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Abstract

Background: Cancer is a complex, multiscale dynamical system, with interactions between tumor cells and
non-cancerous host systems. Therapies act on this combined cancer-host system, sometimes with unexpected
results. Systematic investigation of mechanistic computational models can augment traditional laboratory and clinical
studies, helping identify the factors driving a treatment’s success or failure. However, given the uncertainties
regarding the underlying biology, these multiscale computational models can take many potential forms, in addition
to encompassing high-dimensional parameter spaces. Therefore, the exploration of these models is computationally
challenging. We propose that integrating two existing technologies—one to aid the construction of multiscale
agent-based models, the other developed to enhance model exploration and optimization—can provide a
computational means for high-throughput hypothesis testing, and eventually, optimization.

Results: In this paper, we introduce a high throughput computing (HTC) framework that integrates a mechanistic
3-D multicellular simulator (PhysiCell) with an extreme-scale model exploration platform (EMEWS) to investigate
high-dimensional parameter spaces. We show early results in applying PhysiCell-EMEWS to 3-D cancer
immunotherapy and show insights on therapeutic failure. We describe a generalized PhysiCell-EMEWS workflow for
high-throughput cancer hypothesis testing, where hundreds or thousands of mechanistic simulations are compared
against data-driven error metrics to perform hypothesis optimization.

Conclusions: While key notational and computational challenges remain, mechanistic agent-based models and
high-throughput model exploration environments can be combined to systematically and rapidly explore key
problems in cancer. These high-throughput computational experiments can improve our understanding of the
underlying biology, drive future experiments, and ultimately inform clinical practice.
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Background
Cancer is a complex, dynamical system operating on many
spatial and temporal scales: processes include molecular
interactions (e.g., gene expression and protein synthesis;
nanoseconds to minutes), cell-scale processes (e.g., cycle
progression and motility; minutes to hours), tissue-
scale processes (e.g., tissue mechanics and biotransport;
minutes to days), and organ and organism-scale pro-
cesses (e.g., organ failure and clinical progression; weeks,
months, and years). Cancer-host interactions dominate
throughout these scales, including interactions between
tumor cells and the vasculature (hypoxic tumor cells trig-
ger growth of new blood vessels; new but dysfunctional
blood vessels supply further growth substrates and can
promote metastasis), between tumor cells and stromal
cells (tumor cells can prompt tissue remodeling that facil-
itates tissue invasion), and between tumor cells and the
immune system (immune cells can kill tumor cells, but
tumor cells can co-opt inflammation to promote their
survival). See the reviews in [1–6]. When designing and
evaluating new cancer treatments, it is imperative to con-
sider the impact on this complex multiscale cancer-host
system.

Cancer-host interactions have been implicated in the
poor (and sometimes surprising) clinical outcomes of
existing and new treatments. Chemotherapies fail when
molecular-scale processes (e.g., DNA repair failures,
mutations, or epigenetic alterations) cause resistant tumor
clones to emerge (multicellular-scale birth-death pro-
cesses) which can survive the treatment [6–11]. Anti-
angiogenic therapies that target blood vessels were
expected to be potent agents against cancer [12], but
disrupting tissue perfusion inhibits drug delivery and
increases hypoxia, which was subsequently shown to
select for more aggressive tumor phenotypes, including
alternative metabolism and increased tissueinvasion [13–15].
On the other hand, medications originally developed for
osteoporosis (bone loss) were found to reduce the inci-
dence of bone metastases through unclear mechanisms,
but hypothesized to arise from tumor-osteoclast interac-
tions [16–18]. Such examples underscore the need to eval-
uate and improve cancer treatments from a cancer-host
systems perspective.

Recent successes of cancer immunotherapies—such
as CAR (chimeric antigen receptor) T-cell treatments
[19, 20]—have brought heightened attention to cancer
immunology. In some patients, immune cell therapies
have been impressively successful, while other patient
populations have demonstrated disappointing outcomes;
this variability of patient response arises in part from the
poorly-understood, complex interactions between cancer
and the immune system [21–26]. This suggests that better
immune therapies could be designed through systematic
investigations of tumor-immune interactions.

Key elements for systematic and mechanistic investigation
of cancer immunotherapy
Given the complexity and underlying uncertainty regard-
ing the biological processes that drive cancer, dynamic
computational models have been used to represent var-
ious cellular and molecular functions associated with
cancer [27].

In particular, agent-based modeling [27] is an increas-
ingly common computational modeling method that can
aid in the translation of genetic/molecular/sub-cellular
processes to the multicellular behavior of tumors and the
host. Agent-based models (ABMs) can serve as modes
for multiscale dynamic knowledge representation [28, 29],
with the rules for each model representing a particular
hypothesis of how the system may work. As such, they
serve a potentially vital role in aggregating existing bio-
logical knowledge, and through simulation experiments
exploring their behavior, can help establish the boundaries
of the set of plausible hypotheses.

However, the dynamic multiscale models (e.g., ABMs)
needed to approximate the complexity of the overall sys-
tem are by their very nature resistant to formal analy-
sis. Their overall behavior can only be evaluated by the
execution of heuristic methods that require very large
numbers of simulations, a process we term model explo-
ration (ME). ME is a near-ubiquitous component in the
development of models and algorithms; as applied to
ABMs, it involves an iterative workflow where simula-
tion experiments are carried out across a large range of
parameter values (parameter space exploration) and vary-
ing perturbations and initial conditions (model behavior
space exploration). Model outputs from a set of simulation
experiments are evaluated against some predetermined
metric, which informs the next iteration of simulation
experiments. Advances in high-performance computing
can allow the parallelization of this process, resulting in
high-throughput dynamic knowledge representation and
hypothesis evaluation to address a current bottleneck in
the Scientific Cycle [30]. However, we propose that the
ME process itself can be enhanced with a computational
framework for its workflow [31].

