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Abstract

Background: The National Cancer Institute drug pair screening effort against 60 well-characterized human tumor
cell lines (NCI-60) presents an unprecedented resource for modeling combinational drug activity.

Results: We present a computational model for predicting cell line response to a subset of drug pairs in the
NCI-ALMANAC database. Based on residual neural networks for encoding features as well as predicting tumor growth,
our model explains 94% of the response variance. While our best result is achieved with a combination of molecular
feature types (gene expression, microRNA and proteome), we show that most of the predictive power comes from
drug descriptors. To further demonstrate value in detecting anticancer therapy, we rank the drug pairs for each cell
line based on model predicted combination effect and recover 80% of the top pairs with enhanced activity.

Conclusions: We present promising results in applying deep learning to predicting combinational drug response.
Our feature analysis indicates screening data involving more cell lines are needed for the models to make better use
of molecular features.
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Background
Deep learning has already revolutionized the fields of
computer vision, robotics, gaming, and natural language
processing. It is rapidly making strides in genomics, med-
ical diagnosis, and computational chemistry. At the heart
of deep learning is a set of generalizable techniques that
thrive with large-scale data in inferring complex relation-
ships. While emerging neural networks are outperform-
ing state-of-the-art models in predicting a wide range of
molecular properties, to date, their use has been limited
to single molecules due to the lack of training data.

The recently published NCI-ALMANAC resource [1]
will change that. It offers a promising look at the combined
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effect of small molecules, through systematic evaluation
of 104 FDA-approved oncology drugs. All drug pairs were
screened at multiple concentrations against the NCI-60
panel of human tumor cell lines, resulting in 3 million
data points. Twenty one percent of the drug combina-
tions were revealed to have greater than additive activity
in inhibiting cell line growth. Such synergistic interaction
of small molecules may be rooted in the hypothesis that
they combine to overcome the inherent heterogeneity of
tumors and prevent emergence of drug resistance in cell
subpopulations.

In this paper, we model the combined activity of anti-
cancer drugs with deep neural networks. One advantage
of this approach over traditional machine learning is the
joint training of intermediate features and final predic-
tion. We first collect multiple types of molecular and drug
features and pass them through separate featurization
submodels. The encoded features from these models are
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then concatenated to predict growth inhibition. Our best
model achieves a mean absolute error below 10%, with
coefficient of determination R2 of 0.94 and Pearson corre-
lation coefficient of 0.97 in 5-fold cross validation. While
paired drug response prediction at this scale has not been
attempted before to our knowledge, most machine learn-
ing models, in comparison, achieve less than 0.9 R2 for a
wide range of single molecule regression benchmarks [2],
with the exception of quantum mechanics tasks [3].

We further analyze feature importance and model bias.
We show that, with only 60 cell lines, all three molecular
feature types examined provide marginal benefit, whereas
most of the predictive capacity resides in drug descrip-
tors generated by the Dragon software [4]. We visualize
growth prediction errors with aggregated plots from the
perspective of cell lines or drug pairs and find no obvious
systematic bias.

Finally, we test the utility of our model in virtual screen-
ing of drug pairs. With a customized combination score
derived from predicted growth fractions, we are able to
identify the majority of synergistic drug pairs.

Related Work
Early machine learning applications in cancer and
drug discovery focused on only one type of genomic
profiles [5–8]. In 2012, NCI and the DREAM consor-
tium launched a drug sensitivity challenge that inte-
grated multiple omics measurements. Among the 44
community-based approaches, top performing models
included Bayesian multitask multiple kernel learning [9]
and ensemble based methods [10]. In another open NCI-
DREAM challenge, 31 methods competed on predicting
drug pair activity. Although these methods performed sig-
nificantly better than chance, none was near-optimal [11].
Since both challenges focused on ranking order as the
evaluation metric, their results were not directly compa-
rable to this study. Also, properties of the drugs were not
used in either challenge as input; they probably would not
have helped, due to the small sample sizes (29 single drugs
and 91 drug pairs, respectively).

