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Abstract

Background: Microbes are essentail components of all ecosystems because they drive many biochemical processes
and act as primary producers. In freshwater ecosystems, the biodiversity in and the composition of microbial
communities can be used as indicators for environmental quality. Recently, some environmental features have been
identified that influence microbial ecosystems. However, the impact of human action on lake microbiomes is not well
understood. This is, in part, due to the fact that environmental data is, albeit theoretically accessible, not easily available.

Results: In this work, we present SEDE-GPS, a tool that gathers data that are relevant to the environment of an
user-provided GPS coordinate. To this end, it accesses a list of public and corporate databases and aggregates the
information in a single file, which can be used for further analysis. To showcase the use of SEDE-GPS, we enriched a
lake microbial ecology sequencing dataset with around 18,000 socio-economic, climate, and geographic features. The
sources of SEDE-GPS are public databases such as Eurostat, the Climate Data Center, and OpenStreetMap, as well as
corporate sources such as Twitter. Using machine learning and feature selection methods, we were able to identify
features in the data provided by SEDE-GPS that can be used to predict lake microbiome alpha diversity.

Conclusion: The results presented in this study show that SEDE-GPS is a handy and easy-to-use tool for
comprehensive data enrichment for studies of ecology and other processes that are affected by environmental
features. Furthermore, we present lists of environmental, socio-economic, and climate features that are predictive for
microbial biodiversity in lake ecosystems. These lists indicate that human action has a major impact on lake
microbiomes. SEDE-GPS and its source code is available for download at http://SEDE-GPS.heiderlab.de
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Background
The global positioning system (GPS), established in 1972
and made publicly available in 2000, allows for the exact
identification of every spot on the surface of the earth [1].
Consequentially, when studying geographically localized
objects or processes such as ecosystems, their location can
easily be specified using GPS coordinates.

Many natural processes are strongly influenced by char-
acteristics of their surroundings, i.e., it is known that
chemical composition, size of different habitats, and
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socio-economic features such as human population size,
can influence the (microbial) biodiversity in ecosystems
[2–5]. Therefore, having access to environmental charac-
teristics and including them in analyses is crucial when
trying to understand natural processes.

In the current study, we describe the novel tool SEDE-
GPS (Socio-economic data enrichment based on GPS
information), which can be used to enrich data sets
with data from public and publicly available corporate
databases based on user-specified GPS information. The
current version of SEDE-GPS accesses Open Street Map
(OSM), the Climate Data Center (CDC), Eurostat, and
Twitter. SEDE-GPS has an easy-to-use graphical user
interface and enables researchers to enrich their data with
environmental and socio-economic information based on
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GPS information. This may lead to new insights into the
influence of environmental and socio-economic features
on a wide range of processes.

As an exemplary use-case of SEDE-GPS, we use it in
order to identify features that have an impact on micro-
bial biodiversity. To this end, we calculate different alpha
diversity metrics from a sequencing dataset sampled from
a set of alpine lakes in Austria. We then use feature selec-
tion and machine learning methods to determine features
from the output of SEDE-GPS that can be used to predict
these alpha diversity metrics. Our results show that both
microbial Eukaryotes and Prokaryotes are impacted by
different environmental features. Nevertheless, for both
domains, the area and number of city structures (or lack
thereof) and other human-related features carry high pre-
dictive power.

Implementation
SEDE-GPS can be used via both a graphical user inter-
face (GUI) and a command line interface. As main input,
SEDE-GPS takes a list of at least one GPS coordinate.
Additionally, SEDE-GPS needs a set of parameters spec-
ifying which databases will be queried and restrictions
on the subfields to be downloaded. In the GUI, these
parameters can be selected via mouse-click, however, in
the command line version, these parameters need to be
specified in a config file. The output of the different mod-
ules implemented in SEDE-GPS is temporarily saved and
removed after being merged to a final output file in the
csv format. This is due to the fact that the output of
SEDE-GPS can be too large for regular-sized memory.

In the following, we will discuss the sources for data
enrichment currently used by SEDE-GPS (Fig. 1).

