
Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491
https://doi.org/10.1186/s12859-018-2508-4

METHODOLOGY Open Access

CANDLE/Supervisor: a workflow
framework for machine learning applied to
cancer research
Justin M. Wozniak1*, Rajeev Jain1, Prasanna Balaprakash1, Jonathan Ozik1, Nicholson T. Collier1,
John Bauer1, Fangfang Xia1, Thomas Brettin1, Rick Stevens1, Jamaludin Mohd-Yusof2,
Cristina Garcia Cardona2, Brian Van Essen3 and Matthew Baughman4

From Computational Approaches for Cancer at SC17
Denver, CO, USA. 17 November 2017

Abstract

Background: Current multi-petaflop supercomputers are powerful systems, but present challenges when faced
with problems requiring large machine learning workflows. Complex algorithms running at system scale, often with
different patterns that require disparate software packages and complex data flows cause difficulties in assembling
and managing large experiments on these machines.

Results: This paper presents a workflow system that makes progress on scaling machine learning ensembles,
specifically in this first release, ensembles of deep neural networks that address problems in cancer research across
the atomistic, molecular and population scales. The initial release of the application framework that we call
CANDLE/Supervisor addresses the problem of hyper-parameter exploration of deep neural networks.

Conclusions: Initial results demonstrating CANDLE on DOE systems at ORNL, ANL and NERSC (Titan, Theta and Cori,
respectively) demonstrate both scaling and multi-platform execution.

Keywords: Sample, Article, Author

Background
Cancer is an extremely complex disease, which disrupts
basic biological processes at a fundamental level, leading
to renegade cells threatening the health of the individ-
ual. Fortunately, with major technological advances in
molecular sequencing, molecular and cellular imaging,
and high-throughput screening techniques, it is now pos-
sible to probe the complexity of the disease at an unparal-
leled level, which provides a window into the behavior of
the disease at unprecedented time and spatial scales. The
application of these technologies has produced massive
datasets that can be analyzed with automated machine
learning (ML) techniques.

*Correspondence: woz@anl.gov
1Argonne National Laboratory, Argonne, IL, USA
Full list of author information is available at the end of the article

Simultaneously, the development of post-petascale and
near-exascale computers is ongoing. Top tier comput-
ers in the U.S. include ALCF Theta, OLCF Titan, and
NERSC Cori. These systems feature extremely large node
counts (thousands to tens of thousands), and are equipped
with nodes of many integrated cores or accelerator tech-
nologies, such as GPUs. These systems also have large
hierarchical memory and I/O resources. Thus, they are
capable of performing machine learning workloads that
would be extremely time-consuming to run elsewhere (on
open science infrastructure).

This work offers an early attempt to apply these top-tier
systems to three problems in cancer research. We focus
here on the problem of hyperparameter optimization,
which tries to find high performing configurations for
neural networks. The design parameters broadly include

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2508-4&domain=pdf
mailto: woz@anl.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 60 of 110

the number of layers, neurons per layer, activation func-
tion, and so on. The quality of the network is essentially
its accuracy; a loss function F is determined such that
its value is a measure of the error in the trained network
behavior when applied to a validation set. The hyperpa-
rameter optimization problem is to minimze F(p), for all
parameter sets p in the valid parameter space P, however,
P is large and F is expensive. P is the cross product of all
valid network settings, some of which may be categori-
cal, some integer, some continuous. Evaluating F involves
training the network on a training data set and applying it
to the validation set.

This problem is an excellent but challenging candidate
for workflow technologies, because it involves running a
large number of independent tasks, each of which com-
municates only with the optimization algorithm. Each
task is capable of utilizing all the compute resources on
the node, as the available 3rd-party ML implementa-
tions are multi-threaded or deployable on a GPU. The
tasks run for minutes, hours, or longer. Workflow systems
would be challenged, however, by the scale and complex-
ity of the large-scale resources that we desire to apply to
the problem. Also, we desire to apply complex 3rd-party
algorithms written in Python or R to control this work-
flow by driving an optimization loop. Similarly, because
the ML algorithms are written in C/C++ with complex
Python-based interfaces, there is a software interfacing
challenge. Additionally, we must collect data on F dur-
ing the run, as well as various other data for profiling or
validation.

Success in the application of ML to cancer research
will enable and greatly accelerate the capabilities needed
to realize the promise envisioned for the ‘Cancer Moon-
shot’ [1] and establish a new paradigm for cancer research
for years to come by making effective use of the ever-
growing volumes and diversity of cancer related data to
build predictive models, provide better understanding of
the disease and, ultimately, provide guidance and support
decisions on anticipated effective treatments for individ-
ual patients.

Contributions This paper offers the following: 1) A
description of several machine learning-based workflows
relevant to cancer. 2) An architecture for coordinating
and storing workflow processes and data products. 3)
Performance results from running these workflows on
large-scale systems.

The remainder of this paper is organized as follows.
In the remainder of this section, we describe the aspects
of machine learning relevant to this work. In “Methods”
section, we describe the architecture of the CAN-
DLE/Supervisor software system, and the three workflows
currently supported by CANDLE/Supervisor, and the
practicalities and portability issues. In “Results” section,
we describe performance results from these systems. In

“Discussion” section, we describe future work, and we
conclude in “Conclusions” section.

