. This type of
algorithm is simple to implement in a cluster-comput-
ing environment, but if one node fails or is delayed for
any reason, the entire training procedure is interrupted
losing valuable compute time. In contrast, the “asyn-
chronous” approach updates weights independently of
the other compute nodes. This prevents the slower
compute nodes from wasting training time on faster
nodes, though a resulting drawback is that the lack of
coordination may result in slower compute nodes sub-
mitting gradients with outdated network weight
parameters.

Methods
Cancer pathology report dataset
The study was designed with electronic pathology re-
ports provided by the Louisiana Tumor Registry using

an IRB approved protocol. The dataset consists of
256,816 pathology documents, of which approximately
10% have human-annotation available for primary can-
cer site code as defined by International Classification
of Diseases for Oncology, Third Edition (ICD-O-3)
[19]. For our cross validated tests, we used site codes
with at least 10 documents available, which resulted in
22,976 manually annotated documents (cases) with 64
primary cancer sites represented. ICD-O-3 codes and
the corresponding number of cases associated with
each code are listed in Table 1. We then divided the
data into 10 folds balanced by class in preparation for
10-fold cross-validation experiments.
To process the pathology report text, we first split

each document into words by separating the docu-
ment’s character string on white space character to-
kens. We then removed all punctuation and set all
alphabetic characters to lowercase. Tokens with a fre-
quency of at least five were mapped to a unique index
number, with all others mapped to a token correspond-
ing to rare words.

Convolutional neural networks for natural language
processing
Unlike conventional machine learning approaches, the
CNN for natural language processing [17] uses learned
latent representations of words for document represen-
tation known as word vectors. To prepare pathology re-
port text for classification, we tokenized each document
on the word and non-alphanumeric symbol and set all
alphabetical characters to lowercase. We substituted all

Table 1 Primary cancer site codes and corresponding number
of pathology reports associated with the code

Code # cases Code # cases Code # cases Code # cases

C00 16 C17 156 C41 88 C64 458

C01 53 C18 1951 C42 1800 C65 20

C02 108 C19 118 C44 1151 C66 32

C04 39 C20 646 C48 84 C67 947

C05 31 C21 75 C49 261 C68 30

C06 48 C22 268 C50 4415 C69 18

C07 66 C23 27 C51 97 C70 17

C08 16 C24 26 C52 39 C71 296

C09 71 C25 151 C53 314 C72 36

C10 27 C26 32 C54 882 C73 305

C11 43 C30 47 C55 174 C74 10

C12 11 C31 15 C56 448 C75 22

C13 14 C32 240 C57 83 C76 196

C14 24 C34 1570 C60 18 C77 741

C15 199 C38 106 C61 2313 C80 962

C16 427 C40 14 C62 60 C90 24
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decimal numbers to a single “float” token and all 3 or
more digit integers to a “large integer” token. We then
identified all tokens with a document frequency of less
than five and mapped them to a token to represent rare
tokens. The tokens with a document frequency of five or
more comprised our vocabulary. For each token in our
vocabulary along with the rare tokens, we randomly ini-
tialized a word vector of length 300 from a uniform dis-
tribution with bounds (−.025, .025). This dimensionality
is common for similar information extraction tasks [16],
while also empirically shown to be effective for this par-
ticular network [20]. With this preprocessing, we found
that over 98% of reports had a token length of less than
1500, therefore we truncated the longer reports to 1500
tokens and we padded the shorter reports with a zero
vector. As a result, each pathology report was repre-
sented by a 1500 × 300 matrix.
In the context of deep neural networks, a convolution

is an automatic feature generation technique which
processes an input with a learnable regional filter span-
ning a specified length of words. We can apply a convo-
lutional filter to the document matrix with a linear
filter with region size h that corresponds to a context
length of h word vectors. Specifically, we can
parameterize a linear filter as a weight matrix w with
dimensions (h × k). A context window for matrix A
starting from the i-th word vector of A with length h
can be represented by submatrix A[i : i + h − 1] [20]. A
single convolution on the document’s i-th word with
context length h can be denoted as oi = w · A[i : i + h − 1]
where oi ∈ ℝ(n − h). Finally, we apply an activation func-
tion f with a bias term b ∈ ℝ to oi, inducing a single fea-
ture map ci = f(ai + b). The final output of a
convolutional filter over document matrix A can be
expressed as feature mapping c = {c1, c2,…, cn}, which is a
representation of each context of h words over the docu-
ment matrix A [17]. Global max pooling then down sam-
ples the feature mapping to a single scalar, which is
concatenated with the other down-sampled feature map-
pings and fed through a penultimate fully-connected hid-
den layer and finally a softmax classification layer.
Through the feature mapping mechanism, the CNN