OSM: Land use statistics
Open Street Map (OSM) is a community-generated,
worldwide map. It is used by SEDE-GPS to gather infor-
mation on land-use of the area that surrounds a given GPS
position [6]. An area with an user-defined perimeter is
extracted from relevant map tiles of the OSM database.
As OSM maps are represented in Mercator projection,
SEDE-GPS compensates for latitudinal distortion. From
this map excerpt, the relative amount of pixels covered
by different map legend objects are calculated by thresh-
olding for their respective colors. This will calculate the
fraction of area around the user-provided GPS position
that is covered by, e.g., forests, city structures, or bodies
of water.

OSM: POIs
In addition to the map itself, OSM also hosts a database
that contains the locations of specific points of interests
(POIs), such as special buildings or touristically relevant
objects [6]. This module queries the OSM API and counts

the number of the different POIs in a perimeter of user-
defined size around the GPS coordinates. As the OSM API
reacts to queries slowly, this module is the largest contrib-
utor to the runtime of SEDE-GPS. Therefore, for larger
analyses, it is advisable to manually download the so-
called planetfile from OSM and to use it as an additional
input for SEDE-GPS.

Eurostat: detailed regional statistics
The Eurostat database contains highly detailed govern-
mentally collected data from the EU and EFTA mem-
ber states [7]. Its regional database provides statistics
on economic and social composition of centrally defined
NUTS (Nomenclature des unités territoriales statistiques)
regions. This module first determines the NUTS region
that corresponds to the user-specified GPS position by
querying the Google Maps database for the GPS positions’
postal code. With around 17,500 features, this module’s
output represents 99.4% of all features gathered by SEDE-
GPS.

CDC: European climate data
Via the CDC, a ftp server mainained by the Deutscher
Wetterdienst (DWD), it is possible to publicly and freely
access European climate data that dates back to 2010
[8]. The data has an interpolated spatial resolution of 5 km
and a chronological resolution of a day or a month. This
module requires a date as additional input and calculates
average values of, e.g., temperature or windiness for the
specified day, month, and/or year.

Twitter
The short messages sent out by users of Twitter (so-
called tweets) can be location-tagged, and their number
can be used to estimate tourist interest in a POI. The
Twitter module of SEDE-GPS collects and counts tweets
sent from a user-specified perimeter around the GPS
coordinates. Twitter limits the access to its data so that
SEDE-GPS can access all tweets that were sent in the last 7
days, but can only send 75 queries per 15 min. For a large
number of GPS coordinates, this module will, therefore,
require a long runtime.

Methods
Calculation of alpha diversity indices
The sequence data analyzed in the current study was taken
from [9, 10] (Additional file 1). It stems from a set of
alpine Austrian lakes, which were sampled in order to
study the change of lake microbial ecosystems of three dif-
ferent lakes over time [9] and the difference in microbiome
composition over many lakes [10]. 16s and 18s SSU rRNA
sequences were sequenced using a 454 deep-sequencing
amplicon approach [9, 10]. In the current study, only sam-
ples that were taken in August 2006 and contain more
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Fig. 1 Sample workflow for the use of SEDE-GPS. Based on user-defined GPS positions, SEDE-GPS queries a set of modules and returns all relevant
data. This data can then be used in analyses of any geo-located process. Due to the huge amount of features present in the dataset after data
enrichment with SEDE-GPS, we recommend including a feature selection step before using the gathered data for model construction, e.g., based on
machine learning. Data sources are represented by their respective logos which were taken from Wikimedia (https://commons.wikimedia.org/wiki/
Main_Page)

than 1000 sequences were analyzed. 16s and 18s rRNA
sequences were analyzed separately.

In order to estimate biodiversity within the samples, we
calculated four different alpha diversity indices, namely
Shannon’s Entropy H ′, Simpson diversity D, Simpson
evenness E, and the Chao1 Estimator C, at the maximum
possible sequencing depth with QIIME [11]. These indices
describe the mean species richness or diversity at the local
level [12] and are described by the following equations:

H ′ = −
R∑

i=1
pi ln pi with pi = ni

N
(1)

D = 1 −
∑R

i=1 ni(ni − 1)

n(n − 1)
(2)

E = −1/λ

R
with λ =

R∑

i=1

(ni
N

)2
(3)

C = R + S1(S1 − 1
2(S2 + 1)

(4)

where R is the number of species, ni the number of indi-
viduals in species i, N the total number of individuals, S1
the number of singletons (i.e., the number of species with

only one individuum), and S2 the number of doubletons
(i.e., the number of species with exactly two individuals).