The CANDLE project
Machine learning (ML) has the capability to transform
many scientific problems. In response to the growing
power of ML techniques and the increasing available
computing power at large scale computing facilities, the
U.S. Department of Energy Exascale Computing Project
(ECP) launched the Cancer Distributed Learning Envi-
ronment (CANDLE). CANDLE is developing a suite
of software to support scalable deep learning on DOE
supercomputing resources. While the CANDLE project is
explicitly aimed at supporting deep learning in the three
cancer pilot projects in the near-term, its longer-term goal
is to support a wide variety of deep learning applications
across DOE science domains.

Frameworks for machine learning
Deep learning frameworks are under active develop-
ment by diverse research communities in both industry
(Google, Facebook, Microsoft, etc.) and academia (Berke-
ley, Oxford, Toronto, etc.). These include Caffe [2], Keras
[3], Theano [4], Torch [5], Poseidon [6], Neon [7], Ten-
sorFlow [8], CNTK [9], and the Livermore Big Artificial
Neural Net (LBANN) [10]. Each of these frameworks dif-
fer with respect to the machine learning tasks they target,
their ease of use, data pre-processing, and target prob-
lems. Most frameworks were architected for a single node
implementation and a few distributed memory multi-
node implementations have recently emerged; but these
implementations are primarily targeted at smaller core
counts and for commodity cluster environments. More-
over, these implementations rely on avoiding communi-
cation by storing data on local disks. Implementations
targeting high-performance computing systems will need
novel techniques to fully exploit the system interconnect
bandwidth and topologies, as well as the deep memory
hierarchies.

Hyperparameter search
The simplest, though most costly, methods for hyper-
parameter optimization include exhaustive space search
(the brute force method), simple gradient descent, mul-
tiple gradient descent, and random search. Though these
search algorithms can be tuned to execute quickly (ran-
dom search) or to find the optimal solution (exhaustive
search), the marginal optimization with respect to uti-
lized resources is not efficient for problems with O

(
109)

or greater reasonable discrete parameter combinations.
There are two primary drawbacks to utilizing an a priori
user-specified set of discrete hyperparameters for reduc-
ing loss: 1) it requires the user to make assumptions
concerning topological efficiencies and efficacies and 2) it

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 61 of 110

is limited to a small, finite set of models (i.e., it is forcing a
complex algorithm into constrained bounds). By including
effective reductions possible using gradient descent, we
may gain one or two orders of magnitude of search space,
however, this is still well below the O

(
1021) complexity

that is possible in the current CANDLE workflows.
Currently, several frameworks and libraries exist to

accelerate model exploration. As described in “Methods”
section, we use the EMEWS [11] framework to directly
incorporate parameter exploration methods for efficient
exploration of order > 109 spaces. This framework uses
the Argonne-developed Swift/T [12, 13] language to dis-
tribute the model exploration workload efficiently across
a multi-node system.

HyperTune [14] uses Bayesian optimization to refine
given network hyperparameters. This implementation
of Bayesian optimization excels as it does not require
calculation of many multidimensional derivatives. The
algorithm can be thought of as finding direction from a
random sample – a set of hyperparameters is chosen, then
another, and if the second is a better set than the first, the
algorithms aims in that direction. This method excels as it
is extensible and can find reasonable solutions with much
less compute time than evolutionary algorithms but it can
also “bounce around,” not settling on a given set of values
or displacing itself past a promising minima.

Another alternative is the popular Python library,
SciKit-Learn [15]. This is a multipurpose machine learn-
ing library for Python (easily integrated with Keras) and
can be used for hyperparameter search. HyperOpt [16] is a
hyperparameter search framework that is designed to per-
form searches using distributed hardware. HyperOpt has
a SciKit-Learn variant [17].

Another approach is evolutionary algorithms. One of
the most prominent and robust implementation of genetic
algorithms for hyperparameter search is the NeuroEvo-
lution of Augmenting Topologies (NEAT) algorithm [18].
The NEAT method begins by spawning a genome and
then producing a population based on that genome. Using
a selection function, the algorithm then usually removes
the least fit (those with the highest error rate or loss)
members of the population, then uses crossover between
members of the remaining subpopulation to produce the
next generation. It does this on two levels, both within
each node (neuron) and with the topology of the network.
Using this genetic-style algorithm, one is often able to find
a robustly effective solution. There are, however, some
drawbacks of the NEAT algorithm (or, at least, its specific
“NEAT-python” [19] implementation). The primary fac-
tor that would most limit us in our application is NEAT‘s
alteration of intra-node weights and parameters. While
this can definitely prove beneficial by reducing loss at the
“starting point” of training, it also serves as a topology spe-
cific feature that somewhat precludes comparison of pure

topological strengths and weaknesses. The other limiting
factor is the overhead required to generate the network
from scratch.

Another system for evolutionary algorithms for hyper-
parameter tuning is Optunity [20], a DEAP-dependent
[21] hyperparameter tuning engine. DEAP (Distributed
Evolutionary Algorithms in Python) is a Python frame-
work that implements different, generalized evolution-
ary algorithms. Optunity acts as an interface between
DEAP and the network to be optimized, allowing for easy
deployment of these various algorithms for the purpose
of hyperparameter optimization. Optunity is an excel-
lent implementation of evolutionary algorithms for the
purpose of hyperparameter tuning, however, it was last
updated nearly one year ago (2016).

mlrMBO [22] is a R package for model-based
approaches developed for tackling expensive black-box
optimization by approximating the given objective func-
tion through a surrogate regression model. It is designed
for optimization problems with mixed continuous, cat-
egorical and conditional parameters. mlrMBO follows
Bayesian optimization [23] approach which proceeds as
follows. In the initialization phase, ns configurations are
sampled at random, evaluated, and a surrogate model M
is fitted with the input-output pairs. In the iterative phase,
at each iteration, nb promising input configurations are
sampled using the model M. These configurations are
obtained using infill criterion that guides the optimiza-
tion and tries to trade-off exploitation and exploration.
The infill criterion selects configurations that either have
a good expected objective value (exploitation) or high
potential to improve the quality of the model M (explo-
ration). The algorithm terminates when user-defined
maximum number of evaluations and/or wall-clock time
is exhausted.

