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Abstract

Background: Pan-genome approaches afford the discovery of homology relations in a set of genomes, by
determining how some gene families are distributed among a given set of genomes. The retrieval of a complete gene
distribution among a class of genomes is an NP-hard problem because computational costs increase with the number
of analyzed genomes, in fact, all-against-all gene comparisons are required to completely solve the problem. In
presence of phylogenetically distant genomes, due to the variability introduced in gene duplication and transmission,
the task of recognizing homologous genes becomes even more difficult. A challenge on this field is that of designing
fast and adaptive similarity measures in order to find a suitable pan-genome structure of homology relations.

Results: We present PanDelos, a stand alone tool for the discovery of pan-genome contents among phylogenetic
distant genomes. The methodology is based on information theory and network analysis. It is parameter-free because
thresholds are automatically deduced from the context. PanDelos avoids sequence alignment by introducing a
measure based on k-mer multiplicity. The k-mer length is defined according to general arguments rather than
empirical considerations. Homology candidate relations are integrated into a global network and groups of
homologous genes are extracted by applying a community detection algorithm.

Conclusions: PanDelos outperforms existing approaches, Roary and EDGAR, in terms of running times and quality
content discovery. Tests were run on collections of real genomes, previously used in analogous studies, and in
synthetic benchmarks that represent fully trusted golden truth. The software is available at https://github.com/
GiugnoLab/PanDelos.
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Background
A pan-genome can be abstractly considered as a struc-
ture defined on a set of genomes. The structure is built
by identifying groups of homologous genes [1]. Two genes
are homologous if they share a common ancestral gene.
Homologous genes can be distinguished into paralogous,
when homology occurs within the same genome, or
orthologous, when homology occurs between different
genomes. We call pan-genome content discovery the
determination of homologous groups within a collection
of genomes.
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Different mechanisms are involved in gene transmis-
sion. Paralogy is linked to sequence duplication within
the same genome. Orthology is associated to a “verti-
cal” transmission. It happens among genomes in the same
lineage and involves most of the genetic contents. On
the contrary, “horizontal” transmission occurs between
genomes of organisms of different lineages, involving one
or few genes. Genes present in every genome are core
genes of the pan-genome and they may be involved in
essential living functionalities. Sequences shared by a
subset of genomes are referred as dispensable and they
represent variable features. Singleton genes are present
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only in one genome and represent some genome-specific
functionality. The collective analyses of all the genes is
developed for many specific interests, for example, for
the study of a bacterial strain of a given species [2, 3].
Pan-genome analyses found many application in clini-
cal studies [4, 5], for example they help in identifying
drug-target genes in clinical studies [6, 7], or in exploring
phylogenetic lineages of bacteria [8] that can be linked to
strain-specific disease phenotypes [9].

Approaches to pan-genome content discovery need to
take into account that gene duplication and transmission
may introduce sequence alterations [10–13]. The vari-
ations make the task of recognizing homologous genes
difficult, especially when ancestor genomes are no more
available. Core genes are often under strong evolution-
ary selection, thus their sequences are transmitted almost
without any alteration. The amount of variations affect-
ing dispensable genes varies and the similarity between
homologous sequences tends to decrease according to
their phylogenetic distance. When closely related organ-
isms are analyzed, reasonable thresholds on sequences
similarity are applied to recognize gene families. How-
ever, when distant genomes are compared, global thresh-
olds result less feasible. Suitable notions are needed to
define adaptive thresholds especially when they present
non-uniform phylogenetic distances.

The discovery of a pan-genome content is an NP-hard
problem [14], and the complexity of the analysis is pro-
portional to the number of input genomes. This is mainly
due to the fact that all-against-all comparisons between
gene sets are required to solve the task. State of art tools
for pan-genome analysis are Roary [15] and EDGAR [16].
They use some heuristics to reduce the computational
requirements in the definitions of thresholds for sequence
alignments and the number of comparisons necessary in
their procedures. Both approaches are based on a largely-
used strategy that searches for reciprocally most similar
genes between compared genomes [17, 18].

Roary combines an approach for clustering gene
sequences (CD-HIT) with a procedure based on recip-
rocal BLAST alignments. CD-HIT [19] clustering counts
the presence of k-mers, substrings of length k, among
the analyzed sequences at different values of k. The
results of CD-HIT are merged with normalized BLAST
scores [20] and clustered via the MCL algorithm [21].
The Roary’s procedure requires intensively tuning of
user-defined parameters to set the thresholds for dis-
carding low homology values. Parameters are set glob-
ally, making Roary best performing on closely related
genomes.