attempts to extract representations of word sequences
and then selects the most relevant context when classi-
fying a pathology report, producing a “feature mapping”
to represent each context size. The subsequent pooling
layer trains the convolutional filter to extract a single
feature map scalar from each mapping, aggregating the
selected contexts by concatenation. This pooling is a
highly efficient form of feature selection which allows
our model to classify documents by learning to identify
the most important word context [21].
In all our experiments, we used convolutional filters

with 300 filters for token lengths of 3,4, and 5. For

model regularization, we applied dropout at a rate of .5
on the hidden layer and applied l2-normalization on
our weight vectors. We also applied l2-normalization on
the word vector matrix, which we found substantially im-
proved accuracy for the under represented classes.

Data parallelism on high-performance computing
In this study, we selected the downpour Stochastic Gradi-
ent Descent (SGD) as our distributed training algorithm
[8]. The algorithm is initialized as follows: Let N be the
number of compute nodes available, and M be the total
number of training cases. The train set is partitioned
into N training sets with approximately M/N training
cases each. The training sets are then scattered so that
each compute node n manages its own local network
weights wt

n . Furthermore, with the asynchronous dis-
tributed approach, we have an additional master par-
ameter process which aggregates our compute node
updates, thereby requiring a total of N + 1 nodes for
our asynchronous data parallelism implementation.
Our distributed training algorithm is as follows: a

mini-batch of labeled training data on compute node n is
fed through the model with weights wt

n to calculate cross
entropy loss and resulting gradients Δwt

n . These updates
are sent to the parameter server. The parameter server’s
weights wt are updated using the received compute node
gradients with a pre-specified optimization rule or
optimizer denoted opt(·), such that the updated parameter
server weights are updated as wðtþ1Þ ¼ wt−optðΔwt

n; θÞ ,
where θ is the set of optimizer parameters, such as the
learning rate. Finally, the updated parameter server
weights w(t + 1) are distributed to each compute node. If
compute nodes receive parameters during mini-batch
computations, the master node weight updates are locally
applied only after the mini batch’s gradients are calculated
and sent to the parameter server. This means parameter
server updates might not necessarily have been computed
with the parameter server’s latest weights. Because the
worker nodes do not compute additional mini-batches
until current gradients have been accepted and updated
by the parameter server, this lag is bounded.
Before running our scalability experiments, we must

select an optimizer. We compared the relative effect-
iveness of four popular optimizers: Stochastic Gradi-
ent Descent (SGD), Root Mean Square Propagation
(RMSProp), modified adaptive gradient (Adadelta),
and adaptive moment estimation (Adam).
SGD is the most basic optimizer and updates the

parameter server weights simply by subtracting mini
batch gradients scaled by a pre-defined static learn
rate [22]. RMSProp optimizer implements an “adap-
tive learn rate” by dividing SGD’s learn rate by the ex-
ponentially decaying average of squared gradients,
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gradually reducing the learn rate as the gradients de-
crease [9]. Adadelta attempts to improve adaptive
learning by removing the learn rate parameter for
weighted average of current and past gradients within
a specified number of iterations [10]. Lastly, Adam it-
erates on RMSProp by additionally scaling the learn
rate with exponentially decaying average of past gra-
dients in addition to RMSProp’s exponentially decay-
ing average of past gradients squared, which allows
for adaptive learn rates similar to RMSProp but with
smoother update values [11].