In this work, we focused on mlrMBO as it was shown
to obtain state-of-the-art performance on a wide range of
test problems, where it was benchmarked against other
approaches such as DiceOptim, rBayesianOptimization,
SPOT, SMAC, Spearmint, and Hyperopt. Crucial to the
effectiveness of mlrMBO is the choice of the algorithm
used to fit M and the infill criterion. Given the mixed
integer parameters in the hyperparameter search, we used
random forest [24] because it can handle such parame-
ters directly, without the need to encode the categorical
parameters as numeric. For the infill criterion, we used the
qLCB [25], which proposes multiple points with varying
degrees of exploration and exploitation.

Methods
Emerging multi-petaflop supercomputers are powerful
platforms for ensembles of neural networks that can
address many problems in cancer research, but it is dif-
ficult to assemble and manage large studies on these

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 62 of 110

machine, which have tens of thousands of compute
nodes. Typical workflow approaches would face chal-
lenges due to system scale, system complexity, manage-
ment of complex workflow patterns, integration with
disparate software packages, and data acquisition. CAN-
DLE/Supervisor addresses the problem of hyperparam-
eter optimization for cancer-based problems, and solves
the common workflow challenges outlined above.

To support the search patterns described in “Back-
ground” section, we developed the CANDLE/Supervisor
architecture diagrammed in Fig. 1. The overall goal is to
solve the hyperparameter optimization problem to min-
imize F(p), where F is the performance of the neural
network parameterized by p ∈ P, where P is the space of
valid parameters.

The optimization is controlled by an Algorithm 1�
selected by the user. The Algorithm can be selected
from those previously integrated into CANDLE, or new
ones can be added. These can be nearly any conceivable
model exploration (ME) algorithm that can be integrated
with the EMEWS 3�software framework. EMEWS [11]
enables the user to plug in ME algorithms into a work-
flow for arbitrary model exploration; optimization is a
key use case. The ME algorithm can be expressed in
Python or R. This is implemented in a reusable way by
connecting the parameter generating ME algorithm and
output registration methods to interprocess communica-
tion mechanisms that allow these values to be exchanged
with Swift/T. EMEWS currently provides this high-level
queue-like interface in two implementations: EQ/Py and
EQ/R (EMEWS Queues for Python and R). The Algorithm
is run on a thread on one of the processors in the system. It
is controlled by a Swift/T script 2�provided by EMEWS,

that obtains parameter tuples to sample and distributes
them for evaluation.

The Swift/T [12, 13] workflow system is used to man-
age the overall workflow. It integrates with the various
HPC schedulers “Computing systems” section to bring
up an allocation. A Swift/T run deploys one or more
load balancers and many worker processes distributed
across compute nodes in a configurable manner. Nor-
mally, Swift/T evaluates a workflow script and distributes
the resulting work units for execution across the nodes of
a computer system over MPI. Swift/T can launch jobs in
a variety of ways, including in-memory Python functions
in a bundled Python interpreter, shell commands, or even
MPI-based parallel tasks. However, in this use case, work-
flow control is delegated to the Algorithm via the EMEWS
framework, which provides the Swift/T script.

During an optimization iteration, the Algorithm pro-
duces a list of parameter tuples 4�that are encoded as
arguments to a Python-based Wrapper script 5�. These
wrapper scripts are the interfaces to the various CAN-
DLE Pilot applications. The parameters are encoded in
JavaScript Object Notation (JSON) format which can be
easily converted by the Python Wrapper script into a
Python dictionary, from which a CANDLE Pilot applica-
tion can retrieve the parameter values. These scripts are
run concurrently across the available nodes of the Swift/T
allocation, typically one per node. Thus, the ML has access
to all the resources on the node. The ML is the underlying
learning engine; we have tested with Theano and Tensor-
Flow. The Pilots are Python programs that implement the
application-level logic of the cancer problem in question.
They use the Keras interface to interact with the ML and
are coded to enable the hyperparameters to be inferred

Fig. 1 CANDLE/Supervisor overall architecture

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 63 of 110

from a suitable default model file, or to be overwritten
from the command line. It is this construction that allows
the parameter tuples to be easily ingested by the respec-
tive Pilots, and use a standardized interface developed as
part of the project.

The result of a Wrapper execution is a performance
measure on the parameter tuple p, typically the valida-
tion loss. Other metrics could be used, including training
time or some combination thereof. These are fed back to
the Algorithm by EMEWS to produce additional parame-
ters to sample. The results are also written to a Solr-based
Metadata Store 7�, which contains information about
the Wrapper execution. The Metadata Store accesses are
triggered by Keras callback functions, which allow Wrap-
per code to be invoked by Keras at regular intervals.
Thus, a progress history is available for each learning
trial run, as well as for the overall optimization work-
flow. Good models can also be selected and written to a
Model Store.