In this paper, we formulate the requirements for a
computational experimental system for systematic, high-
throughput hypothesis testing and optimization. We
provide an example of how high-throughput hypothe-
sis testing can be applied to the complex problem of
tumor-immune interactions using a novel framework that
integrates a multiscale mechanistic model development
platform—PhysiCell [32] and BioFVM [33]—within a
computational ME manager—Extreme Model Exploration
with Swift (EMEWS) [31].

We then present early work on implementing our pro-
posed high-throughput hypothesis testing and optimiza-
tion framework with PhysiCell and EMEWS. After an



Ozik et al. BMC Bioinformatics 2018, 19(Suppl 18):483 Page 83 of 110

initial 2-D test deployment that explored the impact of
tumor oxygenation, we present a high-throughput inves-
tigation of a 3-D computational model of the adaptive
immune response to tumor cells from [32]. This work
exposed new and counter-intuitive insights on tumor-
immune cell attachment dynamics and the nonlinear role
of immune cell homing on successful and unsuccess-
ful tumor suppression. The study performed over 1.5
years’ worth of computational investigation in just over
two days—a feat that is computationally infeasible with-
out a framework that merges mechanistic modeling with
efficient model exploration.

We close with a discussion of our ongoing and future
work to implement the full PhysiCell-EMEWS framework
iterative hypothesis exploration and optimization, along
with potential applications in developing synthetic mul-
ticellular cancer treatment systems. We note that both
PhysiCell and EMEWS are free and open source software.
PhysiCell is available at http://PhysiCell.MathCancer.org
and EMEWS is available at http://emews.org.

Method
3-D cancer immunology model exploration using
PhysiCell-EMEWS
There have been multiple projects utilizing agent-based/
hybrid modeling of tumors and their local environments
[34–37]. Review of this work and our own has led to
the following list of key elements needed to systemat-
ically investigate cancer-immune dynamics across high-
dimensional parameter/hypothesis spaces to identify the
factors driving immunotherapy failure or success:

1 efficient 3-D simulation of diffusive biotransport of
multiple (5 or more) growth substrates and signaling
factors on mm3-scale tissues, on a single compute
node (attained via BioFVM [33]);

2 efficient simulation of 3-D multicellular systems (105

or more cells) that account for basic biomechanics,
single-cell processes, cell-cell interactions, and
flexible cell-scale hypotheses, on a single compute
node (attained via PhysiCell [32]);

3 a mechanistic model of an adaptive immune
response to a 3-D heterogeneous tumor, on a single
compute node (introduced in [32]);

4 efficient, high-throughput computing frameworks
that can automate hundreds or thousands of
simulations through high-dimensional hypothesis
spaces to efficiently investigate the model behavior
by distributing them across HPC/HTC resources
(attained via EMEWS [31]); and

5 clear metrics to quantitatively compare simulation
behaviors, allowing the formulation of a hypothesis
optimization problem (see “Proposition: hypothesis
testing as an optimization problem” section).

Efficient 3-D multi-substrate biotransport with BioFVM
In prior work [33] we developed BioFVM: an open source
framework to simulate biological diffusion of multiple
chemical substrates (a vector ρ) in 3-D, governed by the
vector of partial differential equations (PDEs)

∂ρ

∂t
= D∇2ρ − λρ + S(ρ∗ − ρ) − Uρ (1)

+
∑

{cells i}
δ(x − xi)Wi

[
Si(ρ

∗
i − ρ) − Uiρ

]
.

Here, D is the vector of diffusion coefficients, λ gives the
decay rates, S and U are vectors of bulk source and uptake
rates, and for each cell i, Si and Ui are its secretion and
uptake rates, Wi is its volume, and xi is its position. All
vector-vector products (e.g., λρ) are component-wise, ρ∗
denotes a vector of saturation densities (at which secretion
or a source ceases), and δ is the Dirac delta function.

As detailed in [33], we solve this equation by a first-
order operator splitting: we solve the bulk source and
uptake equations first, followed by the cell-based sources
and uptakes, followed by the diffusion-decay terms. We
use first-order implicit time discretizations for numeri-
cally stable first-order accuracy. When solving the bulk
source/decay term, we have an independent vector of
linear ordinary differential equations (ODEs) in each com-
putational voxel of the form:

∂ρ

∂t
= S(ρ∗ − ρ) − Uρ. (2)

Each of these sets of ODEs can be solved with the
standard backwards Euler difference, giving a first-order
accurate, stable solution. We trivially parallelize the solu-
tion by dividing the voxels across the processor cores
with OpenMP: each thread works on a single voxel’s
set of ODEs. Moreover, we wrote the ODE solver to
work vectorially, with a small set of BLAS (basic linear
algebra subprograms) implemented to reduce memory
allocation, copy, and deallocation operations. (We imple-
mented specific BLASes as needed to keep the frame-
work source small and minimize dependencies to facilitate
cross-platform portability across Windows, Linux, OSX,
and other operating systems.) We solved the cell-centered
sources and sinks similarly, by dividing the solvers across
the cells by OpenMP (one set of ODEs per cell); note that
each cell will act on the substrates in the voxel containing
the cell center, by the Dirac delta formulation.