Experiment design
For our experiments we utilized the implementation of
downpour SGD algorithm [23] using the Keras DL li-
brary [24] with a TensorFlow [25] backend on the Titan
supercomputer at the Oak Ridge Leadership Comput-
ing Facility (OLCF), Cray XK7 architecture with 18,688
nodes. Each node has an NVIDIA Tesla K20 GPU with
6GB graphics memory. Gradients and updated weights
are transferred with Message Passing Interface (MPI).
We performed three information extraction experi-

ments using the CNN model to predict the primary
ICD-O-3 cancer site. For our experiments, we split our
data into 10-fold class-stratified cross validation folds
using one fold as a test set and the remaining folds as
our training set. Furthermore, we randomly partitioned
25% of our training data to use as a validation set.
In our first two experiments exploring the optimal

choice of optimizer, number of worker nodes, and
mini-batch size, we trained our network on only one
fold and reported the cross-entropy loss evaluated on
the validation set.
We first attempted to compare the performance be-

tween our four optimization algorithms by measuring
how quickly the algorithm converges to a minimum
cross-entropy loss and the lowest minimum loss con-
vergence value. For this first experiment we used 16
worker nodes and compared the Adadelta, Adam,
RMSProp, and SGD optimization algorithms using
training mini-batch sizes of 16, 32, 64, 128, and 256.
We trained our CNN using each optimizer-batch size
configuration for 25 epochs, and recorded validation
loss after training on 1/4 of each epoch.
To explore scalability of our distributed learning algo-

rithm, we compared how utilizing additional worker
nodes with different batch sizes impacts the elapsed
training time and minimum validation loss achieved
using a particular optimizer. Using either 4, 8, 16, or 32
worker nodes training with mini-batches of size 16, 32,
64, 128, or 256, we trained our CNN for 10 epochs
while obtaining validation metrics in a manner identical
to the previous experiment.

Lastly, we evaluated the performance of the CNN
with results from all 10-fold cross validation experi-
ments with the choice of the best optimizer, number of
worker nodes, and mini-batch size determined by the
first two experiments. Each fold of the CNN was
trained using 16 worker nodes and a batch size of 64
with the Adadelta optimizer, as we found this configur-
ation achieved the lowest overall validation loss from
our initial experiment. As a benchmark for comparison,
we performed the same 10-fold cross validated experi-
ments using the statistical learning Random Forest clas-
sifier, a commonly used supervised learning algorithm
based on ensembles of decision trees. For the Random
Forest classifier, we used the vector-space model docu-
ment representation of Term Frequency / Inverse Docu-
ment Frequency (TF-IDF) of 2000 n-grams (n = 1,2,3). We
adopted micro and macro-averaging of F1 scores as our
performance metrics, which are accepted in natural lan-
guage processing community [26]. Micro-averaging gives
equal weight to each classification decision, whereas
macro-averaging gives equal weight to each class. These
two metrics combined give a better understanding of how
well the classifier behaves over class-imbalanced data.

Results
Optimizer choice
Figure 1 plots the validation cross-entropy loss per
epoch after 25 epochs of training. This chart compare
CNNs trained with each of the four optimizers for a set
batch size. Figure 2 compares each optimizer’s valid-
ation loss against elapsed training time for each batch
size. Figure 3 similarly compares validation loss against
elapsed training time, but combines optimizer results
to demonstrate more directly how batch size effects
training speed for each optimizer.
Across optimizers, the RMSProp optimizer appeared

to reach its validation loss minima in the fewest update
steps, though this minimum value tended to be consist-
ently higher than Adam and Adadelta’s minimum, with
its lowest recorded validation loss of 0.7251 with a batch
size of 128. The second fastest converging optimizer was
Adam achieving a validation loss of .6670 in training
epoch 4.5 using a batch size of 32 but reaching its overall
minima validation loss of 0.6579 with a batch size of 64.
Ultimately, Adadelta achieved the minimum valid-
ation loss for every batch size with the overall mini-
mum validation loss of 0.6337 observed with batch
size 64 after 24.25 epochs.
One characteristic of the rapidly converging RMSProp

and Adam optimizers is the susceptibility to overfitting,
as the validation loss begins to increase without bound.
Upon examining the training loss individual on worker
nodes, we saw the training loss becoming very close to 0
for each node, providing further evidence of overfitting.
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Comparing across mini-batch sizes, it appears RMSProp
and Adam’s over-fitting trend is much less pronounced
for larger training batch sizes. For Adadelta to achieve
this typically over twice as many training epochs. A
major benefit of Adadelta appears to be its ability to re-
sist overfitting, despite decreasing worker node training
loss. One note regarding the basic SGD optimizer is that
although it appeared to require many more epochs to
come close to matching the other adaptive-rate opti-
mizers, SGD does not require as much time to reach
those epochs, likely due to its simple non-parameter
specific update rule and its static update rate.