Menden et al. [12] used both cell line and drug fea-
tures to predict the half maximal inhibitory concentration
(IC50) on the screening results from the Genomics of Drug
Sensitivity in Cancer (GDSC) project [13]. They achieved
R2 values of 0.72 and 0.64 on cross validation and hold-
out test data, respectively. It was still early days for the
rebirth of neural networks. The machine learning mod-
els in that study combined random forests and shallow
networks with no more than 30 hidden units.

Since then, the transforming impact of deep learning
has spread to the fields of computational biology [14] and
computational chemistry [15]. A defining moment was
a deep neural network winning the Kaggle challenge on
molecular activity [2]. More molecular-based datasets and

prediction tasks were recently curated in the MoleculeNet
benchmark and the DeepChem open source library. Mul-
tiple machine learning methods were tried to predict
targets in four different activity categories. In the three
categories with regression tasks, the best validation R2

ranged 0.61–0.87 for physical chemistry, 0.45–0.51 for
biophysics, and around 0.99 for quantum mechanics [3].

Methods
In this section, we will first describe the NCI-ALMANAC
drug pair response data which is the prediction target of
our computational model. The model takes into account
properties of both tumor cell lines and drugs; we will also
cover these two sets of input features.

Drug pair screen data
Cancer is an extremely complex disease. A single tumor
can develop on the order of 100 million coding region
mutations that potentially foster drug resistance [16].
To combat this enormous diversity, combination ther-
apies are developed to interact with multiple targets
simultaneously. While some promising drug combina-
tions can be identified based on known cell biology,
much of the multidrug interaction mechanisms remain
unknown. In an effort to systematically examine the com-
bination efficacy of 104 FDA-approved anticancer drugs,
the NCI-ALMANAC resource catalogs in vitro screen
results of their pairwise combinations against the NCI-60
cell lines [1].

In this study, we worked with a subset of the NCI-
ALMANAC data. We included 54 of the 104 drugs for
which we were able to compute molecular descriptors
with the Dragon software. We left out one of the 60 cell
lines because of significant missing information in molec-
ular characterization. We also filtered the screen results
based on the NCI-defined quality control standards.
These criteria narrowed down the number of experiments
from 304,549 in the original dataset to 85,303.

In the NCI-ALMANAC project, each drug experiment
was tested with multiple concentrations: single drugs were
tested at 3 or 5 concentrations, and drug pairs were tested
at 3×3 or 5×3 combination matrices. Most of the concen-
trations were chosen to be below the levels corresponding
to FDA-approved clinical doses. The response value was
relative tumor growth described in the standard NCI-60
testing protocol [17]. In this study, the growth inhibition
percentage was converted to fraction, ranged from −1 to
slighly above 1, with −1 representing 100% lethality, 0
representing total inhibition, and 1 representing unabated
growth compared to control tumor tissue. The raw growth
inhibition data contain cases where the drugs appear to
have enhanced tumor growth (see distribution in Fig. 1)
with greater than 1 growth fraction; most of these were
not considered to be real and capped at 1.
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Fig. 1 Normalized histograms of cell line growth fractions under drug
pair treatments. The blue histogram represents all growth fractions.
For every (cell line, drug 1, drug 2) tuple, there are multiple cell line
growth values corresponding to the different dose level
combinations of the two drugs; the distribution of the lowest growth
fraction for each tuple is depicted in green

We did not include drug concentration as an input fea-
ture in our computational model. Instead, we tried to
predict the best growth inhibition seen in any experiment
for a given drug or drug pair. The main motivation was
to reduce training data imbalance and focus on the more
effective dose combinations, knowing most of the doses
tested were within FDA-approved ranges. As shown in
Fig. 1, the original distribution of screen results was heav-
ily tilted to the nonresponse end; after removing the less
effective dose combinations, the distribution became less
imbalanced.