Feature selection and feature evaluation
Before using the output of SEDE-GPS for machine learn-
ing, we employed a feature selection step. To this end,
features containing missing values and with low variance
(e.g., with more than 25% zeroes) were discarded. Next,
we used the R package EFS (Ensemble Feature Selection)
in order to rank the remaining features according to their
importance. EFS is an ensemble learning feature selec-
tion method, that corrects for biases of the single methods
when weighting features [13, 14]. Although EFS has been
developed for feature selection in classification studies, we
used an adapted version of EFS, which can be used for
regression studies.

Stability of the features gathered over multiple runs of
EFS were assessed by calculating the mean pairwise dis-
tance between the feature lists. To this end, we calculated
Kendall’s τ and the Jaccard distance using the R pack-
ages kendall and philentropy [15, 16]. For two ranked
lists of observations x and y of length n, Kendall’s τ is
defined as

τ(x, y) = c − d
n(n − 1)/2

(5)
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with c being the number of pairs of concordant observa-
tions (xi, yi) and (xj, yj) with xi < xj and yi < yj, d the
number of discordant observations with

(
xi > xj

)
&

(
yi < yj

) ‖ (
xi < xj

)
&

(
yi > yj

)
, (6)

i and j indices in the lists x and y, respectively.
The Jaccard distance dJ for two lists x and y is defined as

dJ (x, y) = |x ∪ y| − |x ∩ y|
|x ∪ y| . (7)

Therefore, for two feature lists with a maximum dis-
tance, the Jaccard distance would assume a value of 1 and
Kendal’s τ a value of −1. These values were calculated
from feature lists that contain the 50 features that were
ranked most important by EFS.

Sets of correlating features were determined using
Spearman correlation at a correlation coefficient cutoff of
larger than 0.7.

Machine learning
We trained and evaluated eleven different machine learn-
ing models (as implemented in the R package caret [17])
using a leave-one-out cross-validation (LOOCV) scheme.
These models included generalized linear models (glm-
net), bayesian lasso (blasso), support vector machines
(svmLinear and svmRadial), k-nearest neighbors (knn),
Regression Trees (CART: rpart, bagged CART: treebag),
Random Forests (rf ), and stochastic and extreme gradi-
ent boosting (gbm and xgbTree). Models were evaluated by
comparing the predicted values for all iterations to the real
alpha diversity values, resulting in R2 values. Confidence
intervals for the models’ performance were calculated
from the distribution of R2 values that were gathered from
1000x bootstrapped pairs of predicted and observed tar-
get variables. Their distributions were visualized using
boxplots.

The machine learning models were tested for over-
fitting using a permutation test. To this end, the tar-
get variable was permutated and after feature selection
with EFS, mache learning models were trained using the
same approach as described above. R2 values were calcu-
lated and collected for 1000 repetitions of this procedure.
Finally, the number of times t the resulting R2 value is
larger than or equal to the R2 value received with an
unpermutated target variable was counted. Significance in
terms of a p value was calculated by p = t/1000.

Results
Data enrichment using SEDE-GPS
SEDE-GPS is structured modularily, with every module
querying a certain database or API and, if necessary,
data pre- and postprocessing steps (Table 1). The mod-
ules that query the Open Streetmap (OSM) databases,

e.g., have to account for the fact that their maps are in a
Pseudo-Mercator projection or calculate a bounding box
for counting of POIs. Some of the APIs queried by SEDE-
GPS limit the number of queries that are handled in a
certain amount of time (Twitter) or answer intentionally
slowly (OSM). Similarly, the number of features provided
by the different modules varies greatly, with Eurostat con-
tributing by far the most the highest number of features,
respectively (Table 1).

In order to showcase the use of SEDE-GPS, we planned
to identify features that are predictive for the microbial
biodiversity in a set of 39 alpine Austrian lakes. From
these lakes, water samples were taken from which both
16s and 18s rRNA were sequenced and the geo-location
of the sampling was recorded using GPS [9, 10]. These
GPS coordinates were used as an input for SEDE-GPS,
with all modules enabled, using radii of 1, 2, and 5 km
and the date of sampling as additional input for mod-
ules for which this is necessary. This resulted in around
17,900 features.