We solve the diffusion-decay equation by the locally
one-dimensional (LOD) method, which transforms a sin-
gle 3-D PDE into a series of three 1-D PDEs (one PDE
with respect to the x derivatives, one for the y derivatives,
and one for the z derivatives) [38, 39]. In any x-, y-, or
z-strip, using centered 2nd-order finite differences for the
spatial derivative and backward 1st-order Euler differences
yields a tridiagonal linear system for each substrate’s PDE;

http://PhysiCell.MathCancer.org
http://emews.org
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because each PDE has the same form, we have a vector of
tridiagonal linear systems. In [33], we solved this system
with a vectorized Thomas algorithm [40]: an efficient O(n)
direct linear solver for a single tridiagonal linear system,
which we vectorized by performing all addition, multipli-
cation, and division operations vectorially (with term-wise
vector-vector multiplication and division). As a further
optimization, we took advantage of that fact that D and λ

are constant and noted that the forward sweep stage of the
Thomas algorithm only depends upon D, λ, and the spa-
tial mesh, but not on the prior or current solution. Thus,
we could pre-compute and cache in memory the forward-
sweep steps in the x-, y-, and z-directions to reduce the
processing time. We tested on numerous computational
problems, and found the overall method was first-order
accurate and stable in time, and second-order accurate in
space [33]. Moreover, we found that the computational
speed scaled linearly in the number of PDEs solved, with
a slope much less than one: Simulating 10 PDEs takes
approximately 2.6 times more computational effort than a
single PDE, whereas sequentially solving 10 PDEs requires
approximately 10 times more effort than a single PDE. See
further results in [33].

In testing, we have found that this system can simu-
late 5–10 diffusing substrates on 1 million computational
voxels (sufficient to simulate 8 mm3 at 20 μm resolution)
on a quad-core desktop workstation with 2 GB of mem-
ory; the performance was faster on a single compute node
with greater computational core counts. This CPU-based
algorithm maximizes cross-platform compatibility, but we
anticipate a GPU implementation would be at least an
order of magnitude faster.

Efficient 3-D multicellular simulations with PhysiCell
In [32], we developed a 3-D agent-based modeling
framework by extending BioFVM’s basic agents (dis-
crete cell-like agents with static positions, which could
secrete and consume chemical substrates in the BioFVM
environment) to create extensible software cell agents.
Each cell has an independent, hierarchically-organized
phenotype (the cell’s behavioral state and parameters)
[41, 42]; user-settable function pointers to define hypothe-
ses on the cell’s phenotype, volume changes, cell cycling
or death, mechanics, orientation, and motility; and user-
customizable data. The cells’ function pointers can be
changed at any time in the simulation, allowing dynamical
cell behavior and even switching between cell types. The
overall program flow progresses as follows. In each time
step:

1 Update the chemical diffusing fields by solving the
PDEs above with BioFVM.

2 For each cell, update the phenotype by evaluating
each cell’s custom phenotype function. Also run the

cells’ cell cycle/death models, and volume update
models. This step is parallelized across all the cells by
OpenMP.

3 Serially process the cached lists of cells that must
divide, and cells that must be removed (due to
death). Separating this from step 2 preserved
memory coherence.

4 For each cell, evaluate the mechanics and motility
functions to calculate the cells’ velocities. This step
can be parallelized by OpenMP because the cell
velocities are based upon relative positions.

5 For each cell, update the positions (using the
second-order Adams-Bashforth discretization) using
the pre-computed velocities. This step is also
parallelized by OpenMP.

6 Update time.

The cell velocity functions (adapted from [35]) requires
computing n-1 pairwise cell-cell mechanical interactions
for all n cells, giving O(n2) computational performance—
this would be prohibitive beyond 103 or 104 cells.
However, biological cells have finite interaction distances,
so we created an interaction testing data structure that
placed each cell’s memory address in a Cartesian mesh,
and limited cell-cell mechanical interaction testing to the
nearest interaction voxels. This reduced the computa-
tional effort to O(n). PhysiCell uses separate time step
sizes for biotransport (�t ∼0.01 min), cell mechanics
(�t ∼0.1 min), and cell processes (�t ∼6 min) to take
advantage of the multiple time scales. See [32] for further
details.

Extreme-scale Model Exploration with Swift (EMEWS)
While detailed modeling approaches like PhysiCell allow
higher fidelity representation of molecular, cellular, and
tissue dynamics in cancer, they present substantial chal-
lenges. These challenges center on dealing with the large
parameter spaces of these models and the highly nonlinear
relationship between ABM input parameters and model
outputs due to multiple feedback loops and emergent
behaviors. Since their complexity limits the use of formal
analytical approaches, the calibration and interpretation
of complex ABMs often requires heuristic model explo-
ration approaches that adaptively evaluate large numbers
of simulations. These approaches often involve complex
iterative workflows driven by sophisticated ME algo-
rithms, such as genetic algorithms [43] or active learn-
ing [44, 45], which adaptively refine model parameters
through the analysis of recently generated simulation
results and launch new simulations.

The Extreme-scale Model Exploration with Swift
(EMEWS) framework [31] is built on the the general-
purpose parallel scripting language Swift/T [46], and is
used to generate dynamic, highly concurrent simulation
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workflows for guiding ABM exploration in high-
dimensional parameter spaces. EMEWS enables the
direct integration of external ME algorithms to control
and coordinate the running and evaluation of large
numbers of simulations via iterative HPC workflows. The
general-purpose nature of the underlying Swift/T work-
flow engine allows the supplementing of the workflows
with additional analysis and post-processing as well.

EMEWS enables the user to plug in both ME algorithms
and scientific applications, such as PhysiCell ABMs. The
ME algorithm can be expressed in Python or R, utilizing
high-level queue-like interfaces with two implementa-
tions: EQ/Py and EQ/R (EMEWS Queues for Python and
R). The scientific application can be implemented as an
external application called through the shell, in-memory
libraries accessed directly by Swift (for faster invocation),
or Python, R, Julia, C, C++, Fortran, Tcl and JVM language
applications. Thus, researchers in various fields who may
not be parallel programming experts can simply apply
existing ME algorithms to their existing scientific appli-
cations and run large-scale computational experiments
without explicit parallel programming. A key feature of
this approach is that neither the ME algorithm nor the
scientific application is modified to fit the framework.