The NCI-ALMANAC project defined a ComboScore
to quantify the benefit of combining two drugs. For a
cell line and drug combination, this score was the sum
of the differences in observed versus expected growth
fractions over all dose combinations. In this paper, we
use a modified version of ComboScore that only con-
siders the concentrations that led to the best growth
inhibition for a given cell line and drug combination. Fol-
lowing the notation in the NCI-ALMANAC paper, we
use yAB

i to denote the lowest growth fraction for the ith

cell line exposed to drug pair A and B, considering all
dose combinations experimented for that pair. We call yAB

i
“MinComboGrowth”. Similarly, let yA

i , yB
i be the lowest

growth fractions when only exposed to drug A or drug B,
respectively. The modified expected growth fraction for
the combination is:

zAB
i =

{
min

(
yA

i , yB
i
)

, if yA
i ≤ 0 or yB

i ≤ 0
ỹA

i · ỹB
i , otherwise

where ỹi = min(yi, 1) truncates the growth fraction at
1. The modified combination score, termed “BestCom-
boScore”, is thus:

CAB
i =

(
yAB

i − zAB
i

)
× 100

Molecular characterization
The NCI-60 human tumor cell line panel was developed in
the 1980s and has been widely used as a tool for anticancer
drug screen [18]. Each of the cell lines has been exten-
sively profiled, using a variety of high-throughput assays,
for gene expression, exome sequence, mutations, DNA
methylation, microRNA expression, protein abundance,
protein modification, enzyme activity, and metabolomics.
In these molecular datasets, gene expression has been
demonstrated to be among the best predictors for can-
cer drug response [9]. Protein abundance and microRNA
expression profiles are two emerging assay types that
are increasingly recognized as informative features for
their role in anticancer regulation [19–24]. We therefore
included these three datasets as input features.

Gene expression The gene transcript expression lev-
els were downloaded from NCI’s CellMiner [25] using the
version averaged from five microarray platforms. Each cell
line is characeterized by 25,723 gene features.

microRNA expression microRNA expression levels
were also downloaded from CellMinor. This dataset con-
tains 454 feature columns for each cell line.

Protein abundance Proteomics data was downloaded
from the NCI-60 Proteome Database [26, 27]. This dataset
reports the protein abundance levels for a subset of pro-
teins in 59 cell lines. The data for the problematic MDA-N
cell line is not available. This dataset combines 8097 pro-
teins and 1663 kinases into 9760 features for each cell
line.

Drug descriptors and fingerprints
Dragon is a commercial software package for computing
molecular descriptors that can be used for quantitative
structure–activity relationship (QSAR) modeling or vir-
tual screening of chemical databases. The software gen-
erates 30 categories of molecular descriptors (e.g., ring
descriptors, topological indices, path counts, atom pairs,
drug-likeness) and two different types of fingerprints
(path fingerprint and extended connectivity fingerprint).

We downloaded 2D structure data for the 104 FDA-
approved drugs from the NCI ALMANAC database. We
were able to use Dragon (version 7.0) to generate descrip-
tors for 54 of these drugs. Among the 5270 descriptors and
fingerprints generated for each drug, many columns had
missing values. They included 3D descriptors (expected)
and other categories such as functional group counts,
edge adjacency indices, atom pairs 2D, and CATS 2D. We
removed descriptor columns for which at least 90% of
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the drug rows were missing. This reduced the descriptor
matrix dimension to 54 × 3809.

Data preprocessing
The gene expression and microRNA data downloaded
from CellMiner were already log(x + 1) transformed. We
applied the same transformation to protein abundance
data. The drug descriptors had varied ranges (e.g., binary
for finger prints, hundreds for molecular weight), and we
did not transform them. We built the data generators feed-
ing our neural network model with multiple options for
data imputation and scaling. For the experiments pre-
sented in this paper, we first filled the missing values with
the mean over cell lines and then used min-max scaling to
normalize each feature to the [ 0, 1] range.

Neural network architecture
Our neural network model takes the preprocessed fea-
tures for a cell line and drug combination as input and
generates a scalar prediction on growth inhibition. The
architecture of a typical network instance is depicted in
Fig. 2. This architecture consists of two levels to simul-
taneously optimize for feature encoding and response
prediction.