The resulting dataset was observed to be highly sparse,
with especially the output of the Eurostat and Twitter
module showing a high degree of sparsity. Furthermore,
a very small amount of features contained missing val-
ues, which we attributed to either errors in the databases
or in the communication with the API. Therefore, fea-
tures were discarded that contained any missing values
or zeroes for more than a third of the instances. This
procedure reduced the number of features per lake to
around 1,200.

Calculation of biodiversity metrics
The 16s and 18s rRNA sequencing datasets were pro-
cessed separately using a QIIME pipeline [11]. Samples
that contained less than 1000 sequences were discarded,
which lead to differing numbers of lakes for which Eukary-
otic and Prokaryotic biodiversity data were available.
As biodiversity indicators, four different Alpha diversity
metrics (Shannon’s entropy, Simpson diversity, Simpson
evenness, and the Chao1 estimator) were calculated after
rarefaction (“Methods” section). We used multiple differ-
ent metrics as they each measure biodiversity in specific
ways and therefore emphasize different species distribu-
tion characteristics [18–20]. As the alpha diversity metrics
were calculated for 16s and 18s rRNA separately, this
resulted in maximally eight different biodiversity indica-
tors for each lakes.

Identification of important features using EFS
In order to find features in the output of SEDE-GPS that
are predictive for lake microbial biodiversity, we used
the R package EFS (Ensemble Feature Selection) and the
eight alpha diversity metrics as target variable in sepa-
rate analyses [13, 14]. EFS is an ensemble feature selection
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Table 1 Modules and their subfields currently available in SEDE-GPS

Module Subfields Additional Input Data Processing No. of features Runtime (ms)

OSM Land Use - Radius Pixel decompression 20 24823 ±2421

OSM POIs Craft Radius Bounding boxes 7 3229 ±342

Leisure Radius Bounding boxes 15 7202 ±622

Powerplants Radius Bounding boxes 11 5053 ±503

Special buildings Radius Bounding boxes 13 6881 ±453

Tourism Radius Bounding boxes 8 3096 ±382

Transport Radius Bounding boxes 13 6951 ±496

Urban Radius Bounding boxes 6 2402 ±401

CDC Average of the day Date 4 <1

Average of the month Date 4 2 ±0

Average of the year Date 4 211 ±0

Eurostat Agriculture 721 711 ±80

Business Demography 778 1467 ±83

Crime Statistics 4 16 ±4

Demography 15077 2611 ±79

Economic Accounts 67 431 ±41

Education Stat. 30 31 ±5

Labour Market Stat. 99 172 ±17

Science & Technology 644 3718 ±400

Tourism Stat. 44 163 ±11

Transport 59 13383 ±224

Twitter - Radius 1 1014 ±316

Total 17629 83567

Runtime means and standard deviation were calculated from ten measurements

method that assigns weights to the features in an unbi-
ased manner according to their predictiveness for the
target value.

Using the average weight of the features as cutoff, fea-
tures below this cutoff were discarded. To verify that
the selected features are both descriptive and were not
selected due to overfitting, eleven different machine learn-
ing models were trained to predict the eight alpha diver-
sity values from the EFS-selected SEDE-GPS features.
The models showed profoundly differences in perfor-
mance (Table 2) with xgbTree showing near perfect perfor-
mance for all target variables (Fig. 2). In order to confirm
that the performance of the models is not due to over-
fitting, we performed a permutation test for the four
best-performing machine learning models. For all target
variables and machine learning models, this resulted in a
p-value of less than 0.001.

Taken together, these results show that the
features selected by EFS were not selected due to
overfitting but are helpful for predicting alpha diver-
sity metrics for prokaryotes and microbial eukaryotes
in lakes.