Mechanistic 3-D model of adaptive immune response to
heterogeneous tumors
Heterogeneous tumor
In [32], we developed an initial model of an adaptive
immune response to a heterogeneous tumor. In the model,
each cell exchanges cell-cell adhesive and “repulsive”
forces, and enters the cell cycle at a rate that increases with
oxygen availability. Each cell consumes oxygen, which dif-
fuses from the simulation’s boundary voxels, leading to
the formation of hypoxic gradients. Where oxygenation
drops to very low levels, tumor cells become necrotic and
slowly lose volume. To model heterogeneity, each can-
cer cell has a normally distributed mutant “oncoprotein”
expression 0 ≤ p ≤ 2 (with mean 1, standard devia-
tion 0.3). Cells with greater expression of p are modeled
as entering the cell cycle more rapidly. See [32] for more
details and references.

Immunogenicity and immune response
As a simplified model of MHC (major histocompatibility
complex: a surface complex that presents a “signature”
sampling of fragments of the cell’s peptides, allowing
immune cells to learn to recognize the body’s own cells
[47, 48]), we assume cells with greater p expression are
more immunogenic: more likely to present abnormal pep-
tides on MHC and be recognized as targets for immune
attack. All tumor cells secrete an immunostimulatory fac-
tor that diffuses through the domain. (Even in situ tumors
are known to prompt immune cell homing [49].) Immune

cells perform biased random migration (chemotaxis)
along gradients of this factor, test for collision with cells,
and form tight adhesions with any cells that are found.

For any time interval [ t, t + �t] while an immune cell
i is attached to another cell j, the immune cell attempts
to induce apoptosis (programmed cell death) with proba-
bility ripj�t, where ri is the immune cell’s killing rate for
a normal immunogenicity (p = 1), and pj is the jth cell’s
oncoprotein expression; this models activation of a death
receptor, such as FAS. For more background biology and
references, see [32]. If an immune cell triggers apoptosis,
it detaches and continues its search for new immuno-
genic targets. Otherwise, it remains attached, but with a
similar stochastic process to regulate how long it remains
attached.

Sample 3-D simulation
In [32], we simulated this problem in 3D for an ini-
tial cell population of approximately 18,000 cells in a
∼ 5 mm3 domain on a quad-core desktop workstation. At
the simulation start, tumor cells are very heterogeneously
distributed; see the first frame in Fig. 1, where the tumor
cells are shaded by p expression from blue (p ≤ 0.5) to
yellow (p ≥ 1.5). By two weeks (Fig. 1, third frame), the
tumor has grown by an order of magnitude (from ∼104

to 105 cells), there is clear selection for the cells with the
most p (the tumor is visibly more yellow), oxygen trans-
port limits have lead to the formation of a necrotic core
(brown central region), and the initial spherical symmetry
has been lost due to the formation of clonal foci (larger,
more homogeneous yellow regions).

At this point, we introduced 7500 immune cells (red)
and applied the immune response model. By later simu-
lation times (16 and 21 days in Fig. 1), we observed that
the immune cells continue migrating along the chemical
gradient until reaching the center where the gradient is
approximately flat. Due to the particular choice of motility
parameters for the immune cells, they become temporar-
ily trapped in the center, allowing tumor cells to evade
therapy and re-establish the tumor. A high-resolution
video of this simulation can be viewed at https://www.
youtube.com/watch?v=nJ2urSm4ilU.

Proposition: hypothesis testing as an optimization problem
We posit that the application of an integrated framework
where the PhysiCell model is deployed within the EMEWS
framework can be used to take advantage of EMEWS’s
more advanced ME capabilities to inform hypothesis
exploration as a function of parameter space search (e.g.,
via active learning) and hypothesis optimization (e.g., via
genetic algorithms). As an example, we describe the fol-
lowing set of parameters that represent a space of possible
interactions governing tumor-immune interactions, and
how that space could be explored:

https://www.youtube.com/watch?v=nJ2urSm4ilU
https://www.youtube.com/watch?v=nJ2urSm4ilU
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Fig. 1 Sample 3-D cancer-immune simulation. 3-D simulation of adaptive immune response to a heterogeneous tumor, with cells ranging from
blue (low proliferation and immunogenicity) to yellow (high proliferation and immunogenicity). Immune cells are red; cyan cells have undergone
apoptosis due to immune attack. A high-resolution animation can be viewed at https://www.youtube.com/watch?v=nJ2urSm4ilU. Adapted with
permission (via CC-BY 4.0) from [32]

1 A family of cell behavior hypotheses and constraints
on their parameter values. For example:

(a) immune cells can exhibit any combination of
random motility, chemotaxis towards tumor
cells, or chemotaxis away from other immune
cells

(b) attached immune cells can secrete
immunoinhibitory or immunostimulatory
factors

(c) tumor cells can secrete immunoinhibitory
factors, but at a cost to cellular energy
available for proliferation

(d) the microenvironment can have variable
far-field oxygenation values.

2 A mechanistic computational model for simulating
the cancer-host system under the hypotheses. For
example:

(a) We implement the additional diffusion
equations in BioFVM.

(b) We implement the prior tumor cell
immunogenicity model, and add a basic
model of cell metabolism (e.g., as in [50]) with
extra energy cost for secreting the
immunoinhibitory factor.

(c) We implement the prior immune cell
adaptive response model but vary the cell
motility according the specific hypotheses for

migration bias along the various chemical
gradients, the level of randomness, and we
vary decrease the migration speed, adhesion
rate, and cell killing rate under
immunoinhibition.

3 A set of target system behaviors and/or validation
data. For example:

(a) We seek hypotheses that result in emergence
of immune-resistant tumors.