Workflows
In this section, we describe how the framework described
in “Methods” section is applied to the three pilot cancer
problems. CANDLE is investigating three promising pilot
applications of ML technology to cancer research:

P:RAS – The RAS pathway problem. The RAS/RAF
pathway is a series of chemical events that is implicated in
30% of cancers. The goal of this pilot is to understand the
molecular basis of key protein interactions in this pathway.

P:DRUG – The drug response problem. The goal of
this pilot is to develop predictive models for drug response
that can be used to optimize pre-clinical drug screening
and drive precision medicine based treatments for cancer
patients.

P:TREAT – The treatment strategy problem. The
goal of this pilot is to automate the analysis and extraction
of information from millions of cancer patient records
to determine optimal cancer treatment strategies across
a range of patient lifestyles, environmental exposures,
cancer types and healthcare systems.

While each of these three challenges are at different
scales (i.e., molecular, cellular and population) and have
specific scientific teams collaborating on the data acquisi-
tion, data analysis, model formulation, and scientific runs
of simulations, they also share several common threads.
They are all linked by common sets of cancer types that
will appear at all three scales, all have to address sig-
nificant data management and data analysis problems,
and all need to integrate simulation, data analysis and
machine learning to make progress. We have focused on
the machine learning aspect of the three problems and,
in particular, we are focused on building a single, scalable
deep neural network computing environment to support
them.

P:RAS – The RAS pathway problem
For this Pilot the goal is to develop a predictive capability
for modeling the behavior of proteins on membranes
and to apply that capability to RAS and effector proteins
along the primary RAS signaling pathways. We expect
that as a result of this capability we will accelerate the
identification and development of effective therapeutics
targeting cancers driven by RAS mutations, including
the three deadliest cancers occurring today: pancreatic,
lung and colon. By exploiting a mixture of atomistic
and coarse-grained resolutions we anticipate modeling
for the first time a relevant size (O

(
1010) atoms) and

time-scale (O
(
109) timesteps) to allow investigation of

targetable binding sites along the RAS signaling cas-
cade. Unfortunately, the combinatorial number of pos-
sible binding interactions along the cascade renders a
human-guided exploration of the state-space unlikely
to uncover a site suitable for therapeutic intervention.
What is required is a formalism for defining and fol-
lowing a path of simulations that will lead us to a
targetable site.

The starting point for our deep learning is the out-
put of these extremely large-scale molecular dynamics
calculations. We aim to use unsupervised learning to
uncover features from these simulations that can be used
to describe the state-space of protein movement and bind-
ing in a higher level model. These higher level models
can then be used to explore (far more efficiently) the
possible dynamics of RAS interactions, delivering many
millions of hypothetical trajectories which can be scored
according to likelihood. By investigating (through direct
numerical simulation) the most likely of these trajectories,
we “close the loop” — essentially testing our hypothesis
and then learning from the results. Any new information
is used to refine the definitions of likelihood and affect
future hypothesis. This combination of machine learning
and molecular dynamics to develop and test hypotheses
of protein binding will dramatically enhance our under-
standing of RAS signaling pathways (potentially leading
to a cure) and demonstrates a new and powerful way
to use high performance computing as tool for scientific
discovery.

Pilot application. The P:RAS pilot is a two-stage set
of stacked autoencoders that learn both molecular- and
frame- level features for the coarse-grained molecular
dynamics simulation of a lipid membrane. The first part
of the neural network is a multi-stage stacked, convolu-
tional autoencoder with a local receptive field sized to
observe individual molecules, which produces molecular-
level features. The second part of the neural network is
a multi-stage, stacked fully connected autoencoder that
processes the output of the molecular autoencoder to
create a compressed representation of the entire simu-
lation frame. For preliminary network optimizations, we

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 64 of 110

have explored the following hyperparameters: 1) num-
ber of convolutional layers and features in the molecular
autoencoder, 2) number of fully-connected layers and size
of each layer, and 3) size of stochastic gradient descent
mini-batch.

P:DRUG – The drug response problem
Our ultimate goal is to fully exploit exascale comput-
ing to develop the predictive models necessary to guide
the choice of drug treatment for a tumor based on that
patient’s molecular biomarkers and knowledge of drug
responses in other cases. The development of CANDLE
will bring deep learning to bear on this problem at an
unprecedented scale, and we believe will produce models
uniquely capable of making precision medicine a real-
ity. Deep learning has the potential to generate mod-
els that take into account a vastly increased diversity of
input features than other types of machine learning [26].
Today machine learning is typically used to estimate drug
response and patient outcome from one type of molecular
data such as gene expression; however it has been demon-
strated that models that incorporate more than one type
of molecular information can be more accurate [27]. Our
goal in this problem is to develop a scalable deep learning
framework that will support the utilization of many types
of information as input to models. Ideally, we will inte-
grate into our models information about drug molecular
structures, drug interactions, drug combinations and drug
molecular targets with information about the patient’s
genetics, including their baseline genotype as well as the
specific genetics and other molecular and cellular proper-
ties of their tumor, including gene mutations, gene expres-
sion patterns, proteome, transcriptome including small
and non-coding RNAs, metabolomics, prior treatments,
co-morbidities and environmental exposure.