Feature encoding submodels Each molecular assay
dataset is fed into a separate feedforward network to
encode a new vector representation of that feature type.

The drug descriptor submodel is also a feedforward net-
work. Because the two drug slots are symmetric, the
mechanism that encodes the first drug should be reused
for the second. Therefore, all the weights and layers are
shared between the two drugs. The drug pair screen data
cover single drug experiments as well. These data points
are easily accommodated by replicating the same set of
descriptors to the two drug slots.

Growth prediction submodel All the encoded molec-
ular and drug features are optionally concatenated to
form the input for growth prediction. This submodel is a
feedforward network with typically more layers than the
feature encoding networks.

All the networks are fully connected within themselves.
The number of layers and number of neurons in each
layer are hyperparameters controlled manually or by an
external script. To improve training efficiency, the adja-
cent layers in each network are optionally connected by a
residual operator [28] when their dimensions match. The
model was implemented with Keras [29] and trained to
optimized mean squared error (MSE).

Results
We measured the performance of the drug pair response
model with 5-fold cross validation. Each pair measure-
ment was treated as an independent data point to create
folds. The folds were stratified; that is, we first binned the

Fig. 2 Neural network architecture. The orange square boxes, from bottom to top, represent input features, encoded features, and output growth
values. Feature models are denoted by round shaded boxes: green for molecular features and blue for drug features. There are multiple types of
molecular features that are fed into submodels for gene expression, proteome, and microRNA. The descriptors for the two drugs share the same
descriptor model. All encoded features are then concatenated to form input for the top fully connected layers. Most connecting layers are linked by
optional residual skip connections if their dimensions match
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growth fractions evenly into 5 classes and made folds by
preserving the percentage of samples for each class.

Hyperparameter search
We have not done an comprehensive hyperparameter
sweep. The current best parameter set and the insights we
gained from about thousands of runs are listed as follows:

• The feature encoding networks should have two or
more hidden layers.

• The growth prediction network should have three or
more hidden layers.

• Each hidden layer should have more than 1000
neurons.

• Residual connections reduce training time and
occasionally improve final validation loss; thus a
network with the same number of neurons in
neighboring hidden layers is preferred to a
pyramid-shaped network.

• Each hidden layer should have more than 1000
neurons.

• The model should be trained for at least 100 epochs.
• The Adam optimizer is recommended.
• Reducing learning rate on plateau improves

validation loss.
• Larger learning rate improves training speed without

much loss in accuracy when used in combination
with larger batches and a warm-up schedule [30].

Feature importance
We tested our model on different combinations of feature
categories to assess their relative importance. The aver-
age metrics from 5-fold cross validation runs are listed in
Table 1.

Table 1 Cross validation results from feature combination
experiments

Molecular
features

Drug features MSE MAE R2

Baseline Baseline 0.5253 0.5709 -1.001

One-hot
encoding

One-hot encoding 0.2448 0.3997 0.1269

Gene expression One-hot encoding 0.2447 0.3999 0.1272

Gene expression 500-dimensional
noise

0.2450 0.4008 0.1271

One-hot
encoding

Dragon7 descriptors 0.0292 0.1086 0.8892

Proteome Dragon7 descriptors 0.0303 0.1117 0.8844

microRNA Dragon7 descriptors 0.0275 0.1050 0.8952

Gene expression Dragon7 descriptors 0.0180 0.0906 0.9364

Gene expression,
microRNA,
proteome

Dragon7 descriptors 0.0158 0.0833 0.9440

The boldface row represents the best cross validation

The baseline performance was established by compar-
ing random pairs of growth fractions. This is equivalent to
guessing by random selection from the real distribution.
The mean absolute error (MAE) between any two growth
fractions is 0.53, and R2 for this baseline setting is close to
−1 (as defined in the Scikit-learn Python package [31], R2