4 A model error metric to compare models and assess
their match to target behavior. For example:

(a) For a set of hypotheses, we quantify the
number of tumor cells after 48 h of immune
attack, the secretion level of the
immunoinhibitory factor, and the mean
immunogenicity (mutant oncoprotein).

Given these user inputs, the proposed PhysiCell-
EMEWS system would distribute simulations across the
hypothesis space (each running independently on its
own compute node, where they are optimized). For suc-
cinctness, we refer to a point in the hypothesis space
as a single simulation ruleset. Because these mod-
els are stochastic, EMEWS will initialize multiple sim-
ulations for each ruleset. EMEWS then collects the
simulation outputs, evaluates the user-supplied metric

https://www.youtube.com/watch?v=nJ2urSm4ilU
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against the target model behavior, and either reports
the best hypothesis ruleset (if only one iteration is
allowed), or repeats the process to refine the current
best hypothesis ruleset (e.g., by a genetic algorithm).
Each iteration is a high-throughput hypothesis test.
And the overall iteration is hypothesis optimization.
See Fig. 2.

The output is a set of hypotheses H that lead to the
desired cell behaviors. For example, in hypoxic conditions,
we may see less selection for the immunoinhibitory secret-
ing cells due to limited nutrients, unless the cells are under
attack by many immune cells. This hypothesis could then
be tested experimentally. If the hypothesis does not hold
experimentally, we would refine the computational model
(e.g., focusing more on hypoxic cell metabolic and motile
adaptations.)

Results
We now demonstrate the first steps in implementing
and testing the PhysiCell-EMEWS hypothesis optimiza-
tion system: we conduct a single iteration of ME on
a 2-D hypoxic cancer study, and then we test the 3-D
cancer-immune model on a high-throughput study that
reduced over a year of continumous computing time
to just 2 days.

Test deployment of PhysiCell within EMEWS
The initial example of integrating PhysiCell with EMEWS
involved examination of the effect of hypoxic conditions

on tumor growth. This involved the development of a
fast 2-D tumor simulator that could simulate 48 h of
oxygen-limited tumor growth in 1–2 min. The framework
integration proceeded as in the “Proposition: hypothesis
testing as an optimization problem” section above. To
work through user-supplied elements:

1 Oxygenation conditions could vary from completely
anoxic (0 mmHg) to typical values of well-oxygenated
breast tissue (60 mmHg; see [33, 51]). The initial cell
population could vary from 1 to 2000 cells.

2 PhysiCell was used to create a program that could
read these two hypothesis parameters at the
command line, initialize the simulation, and run to
48 h without user input.

3 The target behavior was to maximize live cell fraction.
4 The model metric was the live cell fraction after 48 h.

We implemented a parameter sweep of PhysiCell using
EMEWS, with the following oxygenation values:

0, 2.5, 5, 8, 10, 15, 38 or 60 mmHg
and the following initial cell counts:

1, 10, 100, 1000, 2000
EMEWS saved the model outputs in separate directo-

ries, facilitating subsequent postprocessing analysis and
visualization. We plot a 2-D array of the final simulation
images in Fig. 3 and the final live cell counts in Fig. 4
(top). As expected, increasing the initial cell count always
increases the final cell count (and overall tumor size) 48

Fig. 2 Hypothesis testing as an optimization problem. If scientific users can (1) formulate a range of hypotheses, (2) supply an efficient 3-D
mechanistic simulator (BioFVM+PhysiCell), (3) provide validation behaviors and/or data, and (4) supply an error metric, then the combined
PhysiCell-EMEWS system can automatically explore the space of hypotheses, initiate simulations on HPC/HTC resources, collect data to evaluate the
error metric, and then make further decisions on which hypotheses and parameter values to explore next. The framework iteratively sharpens
hypotheses that bring new biological and clinical insights
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Fig. 3 First PhysiCell-EMEWS test on cancer hypoxia: tumor plots. Here necrotic cells (dead by oxygen starvation) are brown, non-cycling cells are
blue, and cycling cells are green and magenta. Increasing the initial cell count increases the final cell count, but also increases the final dead cell
fraction (seen as the increasing prevalence of brown)

h later, but for any fixed oxygenation condition, this also
leads to greater prevalence of necrosis, and a nonmono-
tonic effect on final live cell fraction (Fig. 4 (bottom)).

In Fig. 4 (bottom), we plot the final live cell fraction
as a function of the initial cell count, for each fixed oxy-
genation condition. For low oxygenation conditions (0,
2.5 mmHg), almost all cells are dead at 48 h regard-
less of cell seeding choices. For intermediate oxygenation
conditions (5 to 38 mmHg), the effect is nonmonotonic:
for small initial cell populations (1 or 10 cells), stochas-
tic apoptosis effects can sometimes leave a smaller final
live fraction than a larger cell population; this highlights
the importance of testing multiple simulation replicates
for stochastic models. Past 100 initial cells, the stochas-
tic effects are reduced, and increasing the initial cell count
results in a lower final live fraction (due to oxygen deple-
tion by the larger cell population and the emergence
of a necrotic core). In particular, for these simulations
increasing from 1000 to 2000 cells decreased the final
live cell fraction. This behavior was not observed for
high oxygenation (60 mmHg): no portions of the tumor
ever drop below the necrotic threshold. Moreover, this
simulated cell line has saturating proliferation above 38
mmHg pO2 (tissue physioxia [51] and so for sufficiently
high initial oxygenation, the entire tumor stays about
this threshold where there is no oxygen constraint to
growth.