Scalability
We compared the training time performance of 4,8,16,
and 32 compute nodes by measuring the total elapsed
training time for 10 epochs of CNN training and mea-
sured the total elapsed training time. To measure the
training time impact of additional inter-node communi-
cations, we performed each of the above experiments
using training batch sizes of 16, 32, 64, 128, and 256,
since smaller batch sizes require more frequent
inter-node updates. Our results are presented in Fig. 4.
We observed no training time improvements when

using more than four compute nodes with smaller

mini-batch sizes of 16 or 32. This is due to the ineffi-
ciencies resulting from increased inter-node data trans-
fers outweighing the computational performance
increases from having multiple nodes. In contrast,
when training with larger mini-batch sizes 128 or 256,
we observed steady decrease in 10 epoch train times as
we added more compute nodes. This result supports
the common understanding that the larger mini-batch
size generally performs better in implementations of
DL training parallelism [8]. These benefits are limited
though since larger mini-batch size results in bigger
step sizes of the stochastic gradient updates, but the
step size cannot exceed the problem-dependent upper
bound, which depends on the smoothness of the object-
ive function. Once the mini-batch size has reached this
upper bound, increasing the mini-batch size is no lon-
ger beneficial to the optimization process.

Task performance
The CNN classifier consistently outperformed the
Random Forest classifier in both micro-averaged and
macro-averaged F1 scores (Table 2), demonstrating that
the DL-based automatic information extraction is a more
effective approach. We observed that the macro-averaged
F1 scores are lower than the micro-averaged F1 scores,

Fig. 1 Cross-Entropy Validation Loss vs. Epoch by Mini-batch size
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which is due to the severe class imbalance of the dataset,
which inhibits our CNN learning to correctly classify
under-represented classes. From the class-specific per-
formance scores listed in Table 3, the largely populated
classes such as C50, C61 and C34 had high F1 scores,
while under-represented classes such as C74, C12 and
C13 were never correctly classified.
We further analyzed these scores using the confusion

matrix, illustrated with a normalized color map seen in
Fig. 5. For example, we observed that the under-repre-
sented classes C12 (Pyriform Sinus) and C13 (Hypo-
pharynx) were misclassified as C32 (Larynx), while the
cases in class C70 (Meninges) were misclassified as C71
(Brain). We also noticed that there are relative high
false-positives as well as false-negatives for C77 (Lymph
nodes) and C88 (Unknown primary site) even with rela-
tively high number of cases.

Discussion
Mini-batch size is of particular importance because it
impacts MPI communication overhead during training
as well as the choice of granularity of each update step,
serving in an analogous manner to optimizer learn-rate.
We demonstrate how training batch size impacts learn-
ing scalability since larger batch sizes require fewer

parameter updates per epoch, resulting in less messa-
ging overhead time and ultimately reduced training
times per epoch. Epoch training time is frequently used
in benchmark experiments to represent training per-
formance measured by training data throughput,
though this appropriateness can be disputed by com-
paring the simple SGD optimizer’s fast epoch training
times against its poor real-time validation loss. We also
reveal limitations of the more sophisticated update
rules, the often initially poor performing and for larger
batch sizes, detrimental updates learned in initial
epochs as these optimizers appropriately adjust their
adaptive learn rate. Conversely, because smaller batch
sizes result in more fine - grained parameter read and
write updates, every optimizer converges in substan-
tially fewer updates but requiring disproportionally lar-
ger amounts of time.
Other key observations include the remarkable diver-

gence of the RMSProp and Adam optimizers. The
Adam optimizer is especially popular in current deep
learning literature, but pragmatic researchers may toler-
ate training instability from Adam’s rapid convergence.
In our experiments, we found that though the Adadelta
optimizer achieved the lowest overall validation loss in
our experiments, and that the Adam optimizer would

Fig. 2 Cross-Entropy Validation Loss vs. Elapsed Train Time by Mini-batch size
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Fig. 4 10-Epoch Train Time vs. Number of Worker Nodes for Various Batch Sizes