Our current working data contains drug and drug-like
molecular screening data from over 300,000 compounds
that have been tested on at least 60 cell lines giving us
O

(
107) training cases. For each tumor derived cell line,

we have molecular characterization data that includes
many types of microarrays each with ∼ 105 data points;
we have genetic variation data for these sample that
consist of 107 single nucleotide polymorphisms (SNPs);
variety of proteomics, metabolomics, and transcription
datasets including over 50,000 types of small and non-
coding RNAs. For the compounds involved in screening,
we can compute molecular characterization data (e.g.,
drug descriptors and molecular fingerprints) that when
taken together are O

(
106) features per molecule. Thus,

our initial deep learning formulation of the drug response
problem has an input data volume of between 1014 − 1015

measurements or approximately 1PB. The ten-year prob-
lem target is at least an order of magnitude larger than
this. To our knowledge, this would be one of the largest

deep learning problems in biomedical science. One of the
largest training sets in the DNN community is a 15TB
image recognition dataset [28]. Our ten-year goal is to
expand this capability by at least an order of magnitude
(10PB input data), requiring between 100TB and 1PB of
high-speed memory for a single network instantiation and
with a target training epoch runtime of hours.

Pilot application. The P:DRUG is a binary classifica-
tion task on 1400 RNA-seq based gene expression profiles
from the NCI Genomic Data Commons (GDC). 700 of
these samples are from tumor tissues and the other 700 are
their matched normals. There are 60,483 features for each
sample that are fed into a neural network with a default
configuration of two dense layers on top of two convolu-
tion layers. The following hyperparameters are explored
to optimize our network architecture: 1) learning rate, 2)
batch size, 3) number of epochs, 4) dropout, 5) activa-
tion function, 6) loss measure, 7) optimizer, 8) the number
of convolution layers and the number of neurons in each
convolution layer, and 9) the number of dense layers and
the number of neurons in each dense layer.

P:TREAT – The treatment strategy problem
Our goal is to exploit exascale computing to develop the
predictive models necessary for population-wide cancer
surveillance that extends beyond the clinical trial set-
ting. The treatment strategy problem tackles the critical
issue of clinical translation to determine to what extent
scientific advances, such as those made within the RAS
pathway and drug response problems, translate success-
fully in the real world. The treatment strategy problem
requires integration of heterogeneous datasets as well as
deep analytic techniques to understand the interrelation-
ships among genetic, lifestyle and environmental factors
in patient-specific cancer etiology and cancer outcomes.

To achieve our overarching goal, we will first leverage
the CANDLE environment to deploy deep learning for
automated extraction of clinical variables about patient-
level cancer management trapped in unstructured text
data from daily clinical practice. These variables cap-
ture important information about the patient’s cancer
staging, administered therapies, disease progression (i.e.,
recurrence, metastasis), and outcome. Such information
is critical to understand the impact of cancer treatment
strategies and policies in the broad population as part of
the national cancer surveillance program. Current prac-
tice relies on manual information extraction, an approach
that is neither scalable nor comprehensive for a variety of
reasons; the number of people living with cancer increases
(roughly 15,000,000 people live with cancer in the US
[29], new diagnostic and therapeutic biomarkers are con-
tinuously introduced, and new therapeutic options enter
the clinical arena. Traditional natural language process-
ing (NLP) algorithms have been developed to automate

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 65 of 110

this process. The NLP algorithms rely on carefully crafted
keyword-based rules for information extraction. With the
well-known variation in clinical expression and the size
of the controlled medical vocabularies containing more
than 100,000 medical terms and expressions (describing
diseases, conditions, symptoms, and medical semantics
that are typically present in unstructured clinical text),
hand-engineered rule extraction is neither scalable nor
effective for large-scale clinical deployment. Deep learn-
ing has the potential to address these challenges and
capture both semantic and syntactic information in clin-
ical text without having explicit knowledge of the clini-
cal language. However, the deep learning tools that can
handle the specific requirements of this third challenge
(input space (O

(
106) patients) × feature space (O

(
105)

medical terms and expressions) × output space (O
(
105)

medical biomarkers and clinical endpoints throughout a
cancer patient’s medical care trajectory) do not currently
exist. We will develop those tools, focusing specifically
on semi-supervised learning since it is impractical to
collect millions of expert-annotated clinical reports. A
semi-supervised algorithmic framework is best suited to
this challenge, balancing carefully the number of labeled
data (> 10, 000 clinical reports) and unlabeled data (>
2, 000, 000 clinical reports) to be made available to us
by NCI. We will explore convolutional, deep-belief, and
deep-stacking networks. In addition, we will implement a
multi-task deep learning framework that can be used for
joint classification/information extraction tasks.

Pilot application. For the P:TREAT Pilot, which
involves training a multi-task deep neural network (MT-
DNN), we used the following hyperparameters to opti-
mize our network architecture: 1) learning rate, 2) batch
size, 3) number of epochs, 4) dropout, 5) activation func-
tion, 6) loss measure, 7) optimizer, 8) number of folds,
9) the number of neurons in the shared layer, and 10)
the number of neurons in the task-specific layer. For the
MT-DNN, we chose three classification tasks, namely
i) primary site, ii) tumor laterality, and iii) histologi-
cal grade. For each of the parameters outlined above,
we run a parameter sweep on our MT-DNN to itera-
tively optimize the average accuracy per training task. The
end of the hyperparameter sweep results in a MT-DNN
that is optimally performant on the three classification
tasks.