Large-scale cancer immunology investigation
In [32],weperformedasingle3-Dcancer-immune simulation
as detailed above in “Sample 3-D simulation” section. As
discussed in [32], the simulation revealed that immune
cell homing and tumor-immune interactions are highly
non-intuitive, and that immune cell motility parame-
ters play a critical role in the success or failure of
the immune response. Had the immune cell “homing”
been weaker (i.e., more random, less biased along the
chemical gradient), there would have been more mixing
between the immune and tumor cells, leading to more
cell-cell interactions, a greater probability of tumor cell
killing, and a greater effective response. Thus, a broader
investigation of the immune cell motility model was
warranted.

Defining the simulation investigation
We identified the following three model parameters as
initial targets for study:

1 Immune cell attachment rate rA: If an immune cell
is in physical contact with a tumor cell, this
parameter gives the rate at which they form an
adhesive attachment. In any time interval [t, t + �t],
the probability of adhering is rA�t. In [32], we set
rA = 0.2 min−1, giving a mean time to attachment of
5 min.



Ozik et al. BMC Bioinformatics 2018, 19(Suppl 18):483 Page 89 of 110

Fig. 4 First PhysiCell-EMEWS test on cancer hypoxia: analytics. Live tumor cell count (top) and live cell fraction (bottom) after 48 h, as a function of
oxygenation conditions (each curve is a different condition) and initial cell count (horizontal axis). For intermediate oxygenation conditions,
increasing the initial cell count increases the final live cell count (top) but decreases the live cell fraction (bottom). Once oxygenation is high
enough, any initial cell count yields nearly 100% live fraction at 48 h

Study values: 0.033 min−1, 0.2 min−1, 1.0 min−1

2 Immune cell attachment lifetime TA: An attached
immune cell that has not successfully triggered
tumor cell apoptosis will maintain its attachment for
a mean time of TA. In any time interval [ t, t + �t],

the probability of detachment is �t/TA. In [32], we
set TA = 60 min.
Study values: 15 min, 60 min, 120 min

3 Migration bias b: Unadhered immune cells choose a
motility direction d
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d = (1 − b)u + b ∇c
‖∇c‖∥∥∥(1 − b)u + b ∇c
‖∇c‖

∥∥∥
, (3)

where c is the immunostimulatory chemokine and u
is a randomly oriented unit vector. Thus, b = 0
represents pure Brownian motion, and b = 1
represents deterministic chemotaxis along ∇c; see
[32]. We used a default bias b = 0.5.
Study values: 0.25, 0.50, 0.75

For each of these three parameters, we seek to inves-
tigate low, medium and high parameter values, giving a
total of 33 parameter combinations. Because the PhysiCell
model is stochastic, we seek 5–10 simulations per param-
eter set, for a total of 135 to 270 simulations. The single
sample simulation required approximately 2 days on a
four-year-old desktop workstation, including time to save
simulation outputs once every three simulated minutes.
Thus, our simulation study—performed on a single desk-
top workstation—would require 270 to 540 days of con-
tinuous compute time. Prior to PhysiCell-EMEWS, such a
simulation study would be computationally prohibitive.

Computational implementation
The parameter sweep implementation was generated
using the EMEWS sweep template [52] which allows a
user to create an EMEWS project customized for a param-
eter sweep from the command line. (Additional templates
exist for creating ME projects that utilize R or Python
ME algorithms.) The project consists of a standard direc-
tory structure for organizing model input, output, model
launch scripts, and workflow code. The workflow code,
implemented in Swift/T, takes as input a text file that
explicitly defines all the parameter sets over which to
sweep, one parameter set per line. The workflow iterates
over each line in the file in parallel and launches a model
for each parameter set, taking advantage of the available
concurrency. For example, given n available processes,
n models will be run concurrrently. The workflow code
can potentially modify the parameter sets, for example,
generating additional experimental trials by creating mul-
tiple new sets from an existing set through the addition
of random seeds. The workflow itself is launched from a
bash script which contains place holder values for HPC
machine configuration (e.g., queue type, walltime, and so
forth), and the parameter input file path. Models and sci-
entific applications such as PhysiCell models are run as
Swift/T app invocations. An app invocation calls out to
the external shell to run a bash script that then launches
the model. The model launch bash script provided by the
EMEWS sweep template takes as arguments the parame-
ter line and a unique directory in which to run the model.
The script then runs the model in this directory, passing it

the parameter line. It is also possible to run an application
as an in-memory Swift/T extension.

For the experiments in this study, the parameter file
contained 270 parameter sets. Each parameter set cor-
responded to a single model running in its own sand-
boxed directory. The experiments were performed on the
Cray XE6 Beagle at the University of Chicago, hosted at
Argonne National Laboratory. Beagle has 728 nodes, each
with 2 AMD Operton 6300 processors, each having 16
cores, for a total of 32 cores per node; the system thus has
23,296 cores in all. Each node has 64 GB of RAM. Each
model was run on a single node, allowing for maximal use
of the available threads and the full workflow utilized 272
nodes. 270 were used for model runs, providing complete
concurrency while the remaining 2 were used for work-
flow execution. The workflow completed in 51 h for a total
of 1632 core h.

Simulation results and clinical insights
Using PhysiCell-EMEWS, we initiated 270 simulations
of 14 days of growth, followed by a week of immune
response: 27 biophysical parameter sets, each with 10
random seeds. Because frequent data saves would signifi-
cantly slow the simulations due to networked file I/O [32],
we only saved the final simulation output for each run,
along with SVG visualizations of the z = 0 cross-section
at intermediate times. Of the 270 requested simulations,
231 were completed in approximately 2 days; see the
“Discussion” section for the runs that did not complete.

For each biophysical parameter set, we computed the
mean number of live tumor cells remaining at 21 days
for the 5-to-10 completed simulation replicates. In Fig. 5,
we fix the attachment rate at rA = 0.2 min−1 and plot a
heat map of this simulation metric versus the migration
bias b (horizontal axis) and attachment time TA (verti-
cal axis)—along with representative tumor cross-sections
(i, ii, iii, and iv)—at the final simulation time (21 days).
Each shaded square represents the mean live tumor cell
count for the n simulation replicates (labeled on each
square) for a particular parameter set, shaded from deep
blue (lowest cell count; most effective response) to bright
yellow (highest cell count; least effective response).