is allowed to be negative).
We then encoded the molecular and drug features

with simple one-hot or fixed random vectors. This was
intended to assess whether the molecular assays or
drug descriptors provided additional predictive power
over mere identifiers. With one-hot encoded drugs, R2

stayed around 0.12, irrespective of how the cell lines
were encoded. When the Dragon descriptors were used,
R2 jumped above 0.88. However, among these models,
the prediction improvement was at best marginal with
extra molecular data. Finally, the best model performance
(R2 = 0.94) was achieved with all three types of molecular
assays along with the Dragon descriptors. The Pearson’s
correlation for this model is 0.972 and the Spearman’s rank
correlation is 0.965.

Error analysis
While the overall R2 is high for molecular prediction tasks,
we sought to understand if there were systematic biases in
prediction error. One way to do that is to plot the aggre-
gated errors from the perspective of cell lines or drug
pairs. In other words, consider a 3D grid (cell line × drug
1 × drug 2) of drug response experiments, we can flatten
the corresponding 85,303 validation errors along the cell
line axis or onto the drug pair plane.

Cell line views We first visualize mean BestCom-
boScore in a bar plot in Fig. 3a. This gives us some
idea about which cell lines tend to have drug pairs with
enhanced activity. For example, all but one leukemia cell
lines (the middle green block) are near the top in terms
of this metric. We then stack on top of this plot two visu-
alizations of prediction errors: (1) Fig. 3b shows there are
no cell lines for which the model did particularly good
or bad. Growth fraction prediction errors mostly cancel
out near 0. There is also no apparent correlation between
this error and BestComboScore either. (2) Fig. 3c shows
how the model fares in ranking the drug pairs for each cell
line in terms of BestComboScore. The model on average
misses 20 of the top 100 drug pairs. 75% of the cell lines
have the predicted top 100 list at least 75% correct. Rank
prediction is more than half wrong for only two cell lines
(LC.EKVX and LE.MOLT_4).

Drug pair views We first attempt to find drugs that
combine well across all cell lines. Fig. 4a sorts the drugs
in a heatmap based on hierarchical clustering of Best-
ComboScore. The heatmap displays no striking pattern in
average BestComboScore except the lower right corner.
This corner consists of 7 drugs separated into two small
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c

b

a

Fig. 3 Cell line views of drug combination effect, growth prediction error, and ranking error. a, the bar plot depicts the drug combination scores
averaged over all drug pairs for each cell line. 95% confidence intervals are indicated by black vertical lines. b, errors in predicted growth fractions,
aggregated over all drug pairs for each cell line, are shown with standard deviation. c, first, the top 100 drug pairs are determined for each cell line
based on the best ComboScore among all experimented combinations of dose levels; a second top 100 list is derived from predicted growth
fractions for single and paired drug responses; the difference between these two sets in terms of unique members in each set is shown for each cell
line in the bar plot

groups. Any drug from group A (mithramycin, paclitaxel,
dactinomycin, docetaxel) combines well with a member
from group B (valrubicin, tretinoin, tamoxifen) in terms
of overall enhanced activity across the cell lines. Fig. 4b
then checks if the mutually enhancing drug pairs also tend

to be the ones that strongly inhibit tumor growth. This
correlation turns out to be weak except for the aforemen-
tioned 7 drugs. Finally, Fig. 4c examines drug pair bias in
growth prediction. Only one pair (mitotane, valrubicin)
stands out with −0.43 mean growth fraction error. Further
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a b c

Fig. 4 Heatmap views of combination effect, growth fraction, and growth prediction error for drug pairs. a, each heatmap cell represents the
average, across cell lines, of the best ComboScore among different dose combinations for each drug pair. The rows and columns are drugs ordered
by hierarchical clustering based on vector correlation. b, each cell represents the mean growth fraction for a drug pair across cell lines. The diagonal
elements were filled with growth fractions from single drug experiments. c, each cell represents the mean difference between predicted and
experimental growth fracitons for each drug pair

examination of the training data reveals that only 4 cell
lines have screen data that passed NCI’s quality control for
this particular drug pair.