Computing systems
The three workflows described previously “Workflows”
section were run on ALCF Theta, OLCF Titan, and
NERSC Cori. These systems vary greatly in their hard-
ware and software systems. The following is an overview
of their system parameters:

• ALCF Theta at Argonne National Laboratory

- 3624 nodes with item 64-core Intel Xeon Phi
item 16 GB MCDRAM, 192 GB of DDR4 RAM

- Python 2.7.13, Keras 2.0.2, TensorFlow 1.2.0
- Scheduler: Cobalt

• OLCF Titan at Oak Ridge National Laboratory

- 18,688 nodes with item 16-core AMD CPU
item NVIDIA Kepler K20X GPUs item 32 GB
RAM

- Python 3.6, Keras 2.0.3, TensorFlow 1.0.1
- Scheduler: PBS

• NERSC Cori at Lawrence Berkeley National
Laboratory

- 2388 nodes with item Intel Xeon Haswell
CPUs item 128 GB RAM

- 9688 nodes with item Intel Xeon Phi item 16
GB MCDRAM, 96 GB DDR

- Python 2.7.12, Keras 2.0.0, TensorFlow 1.2.0
- Scheduler: SLURM

As tabulated above, it is clear that these systems vary
significantly in their hardware capabilities and installed
software systems. This does not include differences in
compiler versions, software module management, and
storage system policies or capabilities.

We use Swift/T to abstract the scheduler and com-
pute layout settings. The launch parameters for Swift/T
allow the user to specify the scheduler type, processor
count, workers per node, and other common settings in a
uniform way across systems.

We use our Wrapper script abstraction “Methods”
section to abstract the Python configuration and ML
library settings. The wrapper script is invoked in one of
two ways, either by a short piece of Python code, the text
of which is embedded in the Swift/T script and executed
directly by the Swift/T runtime embedded Python inter-
preter, or by a bash script that is executed via a Swift/T
app function [12]. App functions are Swift/T language
functions that are implemented as command-line pro-
grams, in this case a shell script that calls the Python
interpreter passing it the wrapper script as an argument.
In both cases, the Swift/T script receives the hyperparam-
eters from the model exploration algorithm and passes
them to the wrapper script either via a string template
in the embedded Python code or as a command line
argument to the bash script.

The workflows were run on Cori using embedded
Python invocation and on Theta and Titan using the app
invocation of the bash script. Depending on the software
stack available on the resource, the app function invoca-
tion avoids potential conflicts between Swift‘s embedded
Python interpreter and the Python used by the deep

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 66 of 110

learning frameworks by setting the PATH, PYTHONPATH,
and other environment variables appropriately for the
system in question.

Results
In this section, we measure the performance of the CAN-
DLE/Supervisor system for the cancer pilot workloads.
We measure quantities relevant to the performance of a
workflow system, namely, system utilization, task start-up
latency, and task rate scaling.

System utilization analysis
In our first test, we measure system utilization on NERSC
Cori. This test measures the fraction of the system avail-
able to the ML libraries, everything else is treated as
overhead. In this test, we used the P:DRUG pilot work-
flow. The plots that follow illustrate the capability of our
hyperparameter optimization infrastructure. Two search
approaches, random and model-based searches, were
scaled up to 360 nodes.

To perform the CANDLE hyperparameter optimiza-
tion, we installed the CANDLE/Supervisor environment
with EMEWS configured to use mlrMBO as the optimiza-
tion algorithm. We used the ML package that provides
a deep learning environment for Python 2.7, including
Keras, TensorFlow, Theano, etc., provided by the NERSC
administrators.

On Cori, we ran P:RAS and P:TREAT benchmarks
on 360 nodes. For P:RAS, we ran two different hyper-
parameter search strategies: random search and model-
based-search, both with a budget of 1800 parameter
configurations. In the former, 1800 configurations were
generated at random and evaluated by the workflow
infrastructure. In the latter, 360 configurations are gen-
erated at random and the model-based-search generates

360 configurations at each iteration and evaluated. The
results are shown in Fig. 2. Our framework scales well to
the total number of nodes in the system; there is negligible
ramp-up time.

While the performance results show that random search
has better resource utilization over model based search,
this is due to the fact that model searches cannot proceed
to the next sampling iteration until it finishes evaluat-
ing all configurations from the previous iteration. In a
more realistic run, the models would run longer (10 or
more hours), reducing the impact of the gaps between
iterations. Additionally, we plan to overlap runs between
iterations as described in “Discussion” section.

Scaling one iteration
In this experiment we run the P:DRUG benchmark with
mlrMBO for one iteration at various scales on Titan to
determine scalability. For each node count N, we recorded
the start time and stop time, and plot the number of
models running on the system at each point in time. The
result is shown in Fig. 3.

As shown in the plot, increasing the number of nodes in
the run increases the work done. While there is a consider-
able impact from task time variability, all tasks exit before
they are forced to timeout, which would happen at the 90
minute mark. This shows that the CANDLE/Supervisor
system is capable of delivering large-scale computational
resources to hyperparameter search workflows.

Task start-up latency
Our underlying Supervisor workflow engine is capable
of quickly distributing tasks to workers, but the workers
must load the necessary optimization and ML libraries
before executing. The plot in Fig. 4 illustrates this. For
increasing workloads (up to 62 nodes, one model per

Fig. 2 System utilization for hyperparameter optimization on Cori

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 67 of 110

Fig. 3 Load profile for increasing workflow scale

node) on Cori, we profiled the load time for the R pack-
ages and Python packages. The total load time is about
50 sec at 62 nodes. We use the in-memory Python and
R interpreters available in Swift/T to load these modules,
meaning that they are only loaded once per node per
workflow, and not for each task.

As shown in the plot, loading the software (not even the
training data!) takes almost a minute, even at the mod-
est scale shown. Thus, the ability to keep the modules
loaded in the Python and R interpreters from task to task,
a unique Swift/T ability, is critical for these workflows.