Fig. 3 Cross-Entropy Validation Loss vs. Elapsed Train Time by Optimizer Function
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reach a competitive second lowest validation loss but
required less than one third of the training updates
Adadelta required. From our experimental data, we can
explain these learning patterns as resulting from how
each optimizer’s learning rate adaptation affects

overfitting. Figure 6 compares worker node training
batch training loss against the parameter server’s tested
validation loss. Both RMSProp and Adam use con-
stantly diminishing learn rates by dividing the initial
rate by the exponentially decaying average of squared
gradients. Adam additionally multiplies the learn rate
with the exponentially decaying average of squared gra-
dients, resulting in a more responsive learn rate adapta-
tion, faster training convergence and more extreme
overfitting. Comparatively, Adadelta’s learn rate is
scaled by a simple running average of gradients
retained within a fixed number of updates. This less re-
sponsive mechanism explains why Adadelta converges

Table 2 Classification performance of Convolutional Neural
Networks and Random Forest classifiers in Micro-F1 and Macro-
F1 scores

Micro-F1 Macro-F1

CNN 0.8425 0.5117

Random Forest 0.7632 0.3567

Table 3 Primary site-specific classification performance and their number of support

Site Precision Recall F1-score Support Site Precision Recall F1-score Support

C00 1.00 0.19 0.32 16 C41 0.51 0.24 0.33 88

C01 0.62 0.57 0.59 53 C42 0.92 0.95 0.94 1800

C02 0.71 0.86 0.78 108 C44 0.85 0.91 0.88 1150

C04 0.69 0.64 0.67 39 C48 0.36 0.10 0.15 84

C05 0.62 0.42 0.50 31 C49 0.40 0.44 0.42 261

C06 0.38 0.35 0.37 48 C50 0.94 0.97 0.95 4414

C07 0.83 0.86 0.84 66 C51 0.89 0.74 0.81 97

C08 0.00 0.00 0.00 16 C52 0.43 0.15 0.23 39

C09 0.81 0.90 0.85 71 C53 0.78 0.77 0.77 314

C10 0.36 0.15 0.21 27 C54 0.78 0.91 0.84 882

C11 0.72 0.49 0.58 43 C55 0.47 0.13 0.21 174

C12 0.00 0.00 0.00 11 C56 0.72 0.84 0.77 448

C13 0.00 0.00 0.00 14 C57 0.59 0.16 0.25 83

C14 0.47 0.29 0.36 24 C60 1.00 0.22 0.36 18

C15 0.82 0.81 0.82 199 C61 0.98 0.99 0.98 2313

C16 0.82 0.81 0.81 427 C62 0.98 0.92 0.95 60

C17 0.71 0.54 0.62 156 C64 0.89 0.93 0.91 458

C18 0.85 0.90 0.87 1951 C65 0.33 0.10 0.15 20

C19 0.56 0.31 0.40 118 C66 0.68 0.47 0.56 32

C20 0.81 0.84 0.82 646 C67 0.93 0.96 0.94 947

C21 0.72 0.64 0.68 75 C68 0.33 0.03 0.06 30

C22 0.74 0.82 0.78 268 C69 0.00 0.00 0.00 18

C23 1.00 0.19 0.31 27 C70 1.00 0.06 0.11 17

C24 0.67 0.08 0.14 26 C71 0.79 0.87 0.83 296

C25 0.79 0.79 0.79 151 C72 0.65 0.42 0.51 36

C26 0.00 0.00 0.00 32 C73 0.94 0.97 0.95 305

C30 0.56 0.49 0.52 47 C74 0.00 0.00 0.00 10

C31 0.67 0.13 0.22 15 C75 1.00 0.18 0.31 22

C32 0.79 0.88 0.83 240 C76 0.41 0.27 0.33 196

C34 0.86 0.91 0.88 1569 C77 0.65 0.65 0.65 741

C38 0.62 0.49 0.55 106 C80 0.51 0.48 0.50 962

C40 0.00 0.00 0.00 14 C90 0.00 0.00 0.00 24
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significantly slower than RMSProp and Adam but is
highly resistant to overfitting.
An issue relevant to our study and the bioinformatics

domain is extreme class imbalance, as our most preva-
lent class, breast cancer, had 4415 (C50) cases, while
the least prevalent classes, adrenal gland cancer (C74)
and pyriform sinus cancer (C12), had only 10 cases
and 11 cases respectively. Though some worker nodes
may never directly interact with minority classes, they
would still indirectly learn from these cases via param-
eter server updates. A potential future solution to class
imbalance is oversampling the minority classes so that
each worker node may have some cases of the class,
with the many worker nodes helping to reduce the
downside of longer training times as a result of add-
itional training cases, though care must be made to en-
sure balanced worker node train times for any
asynchronous implementation.
Because OLCF’s Titan architecture consists of a single