Stability and importance of features
Due to the fact that leave-one-out cross validation
(LOOCV) was used to train and validate the machine
learning models, multiple weighted feature lists were cal-
culated for every target variable. Overfitting of EFS would
have resulted in drastically different feature weights in the
LOOCV iterations. In order to show that EFS did not
overfit in the analyses presented here, we assess the sta-
bility of the features selected in the LOOCV iterations
using both Kendall’s τ and Jaccard distance as feature list
distance measures. These results show that the features
selected by EFS show a high degree of stability and that
the feature selection is not the result of overfitting (Fig. 3).

When manually examining selected features, it is impor-
tant to keep in mind that the first step of feature selection
in EFS is correlation based. This means that from sets of
features that correlate, only the most descriptive feature
is kept in the feature set. Therefore, for datasets pro-
cessed with EFS, each feature label must be viewed as
stand-in for a set of correlating features. Table 3 shows
the five most important features for predicting the differ-
ent alpha diversity metrics, with each feature name being
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Table 2 Performance (R2 values) of machine learning models trained to predict alpha diversity from SEDE-GPS output

Dataset glmnet blasso svmRadial svmLinear knn rpart treebag rf gbm xgbTree

Euk Chao1 0.292 0.003 0.713 0.980 0.0415 0.214 0.631 0.518 0.496 0.999

Euk Shannon 0.228 0.0167 0.791 0.993 0.000 0.180 0.635 0.582 0.680 1.000

Euk Simpson_e 0.277 0.0146 0.556 0.976 0.107 0.238 0.671 0.559 0.546 0.980

Euk Simpson 0.150 0.001 0.742 0.906 0.014 0.090 0.545 0.346 0.432 0.995

Prok Chao1 0.768 0.461 0.832 0.991 0.0695 0.420 0.635 0.915 0.955 0.979

Prok Shannon 0.527 0.011 0.940 0.991 0.172 0.538 0.626 0.930 0.993 0.999

Prok Simpson_e 0.345 0.128 0.849 0.991 0.035 0.304 0.622 0.937 0.840 0.999

Prok Simpson 0.459 0.008 0.915 0.986 0.168 0.453 0.627 0.904 0.880 0.991

replaced by higher order descriptions of the respective set
of correlating features (for the simple feature names, see
Additional file 2: Table S1). This examination was limited
to five features per target variable because both the aver-
age feature weight and the stability of the feature position
decrease quickly with increasing rank of the feature (Fig. 4,
Additional file 3: Figure S1).

The resulting feature lists for Prokaryotes and microbial
Eukaryotes show major differences, while using different
alpha diversity metrics result, especially for Prokaryotes,
in similar feature lists (Table 3).

Discussion
SEDE-GPS
In this paper, we present SEDE-GPS, which can be used
to drastically increase the number of features for datasets
that contain GPS-located samples. Accessing four dif-
ferent data sources via five modules, it provides around
18,000 numerical features that contain socio-economic,
geographic, and climate information (Table 1).

Currently, due to the choice of databases SEDE-GPS
queries, this tool has a number of limitations. Both
the CDC and Eurostat modules return only data for

Fig. 2 Performance of machine learning models predicting microbial lake alpha diversity based on the output of SEDE-GPS. Stars represent the
performance of models trained on the respecitve dataset, box plots represent confidence intervals of R2 values gathered from the respective model.
Models were trained on the output of SEDE-GPS after feature selection and evaluated using LOOCV (“Methods” section). Only results for the four
best-performing models are shown; for the others, see Table 2
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Fig. 3 Stability of feature lists over LOOCV iterations. Jaccard distances and Kendall’s τ were calculated for pairs of feature lists for the 50 most
important features of each dataset. Dots and error bars represent average values and standard deviations of values, respectively. At maximum
distance, the Jaccard distance and Kendall’s τ would assume a value of 1 and −1, respectively. Both feature lists are rather stable, however, the
feature lists of the Prokaryote datasets are more stable than their Eukaryote counterparts

GPS coordinates in Europe, while the OSM modules
and Twitter module will work for any GPS coordinate.
Similarly, the databases queried by SEDE-GPS do not
contain meaningful data for most marine GPS coordi-
nates. In the future, we seek to overcome these limita-
tions by including more data sources and thus extending
SEDE-GPS both to new regions and to new data types
and formats.