Task rate scaling
In this measurement, we seek to summarize the scaling
properties of our system by measuring models completed

per unit time. In this case, we ran the P:DRUG workflow
on Titan at various scale and simply measuring the
number of models completed per hour. This result is
shown in Fig. 5.

As shown in the plot, the models per hour rate increases
linearly up to 1024 nodes, reaching a maximum measured
rate of 1060 models/hour. This delivers over 4 petaflops
to the deep learning engines used in the workflow (1024
NVIDIA K20X @ 3.95 TF = 4.045 PF, single precision).

Discussion
This paper demonstrates the basic features of a scal-
able workflow framework for machine learning applied
to problems in cancer research, but there are many addi-
tional features yet to investigate and develop.

Fig. 4 Software load time for Python and R modules on Cori

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 68 of 110

Fig. 5 Scalability: models completed per hour on Titan

First, we plan to address the cyclical nature of our work-
flows and resolve the gap problem shown in Fig. 2. We will
modify the optimizers to be “streaming optimizers”, which
will be capable of producing more sample points as soon
as sample results are available, instead of one iteration at
a time. This may take significant modification to existing
optimizer codes, but the potential gain in utilization will
be worth the effort.

Second, we plan to support larger data-parallel machine
learning models in our workflows. Swift/T already has
support for parallel MPI jobs, etc. [12] Our workflows
will be able to use this feature to dynamically select the
resource levels to apply to each model execution.

Third, we are applying our experience using these opti-
mizers to develop new optimizers for hyperparameter
optimization. These optimizers will be compatible with
the CANDLE/Supervisor framework and we will easily be
able to measure their quality against existing techniques
on large-scale problems.

Conclusions
Applying machine learning to cancer research is a promis-
ing approach in many aspects, including the benchmark
problems used here, the RAS pathway, drug response, and
treatment strategies. A significant challenge in this area is
selecting and parameterizing the neural network models
and software packages to be applied to these problems. In
this paper, we described the relevant workflows in some
detail. We then offered our solution by presenting CAN-
DLE/Supervisor, a framework for rapidly testing hyper-
parameter optimization techniques for machine learning
models, and showed how it is applied to several cancer
benchmarks.

The CANDLE/Supervisor framework offers multiple
features to support machine learning in cancer research.
First, is has a pluggable architecture, allowing users to
easily substitute the optimizer or ML problem. Second,
it is efficient, allowing use of large-scale resources, as
described in “Results” section. Third, it is portable, and
allows researchers to benefit from the abundant compu-
tational concurrency available on many leadership-class
systems. The software has also been tested on clusters and
individual workstations. It is available at https://github.
com/ECP-CANDLE.

As the project progresses, the design of the Pilots
will evolve, either by modification of the default model
paremeters (within a certain class of ML networks) or
via construction of new networks, which may in turn
necessitate modifications at the Supervisor level. We
intend to periodically release updated Pilots, synchro-
nized with appropriate updates at all levels of the CAN-
DLE/Supervisor.

Cancer research is an important topic with significant
societal impact. CANDLE/Supervisor allows research
teams to leverage the most powerful high-performance
computer systems in this problem space.

Funding
This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under contract number DE-AC02-06CH11357. This research
was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE Office of Science User
Facility. This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under

https://github.com/ECP-CANDLE
https://github.com/ECP-CANDLE

Wozniak et al. BMC Bioinformatics 2018, 19(Suppl 18):491 Page 69 of 110

Contract No. DE-AC05-00OR22725. This research used resources of the
National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. This material
is based upon work supported by the NIH (R01GM115839). Publication costs
were funded by the CANDLE project under the Exascale Computing Project, a
U.S. Department of Energy program.

Availability of data and materials
All software is available at https://github.com/ECP-CANDLE.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 18, 2018: Selected Articles from the Computational Approaches for
Cancer at SC17 workshop. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-19-supplement-18.

Authors’ contributions
JW led the production of the manuscript and performed the experimental
runs presented here. JW, JO, and NC architected the overall
CANDLE/Supervisor system. PB led the use of mlrMBO. FX, JMY, CGC, and BVE
developed and integrated CANDLE Benchmarks. RJ, JB, and MB performed
supporting research and experimentation. TB and RS developed the CANDLE
environment concept and supervised the effort. All authors read and
approved the final version of this manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Argonne National Laboratory, Argonne, IL, USA. 2Los Alamos National
Laboratory, Los Alamos, NM, USA. 3Lawrence Livermore National Laboratory,
Livermore, CA, USA. 4Minerva, San Francisco, CA, USA.

Published: 21 December 2018

References
1. Biden J. Report on the Cancer Moonshot. 2016. https://medium.com/

cancer-moonshot/my-report-to-the-president-3c64b0dae863. Accessed
1 Nov 2017.

2. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R,
Guadarrama S, Darrell T. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093. 2014.

3. Chollet F, et al. Keras. GitHub. 2015. https://github.com/keras-team/keras.
4. Theano Development Team. Theano: A Python framework for fast

computation of mathematical expressions. arXiv e-prints.
abs/1605.02688. 2016.

5. Collobert R, Kavukcuoglu K, Farabet C. Torch7: A matlab-like
environment for machine learning. In: BigLearn, NIPS Workshop. 2011.
https://groups.google.com/forum/#!topic/torch7/BDsodrhHE10.