GPU per compute node, we utilized a simple worker

hierarchy consisting of a single master node which all
worker nodes submit updates to. Future compute clus-
ters such as OLCF Summit have configurations of 4
GPU devices on each node, each capable of accessing
the node’s shared memory. This difference in
inter-device bandwidth warrants future investigation to
identify optimal worker-master configurations across
heterogeneous architectures.
In this paper, we applied an implementation of data

parallelism to CNN training and demonstrated the scal-
ability of this method to our cancer surveillance task.
Such techniques are particularly useful to the surveil-
lance community, but they require many training
epochs with vast amounts of training samples which
may be too large for a single node computer or a
multiple-GPU workstation. We examined the scalability
of the data parallelism using the Titan supercomputer
and evaluated task performance on the information ex-
traction of primary cancer sites from the cancer path-
ology reports that are free form natural language texts.

Fig. 5 Support-normalized confusion matrix between the actual and predicted values from the CNN classifier for 64 primary cancer sites

Fig. 6 Master Node Validation Loss/Worker Node Training Loss vs Epoch with batch size 64
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Our suggested method outperformed a traditional ma-
chine learning algorithm, and scales to multiple nodes
by communicating via the MPI protocol.
The study leads us into further investigations and

analyses such as training efficiency of DL networks, ac-
tual throughput of the communication between com-
pute nodes, efficient load balancing between compute
nodes, and even the proper choice of DL libraries apt
to implement data parallelism. Along with the hyper-
parameter optimization efforts and the data parallelism
of CNN for large scale natural language processing,
the HPC environment is critically important for sup-
porting NLP applications for the biomedical and other
application domains.

Conclusions
To scale deep learning methods to very large data sets,
we have implemented a data parallel approach for net-
work training within an HPC environment. We used
the convolutional neural network for natural language
processing to extract ICD-O-3 from a large-scale can-
cer pathology reports as our benchmarking task.
We compared how training parameters, including

optimizer and batch size, impact training performance
which was measured in elapsed time and number of
training epochs required to minimize validation loss.
The Adadelta optimizer achieved the lowest validation
loss of 0.6337 with 16 worker nodes and a training
batch size of 64 after over 24 training epochs. The
Adam optimizer achieved a minimum loss of .6670 but
converged significantly faster, in only 4.5 training
epochs with a batch size of 32.
We measured training scalability by comparing how

worker node count affected total training time. We
found that training batch size strongly affected scal-
ability, with smaller batch sizes of 16 and 32 resulting
in reduced training times using up to 8 nodes and add-
itional workers causing longer train times. With a
batch size of 64, we improved scalability and reduced
training times with up to 16 nodes. Our largest tested
batch sizes of 128 and 256 improved scalability up to
32 nodes.
Finally, we demonstrated the effectiveness of our

CNNs against a more conventional statistical learn-
ing model in a 10-fold cross validated experiment.
We used a Random Forest classifier with a TF-IDF
document representation and found the CNN
trained with data-parallelism outperformed the Ran-
dom Forest model resulting in micro-averaged F1
scores of .8425 and .7632 and macro-averaged F1
scores of .5117 and .3567 respectively.
Our results suggest that the scalability of our deep

learning model to multiple computational nodes is pos-
sible but subject to training parameters. We found the

major bottleneck for scalability is worker-parameter node
communication, since larger batch sizes require fewer up-
dates per epoch. We also see a tradeoff between scalability
and training performance, since the larger, more scalable
batch sizes require more epochs to converge to
less-optimal losses. Future research should attempt to im-
prove the scalability-learning performance tradeoff. Since
increased inter-node messaging appears to be major
limitation to training scalability, using a modified up-
date scheme such as using multiple parameter servers
or reducing worker update message size with a model
parallelism implementation.
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