Virtual screening
An important use of drug response models is in high-
throughput virtual screening. If a machine learning model
is accurate, it can be run in inference mode as a compu-
tational funnel to reduce screening cost. In a preliminary
analysis of this flavor, we looked at how our model might
be used to identify promising drug pairs in Table 2.

We first computed a list of top 100 drug pairs for
each cell line using the BestComboScore derived from
real growth data. We then pooled these lists from all cell
lines and ranked the drug pairs by frequency. The top 10
promising drug pairs were compared to a predicted ver-
sion derived from model inferred growth fractions (by
merging the 5-fold cross validation results) following the

Table 2 Drug pairs with top combination scores across many
cell lines

Rank Drug pair Predicted drug pair

1 (idarubicin, amifostine) (idarubicin, amifostine)

2 (epirubicin, amifostine) (epirubicin, amifostine)

3 (idarubicin, epirubicin) (idarubicin, epirubicin)

4 (idarubicin, covidarabine) (idarubicin, covidarabine)

5 (epirubicin, idarubicin) (epirubicin, idarubicin)

6 (idarubicin, imiquimod) (idarubicin, imiquimod)

7 (epirubicin, imiquimod) (epirubicin, imiquimod)

8 (epirubicin, dexrazoxane) (epirubicin, covidarabine)

9 (epirubicin, covidarabine) (epirubicin, cyclophosphamide)

10 (idarubicin, allopurinol) (idarubicin, allopurinol)

same process. The resulting lists turned out to be 90%
identical, with the predicted version missing (epirubicin,
dexrazoxane) and overpredicting (epirubicin, cyclophos-
phamide).

Discussion
Recently, much effort has been placed on the development
of machine learning models that could provide a cost-
effective proxy for measuring tumor drug response. While
most previous studies focus on single drug screening data
with classical machine learning methods, the release of
the NCI-ALMANAC database has made it possible to
systematically model drug pair activity with deep neural
networks more suited for large-scale data. We presented a
network architecture that jointly learns feature encoding
and growth inhibition.

Although the model presented here gives promis-
ing results in predicting tumor cell line growth and
ranking synergistic drug pairs, there is much room for
improvement. For instance, the contribution of molecu-
lar features could potentially increase with inclusion of
more cell lines. Another source of information we have
not fully used is drug concentration. We are looking to
integrate multiple single drug screening studies into a
unified dose response prediction framework. Auxiliary
properties such as tumor type and drug mechanism of
action can also be added as auxiliary prediction targets in
a multitasking model. To understand the generalizability
of drug response models, more systematic cross validation
schemes are needed to analyze their predictive capacity
for new drugs, cell lines, and across studies.

Conclusions
We have presented a simple, two-stage deep neural net-
work model for predicting drug pair response. It supports
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multiple types of tumor features and can be easily
extended to accommodate more than two drugs in com-
bination therapy. The model achieves good performance
(R2 = 0.94) with no strong bias toward cell lines or drug
pairs. The initial result also looks promising on picking
out drug pairs with consistently greater than single-agent
efficacy across many cell lines. Our experiments on input
features suggest that the model does not merely remember
drug combinations. Rather, the drug descriptors improve
R2 by 0.81. On the other hand, the predictive value of
molecular assays was difficult to establish, although this
will likely change if more tumor samples are included in
training.

Several directions for future research seem particularly
appealing. First, we plan to incorporate more drug fea-
tures such as concentration, SMILES strings, molecular
graph convolution [32] and atomic convolution [33] into
the model. Second, we are considering other tools for cal-
culating descriptors and fingerprints to cover the entire
set of drugs; that way we will have enough data points to
create a holdout set for testing. Third, we are looking at
semisupervised learning methods for encoding molecular
features with external gene expression and other types of
data. Fourth, we will continue to explore advanced net-
work architectures and perform rigorous hyperparameter
optimization with the scalable deep learning framework
we are developing.
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