6. Zhang H, Zheng Z, Xu S, Dai W, Ho Q, Liang X, Hu Z, Wei J, Xie P, Xing EP.
Poseidon: An efficient communication architecture for distributed deep
learning on GPU clusters. CoRR abs/1706.03292. 2017.

7. Systems N. Neon. 2017. https://github.com/NervanaSystems/neon.
Accessed 14 Sept 2017.

8. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS,
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D,
Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,

Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015. Software available from tensorflow.org. https://www.tensorflow.
org/. Accessed 1 Nov 2017.

9. Seide F, Agarwal A. Cntk: Microsoft’s open-source deep-learning toolkit.
In: Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. New York: ACM; 2016.
p. 2135. https://doi.org/10.1145/2939672.2945397.

10. Van Essen B, Kim H, Pearce R, Boakye K, Chen B. Lbann: Livermore big
artificial neural network hpc toolkit. In: Proceedings of the Workshop on
Machine Learning in High-Performance Computing Environments.
MLHPC ’15. New York: ACM; 2015. p. 5–156. https://doi.org/10.1145/
2834892.2834897.

11. Ozik J, Collier N, Wozniak JM, Spagnuolo C. From desktop to large-scale
model exploration with Swift/T. In: Proc. Winter Simulation Conference.
WinterSim; 2016. p. 206–20.

12. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. Swift/T:
Scalable data flow programming for distributed-memory task-parallel
applications. In: Proc. CCGrid. CCGrid; 2013. p. 95–102.

13. Armstrong TG, Wozniak JM, Wilde M, Foster IT. Compiler techniques for
massively scalable implicit task parallelism. In: Proc. SC. SC; 2014. p.
299–310.

14. Kaul P, Golovin D, Kochanski G. Hyperparameter tuning in Cloud Machine
Learning Engine using Bayesian Optimization. 2017. https://cloud.google.
com/blog/big-data/2017/08/hyperparameter-tuning-in-cloud-machine-
learning-engine-using-bayesian-optimization. Accessed 1 Nov 2017.

15. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine
learning in Python. J Mach Learn Res. 2011;12:2825–30.

16. Bergstra J, Yamins D, Cox DD. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision
architectures. In: Proc. of the 30th International Conference on Machine
Learning, Volume 28. ICML; 2013. p. 115–23.

17. Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD. Hyperopt: a python
library for model selection and hyperparameter optimization. Comput Sci
Discov. 2015;8(1):014008.

18. Stanley KO, Miikkulainen R. Evolving neural networks through
augmenting topologies. Evol Comput. 2002;10(2):99–127.

19. CodeReclaimers. NEAT-Python. GitHub. 2017. https://github.com/
CodeReclaimers/neat-python.

20. Claesen M, Simm J, Popovic D, Moreau Y, Moor BD. Easy
hyperparameter search using optunity. CoRR abs/1412.1114. 2014.

21. Fortin F-A, De Rainville F-M, Gardner M-A, Parizeau M, Gagné C. DEAP:
Evolutionary algorithms made easy. J Mach Learn Res. 2012;13:2171–5.

22. Bischl B, Richter J, Bossek J, Horn D, Thomas J, Lang M. mlrmbo: A
modular framework for model-based optimization of expensive
black-box functions. arXiv preprint arXiv:1703.03373. 2017.

23. Bergstra JS, Bardenet R, Bengio Y, Kégl B. Algorithms for
hyper-parameter optimization. In: Advances in Neural Information
Processing Systems. NIPS; 2011. p. 2546–54.

24. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
25. Hutter F, Hoos H, Leyton-Brown K. Parallel algorithm configuration. Learn

Intell Optim. 2012;55–70.
26. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

https://doi.org/10.1038/nature14539.
27. Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ,

Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi J-P,
Kallioniemi O, Honkela A, Aittokallio T, Wennerberg K, Community ND,
Collins JJ, Gallahan D, Singer D, Saez-Rodriguez J, Kaski S, Gray JW,
Stolovitzky G. A community effort to assess and improve drug sensitivity
prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12. https://doi.
org/10.1038/nbt.2877.

28. Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D, Borth
D, Li L. The new data and new challenges in multimedia research. CoRR
abs/1503.01817. 2015.

29. American Cancer Society. 2016.

https://github.com/ECP-CANDLE
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-18
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-18
https://medium.com/cancer-moonshot/my-report-to-the-president-3c64b0dae863
https://medium.com/cancer-moonshot/my-report-to-the-president-3c64b0dae863
https://github.com/keras-team/keras
https://groups.google.com/forum/#!topic/torch7/BDsodrhHE10
https://github.com/NervanaSystems/neon
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2834892.2834897
https://doi.org/10.1145/2834892.2834897
https://cloud.google.com/blog/big-data/2017/08/hyperparameter-tuning-in-cloud-machine-learning-engine-using-bayesian-optimization
https://cloud.google.com/blog/big-data/2017/08/hyperparameter-tuning-in-cloud-machine-learning-engine-using-bayesian-optimization
https://cloud.google.com/blog/big-data/2017/08/hyperparameter-tuning-in-cloud-machine-learning-engine-using-bayesian-optimization
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nbt.2877
https://doi.org/10.1038/nbt.2877

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	The CANDLE project
	Frameworks for machine learning
	Hyperparameter search

	Methods
	Workflows
	P:RAS – The RAS pathway problem
	P:DRUG – The drug response problem
	P:TREAT – The treatment strategy problem
	Computing systems

	Results
	System utilization analysis
	Scaling one iteration
	Task start-up latency
	Task rate scaling

	Discussion
	Conclusions
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