Similarly, the specific limitations and pecularities of
the databases currently used by SEDE-GPS are important
for the interpretation of their data. OSM contains user-
generated and user-curated information which might be
of inconsistent albeit high quality or level of detail [6].
Eurostat, as a governmentally curated database, on the
other hand, exhibits a level of detail which is generally
lower that that of OSM as it can only be queried for
defined NUTS regions [7]. As these regions are of widely
differing sizes one might want to normalize data gath-
ered from Eurostat to the area of the respective NUTS
region. We decided not to implement this normalization
step in SEDE-GPS as postprocessing steps not accessible
to the user generally might introduce unwanted artifacts.
The information gathered from Twitter comes with mul-
tiple caveats: For one, only very few processes will be
directly influenced by the number of messages sent via

Twitter and this number will thus, in most cases, func-
tion as a proxy for other information. Additionally, the
number of tweets will show a certain amount of variance
over time, with the amount of variance being possibly also
location-dependent.

Because of a rate limitation in API queries, both
the OSM modules and the Twitter module are the
biggest contributors to SEDE-GPS’s runtime, especially
for datasets with many GPS coordinates. It would be
possible to speed up the OSM modules by reading the
data from a so-called planetfile (an image of the OSM
databases) instead of using API queries. This is, currently,
not implemented in SEDE-GPS, as the planetfile is very
large and a speed improvement would, therefore, only
exist for very large GPS datasets.

Central to the design of SEDE-GPS is the fact that
it does not perform any field-specific data postprocess-
ing. Therefore, the output of SEDE-GPS can be used for
studies in a wide variety of scientific fields. Neverthe-
less, for some applications, postprocessing steps might be
advisable.

Microbial ecology
In this study, we showcase the use of SEDE-GPS for micro-
bial ecology. From the output of SEDE-GPS and using
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Table 3 Features with the highest weights for prediction of different alpha diversity metrics for Prokaryotes and Eukaryotes in Austrian
lakes

Prokaryotes

Chao1 Shannon Entropy Simpson Diversity Simpson Evenness

Industrial Area,
Villages, Street (2-5
km)

Forests (5km) Forests (5km) Forests (5km)

Forests (5km) Main street (small),
married people

Forests Main street (small),
married people

Climate,
Demography, City
Structures

Forests (2km) Buildings, Highways,
Water, Parking, Parks

Forests (1km)

Climate,
Demography, City
Structures

Climate,
Demography, City
Structures

Forests (1km) Buildings, Highways,
Water, Parking, Parks

Main street (small),
married people

Green space, small
villages, Industrial area

Mining, main streets Mining, main streets

Eukaryotes

Chao1 Shannon Entropy Simpson Diversity Simpson Evenness

Forests Main streets Main streets Economy (parking,
GDP, Agrarian
structures),
Population

Family Demography Beach & Water Beach & Water Economy (parking,
GDP, Agrarian
structures),
Population

Climate,
Demography, City
Structures

Picnic Site (5km) Economy (parking,
GDP, Agrarian
structures),
Population

Beach & Water

Altitude, Climate,
Demography, City
Structures

Highway Pull-ins Towns Towns

Climate,
Demography, City
Structures

Urban regions, Av.
Temperature, Parks

Urban regions, Av.
Temp., Parks

Highway Pull-ins

For features in bold, a linear regression shows a positive relationship with the respective target variable

machine learning methods, we were able to identify fea-
tures that can be used as predictors of both Eukaryote and
Prokaryote alpha diversity in a set of alpine lakes.

Implicitly, in this study, we assumed that environmen-
tal features have a bigger impact on microbial biodiver-
sity than historical contingencies and recent events. We
acknowledge that this notion, succinctly formulated as
“everything is everywhere, but the environment selects”,
is highly debated [21–24]. Furthermore, we do not take
into account that the composition of microbial com-
munities can be majorly influenced by recent events or
the microenvironment of the sampling position [25, 26].
These assumptions are neccesary because the dataset
analyzed here does not contain multiple samples that
were collected on different time points for each of the
lakes. However, we are not aware of such an ecological

microbial sequencing dataset with a quality, geographic
extensiveness, and also uniformity of sample preparation
comparable to the one we analyzed here.