For all values of TA, decreasing the migration bias (and
thus decreasing homing along the immunostimulatory
gradient) dramatically improved the immune response.
This result was slightly non-intuitive, as it suggests that
the efficiency and precision of chemotaxis, if maximized,
leads to an “overshoot” phenomenon that actually works
against the goal of increasing tumor-immune cell mix-
ing, an important factor in the ability to kill tumor
cells noted in [32]. Alternatively, for any fixed migration
bias b, increasing the attachment lifetime also improved
the immune response as would be expected, although
increases beyond 60 min were only marginally helpful.
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Fig. 5 High-throughput 3-D cancer-immune simulation: impact of migration bias and and attachment lifetime. We plot a heatmap for final live cell
tumor count (blue is lowest, or most effective immune response; yellow is worst immune response) for varied migration bias (horizontal axis) and
immune cell attachment lifetime (vertical axis). Characteristic final tumor cross sections are labeled i-iv. In particular, decreasing migration bias
improves the response

However, these results demonstrate the need to account
for different axes of affect in any attempt to optimize
towards a particular goal (e.g., a therapeutic design goal of
maximizing tumor-immune cell mixing to increase tumor
cell killing).

In Fig. 6, we show a heat map for the mean live tumor
cell count at 21 days versus migration bias b (horizontal
axis) and the attachment rate rA (vertical axis). For all
values of b, increasing the attachment rate improved the
response, although the improvement beyond 0.2 min−1

was marginal. Interestingly, for a fixed attachment rate
rA, the impact of b was non-monotonic. Either decreas-
ing b (to promote random tumor-immune mixing) or
increasing b (to allow more directed cell migration)
would improve the immune response over the initial
value of 0.5. This again highlights the nonlinear nature

of tumor-immune interactions, and the need for high-
throughput investigation of mechanistic 3-D models to
systematically probe these dynamics and identify trade-
offs that need to be accounted for when designing putative
therapies.

In Fig. 7, we show a heat map for the mean live tumor
cell count at 21 days versus the attachment rate rA (hori-
zontal axis) and the attachment lifetime TA (vertical axis),
with b = 0.5. For all attachment lifetimes TA, increasing
the attachment rate improved the immune response, as
expected. However, for higher attachment rates rA, there
was an interesting trend towards bimodal optima when
examining the impact of the attachment lifetime: increas-
ing the attachment lifetime from the medium (1 h) to high
(2 h) value improved the treatment response, possibly by
increasing the likelihood of a successful apoptosis event
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Fig. 6 High-throughput 3-D cancer-immune simulation: impact of migration bias and and attachment rate. We plot a heatmap for final live cell
tumor count (blue is lowest, or most effective immune response; yellow is worst immune response) for varied migration bias (horizontal axis) and
immune cell attachment rate (vertical axis). Characteristic final tumor cross sections are labeled i-iv. The impact of both parameters was nonlinear

for any tumor-immune cell-cell attachment. However,
decreasing the attachment lifetime from medium (1 h)
to short (15 min) also improved the response, likely
by increasing the number of tumor-immune cell-cell
attachments. This demonstrates that the highly nonlinear
dynamics of the cancer-immune interactions can admit
many potential therapeutic strategies, some of which may
be non-intuitive. Additional simulations are planned to
determine whether this is an artifact of low replicate num-
bers, or represents an actual non-normal distribution in
the dynamic range of these parameters.

Discussion
Despite the prototyping nature of these simulation exper-
iments, we believe that there are important insights that
can be gained by these results. Most significant is sub-
stantiation of the general belief that multi-dimensional,

nonlinear systems can lead to some non-intuitive results.
In the context of cancer immunology, we found that
reducing chemotactic efficiency (reducing attraction bias)
can actually be beneficial in terms of achieving an inter-
mediate goal (tumor-immune cell mixing) that improves
the functional output (tumor suppression). Additionally,
these results, while qualitative in nature, suggest that
many immunotherapy design parameters have thresholds
values, beyond which further refinements give little or no
clinical benefit.

The identification of seeming thresholds for therapeutic
parameters such as attachment duration and rate suggests
that higher resolution models may be used to identify
boundary conditions for future wet lab experimental
investigations, which in turn can be used to refine the
computational models in exactly the type of iterative
workflow envisioned in Fig. 2. At some point, the results
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Fig. 7 High-throughput 3-D cancer-immune simulation: impact of attachment rate and and attachment lifetime. We plot a heatmap for final live
cell tumor count (blue is lowest, or most effective immune response; yellow is worst immune response) for varied immune cell attachment rate
(horizontal axis) and immune cell attachment lifetime (vertical axis). Characteristic final tumor cross sections are labeled i-iv. The impact of both
parameters was nonlinear

from this workflow will aid in “pre-screening” poten-
tial research spending priorities away from target goals
where further improvements (i.e., to speed up the attach-
ment rate or increase the attachment lifetime) would not
improve the immune response. In cases of non-monotonic
system behavior (e.g., where either high or low migration
bias can lead to treatment success, whereas intermediate
migration bias yields a poorer outcome), high-throughput
model investigations may be all the more critical to identi-
fying robust treatment designs with more reliable patient
outcome.

While the current model yielded fresh insights on
cancer-immune interactions, further refinements are
needed to unlock its full potential. In future work,
we plan to integrate and explore other key features of
the immune system, such as inflammatory responses,

cross-talk between different immune cell types, and
molecular-level mechanisms for MHC function and
immune-mediated cancer cell apoptosis [21, 47, 48, 53].
The models also need extension to directly model new
treatments such as the role of PD-1 and PD-L1 in CAR
T-cell therapies [19, 20]. In our next steps, we will extend
the modeling framework to incorporate these effects, and
import it into the EMEWS framework. We will start
exploring the emergent tumor response to immune ther-
apy under a variety of immune cell hypotheses and cancer
phenotypes. Ultimately, we will generate hypotheses that
elucidate the most and least ideal patient characteristics
for immunotherapies.

In our pilot work to date, we have run a single itera-
tion of the hypothesis testing loop; our next step is to
complete the loop and iteratively optimize the treatment
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response over the current “design” parameters (attach-
ment lifetime, migration bias, and attachment rate). This
should yield testable hypotheses on immune system
conditions for effective and ineffective tumor suppres-
sion. We also plan separate cancer hypothesis investiga-
tions in the PhysiCell-EMEWS framework. In ongoing
breast cancer projects, we are evaluating families of
cell-cell interaction hypotheses for “leader cells” (highly
motile, less proliferative) and “follower cells” (less motile,
more proliferative) that best explain time series morpho-
logic data [54]. This work will further test the poten-
tial of PhysiCell-EMEWS to not merely explore large
parameter spaces, but to optimally match hypotheses
to experimental observations. We would then develop
independent experiments to validate or refine the optimal
hypotheses.

We note that the generalized description of hypothe-
ses is not yet mature. Standards have emerged to describe
molecular-scale systems biology (generally systems of
ODEs) as SBML [55], and more recently to express mul-
ticellular biology as MultiCellDS, but cell-cell interaction
rules will likely require a different description, such as by
using elements of the Cell Behavior Ontology [56].

PhysiCell-EMEW’s computational performance could
be further improved. In particular, the diffusion solver
(BioFVM) is well-suited to leveraging GPU resources
available on today’s typical HPC/HTC compute nodes
using, for example, OpenACC, CUDA, or OpenCL.
Scientifically, complex molecular-scale systems biology
is typically written as SBML (systems biology markup
language) models, and so to integrate these into high
throughput multiscale mechanistic hypothesis testing, we
plan to implement an SBML model integrator, such as the
cross-platform libRoadrunner platform [57].

Lastly, we note that there were other benefits to com-
bining PhysiCell and EMEWS to run a large number of
simulations: we estimate that the cancer-immune inves-
tigation included on the order of 1 to 100 billion calls
to the of the tumor-immune mechanical and biochem-
ical interaction codes. This allowed us to “stress test”
PhysiCell and identify rare bugs for future code releases.
39 simulations in our investigation terminated prema-
turely due to rare events, such as multiple immune
cells attempting to apoptose the same tumor cell, or a
tumor cell necrosing while still attached to an immune
cell; these rare events removed dead cells from mem-
ory while memory pointers were still in active use,
occasionally causing segmentation faults. Without high-
throughput simulation investigations (which included
over a year of compute time), these bugs would likely
remain undetected and unfixed for years. We anticipate
that other open source computational biology projects
could similarly benefit from high-throughput testing in
EMEWS.

Conclusions
We have demonstrated a 3-D mechanistic tumor-immune
interaction model (and more generally, a mechanistic
agent-based cancer modeling platform, using PhysiCell)
that has an appropriate balance of flexibility, efficiency,
and realism for efficient single simulations, that predict
the emergent systems behaviors for a given set of cancer
hypotheses. It is self-contained code (can be distributed as
a ZIP file) enabling very simple deployment.

We have shown how a previously-developed extreme-
scale model exploration and optimization platform
(EMEWS) can compatibly deploy PhysiCell for model
exploration in high throughput. We have outlined the
overall platform to perform high-throughput hypothesis
testing on using PhysiCell and EMEWS, and we gave an
early example on a simple (but spatially nontrivial) model
system of hypoxic tumor growth. We then demonstrated
PhysiCell-EMEWS with a large parameter space investiga-
tion of a mechanistic 3-D cancer-immune model, obtain-
ing significant and non-intuitive insights on immune cell
homing and adhesion dynamics that would not have been
feasible without HTC. The next natural step is to iter-
ate past this first investigation and find therapeutic design
optima that maximize tumor regression; this would rep-
resent a full test of PhysiCell-EMEWS as a hypothesis
optimization tool.

Cancer biology—particularly cancer-immune interac-
tions—occurs in complex dynamical, multiscale systems
that frequently yield surprising emergent behaviors that
can impair treatment. High-throughput model investiga-
tion and hypothesis testing affords a new paradigm to
attacking these complex problems, gaining new insights,
and improving cancer treatment strategies.

We close by noting that this framework has applications
beyond cancer. In general, testing multiscale hypothe-
ses in high throughput is valuable in determining the
rules underlying (often puzzling) experimental data, and
even to evaluate the limitations of experiments them-
selves [29, 30]. The PhysiCell-EMEWS system could be
used as a multicellular design tool: for any given multicel-
lular design including single-cell and cell-cell interaction
rules (which map onto hypotheses in this framework),
PhysiCell-EMEWS can test the emergent multicellular
behavior against the target behavior (the design goal), and
iteratively tune the cell rules to achieve the design goal. In
[32], we began to design cell-cell interaction rules to create
a multicellular cargo delivery system to actively deliver a
cancer therapeutic beyond regular drug transport limits to
hypoxic cancer regions. In that work, we manually tuned
the model rules to achieve this (as yet unoptimized) design
objective, requiring weeks of people-hours to configure,
code, test, visualize, and evaluate. Integrating such prob-
lems into a high-throughput design testing system such as
PhysiCell-EMEWS would be of clear benefit.
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ABM (agent-based model): A computational model focused on independent
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