The features we identified as most predictive for micro-
bial biodiversity differed greatly between Eukaryotes and
Prokaryotes, supporting the notion that microorgan-
isms from these domains have different ecological roles
[21, 24, 27, 28]. In contrast to this, the most predictive
features for the different alpha diversity indices calculated
from Prokaryotic sequences show a high degree of similar-
ity. This indicates that the alpha diversity metrics used in
this study essentially capture the same central distribution
characteristics of the composition, at least for this domain
of life.

Recently, many studies identified environmental and
geographic features such as temperature, pH, climate, ion
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Fig. 4 Decline of average importance of features over the 25 highest ranked features. Feature weights were calculated using EFS and averaged over
the LOOCV iterations. Ribbons indicate standard deviation. Average importance values were normalized so that the first feature has an average
weight of 1. For all datasets except Euk Simpson, after the twelfth highest weighted features, feature weights are below 0.5

and nutrient concentration, and elevation-related envi-
ronmental parameters as major drivers of the composition
of lake microbiomes [4, 10, 21, 29–31]. Some of these
features were also identified as highly impactful in our
analysis (Table 3), albeit somewhat hidden under feature
labels such as “Climate, Demography, City Structures” for
temperature or “Economy (parking, GDP, Agrarian struc-
tures), Population” for nutrient concentration. While this
clearly is a consequence of the field-agnostic nature of
the data provided by SEDE-GPS, it might also point to
possible sources for impact on biodiversity.

Therefore, our results also suggest that human action
has an direct or indirect impact on lake micrbiome com-
position. Although an impact of urbanization on biodiver-
sity is well known for other areas of ecology [32–35], this is
the first time, to our knowledge, that it has been described
for microorganisms. Surprisingly, our results suggest that
urbanization has a positive effect on Prokaryote biodi-
versity, as, e.g., the area of the environment covered by
streets correlates positively with all biodiversity indices
used in this study (Table 3). The negative impact of for-
est area might therefore stem from the fact that areas
covered with forests cannot also be urban regions. Impor-
tantly, one should not fall into the trap of assuming that a
higher biodiversity necessarily signifies a well-functioning

ecosystem [20] and take the results presented here to
mean that more streets would improve lake ecosystems.
Nevertheless, these results indicate that the processes that
govern microbial ecology are very different from those
that regard the ecology of larger organisms [9, 21, 28].

Further analyses will be needed to solidify the results of
this study. In part, this is due to the fact that the samples
and lakes included in this analysis are limited in number
and are geographically close to each other [22, 24, 25, 36].
Therefore, for a more thorough analysis, larger datasets
from more variable sites would be neccessary, as currently
only available from large-scale environmental sequencing
efforts such as the Earth Microbiome Project [37] or the
1000 Springs Project [28, 38]. Nevertheless, on the basis of
the results presented here, experiments can be designed
in order to illuminate the mechanistic and causal rela-
tionships between environmental features and microbial
biodiversity.

Conclusion
This study shows how to use SEDE-GPS in order to
enhance datasets that contain scarce amounts informa-
tion on the environment of geo-located, observed pro-
cesses. Analysing the output of SEDE-GPS leads to the
identification of environmental, socio-economical, and
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climate features that influence the studied process. These
results can then act as basis for further hypothesis-driven
research projects. SEDE-GPS is available at http://www.
SEDE-GPS.heiderlab.de.

Availability and Requirements
Project name: SEDE-GPS
Project home page: http://www.SEDE-GPS.heiderlab.de
Operating system(s): Platform independent
Programming language: Java
License: GNU GPLv3
Any restrictions to use by non-academics: None
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Additional file 1: This table contains names, positions, and references for
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and/or Eukaryotes were analyzed from the sample in this study. (CSV 3 kb)

Additional file 2: This table contains the feature names of the ten most
important features in respect to the different alpha diversity metrics for
Prokaryotes and Eukaryotes. Here, feature names were not replaced as
described in “Methods” section. (CSV 2 kb)

Additional file 3: This figure shows the relative frequency of the most
frequent feature at a given position for all target variables. Frequencies
were calculated from the feature lists sorted by the weights determined by
EFS in the LOOCV iterations. This shows that feature lists get more random
with increasing rank of the feature on a sorted feature list. (TIF 844 kb)
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