EDGAR uses adaptive thresholds depending on the
distribution of BLAST gene scores. The retrieval of a
distribution is made feasible by the normalization of align-
ment scores. The normalization is performed by fixing the

self-alignment score of a sequence as the maximum one.
The approach results suitable for comparing genomes
with a considerable phylogenetic distance, but some dis-
advantages arise. It requires an expensive amount of
sequence alignments, in fact for each 1-vs-1 genome com-
parisons, the complete gene sets of the two genomes must
be cross-aligned. EDGAR chooses the threshold on the
minimum feasible score by computing the distribution of
the normalized gene blast of all scores. Scores are summed
up and represented in a histogram, and a beta distribution
is calculated from the mean and standard deviation of the
observed values. A 97% quantile of the density function is
used as a cutoff to asses orthology. The quantile has been
identified by manual inspection of hundreds of histograms
from real cases.

Roary and EDGAR are based on sequence alignment,
however alternative strategies can be used for retriev-
ing domain architecture between homologous genes [22]
or for the detection of horizontal gene transfer [23], by
exploiting alignment-free techniques.

We present PanDelos 1, a methodology to discover pan-
genome content in phylogenetically distant organisms
based on information theory and network analysis. It is
parameter-free, the thresholds are automatically deduced
from the context. PanDelos avoids sequence alignment by
introducing a similarity measure based on k-mers multi-
plicity, rather than simple presence/absence of mers. The
strength of the strategy is supported by a non-empirical
choice of the best appropriate k-mer length. Moreover, the
selection of minimum similarity for which two sequences
are eligible to be homologs is inspired by the knowledge
coming from read mapping in next-generation sequenc-
ing and sequence reconstruction processes. Reciprocal
best hits in 1-vs-1 genome comparison, aimed at dis-
covering orthologous genes, are used as a basis to infer
thresholds for paralogs discovery. Homology relations are
integrated into a global network and groups of homolo-
gous genes are extracted from it by applying a community
detection algorithm. PanDelos outperforms in terms of
running times and quality discovery contents the exist-
ing approaches, Roary and EDGAR, in real applications
and in synthetic benchmarks, that represent fully trusted
golden truth.

Methods
The detection of gene homology performed by PanDe-
los is divided into 5 main steps that combine a candidate
selection based on k-dictionaries, with a refinement pro-
cedure, developed by means of network analysis. Firstly,
an optimal value of word length k is chosen according
to properties of the input collection of genomes. Con-
sequently, genes are compared and candidate homolo-
gous pairs are selected. The selection is firstly applied
by setting a minimum amount of intersection between
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the k-dictionaries of two genes. Then, the general-
ized Jaccard similarity is used to measure the similar-
ity between genes in order to extract bidirectional best
hits. The extraction produces a homology network from
which, at the end of a refinement procedure, gene fam-
ilies are retrieved. Figure 1 gives an overview of the
overall schema.

In what follows, we first describe the details of Pan-
Delos together with the engineering and extension of

existing data structures that allows PanDelos to reach high
performance and efficiency.

Basic notation
A gene is represented as a string s over the amino acid
alphabet �, s = a1a2 . . . ah, with ai ∈ � for 1 ≤ i ≤ h.
The k-mers of s are the substrings of s having length
k. A sequence s, having length |s|, contains |s| − k + 1
occurrences of k-mers. A k-mer w may occurs several

Fig. 1 Overview of PanDelos Pan-genome computation of three genomes (represented as blue, red, and violet). Genomes are taken in input as list
of genetic sequences (represented as colored rectangles). The homology detection schema is divided into 5 steps. PanDelos, at first, chooses an
optimal word length that is used to compare dictionaries of genetic sequences. The 1-vs-1 genome comparisons are performed. An initial candidate
gene pairs selection is obtained by applying a minimum percentage threshold on the dictionary intersection. Then, PanDelos computes generalized
Jaccard similarities among genes (shown in the bottom left matrix). Only pairs of genes that passed the threshold applied on dictionary percentages
are taken in consideration for the similarity computation. Pairs that did not pass the threshold are represented by gray tiles. Next, PanDelos
computes bidirectional best hits (BBH), here represented with green borders. On the bottom right, a similarity network, made of reciprocal best hits
is shown. Border colors represent the genomes to which genes belong. A final computational step discards edges in inconsistent components of
the network and returns the final list of gene families. A component is inconsistent if it contains two genes belonging to the same genome that are
not accounted as paralogs. A family may contains orthologous as well as paralogous genes, such as the yellow/brown ones. Families are finally
classified as singletons, dispensable or core depending on their presence among genomes (borders of the rectangles represent the genomes the
genes belong to)
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times within s. The number of times that w occurs in s is
called the multiplicity of w in s and it is denoted by cs(w).
The k-dictionary Dk(s) of s is given by the set of all distinct
k-mers occurring in s:

Dk(s) = s[ i..i + k] : 1 ≤ i ≤ |s| − k,

where s[ i..i + k] is the substring of s starting at position i
and ending after k positions.

Given a population of n individual genomes, we denote
by G

i = {s1, s2, . . . , sm} the set of genes of the i-th indi-
vidual. The genetic length of G

i is given by the sum
of the lengths of the genes in G

i and it is denoted by
〈Gi〉. On the contrary, when whole DNA sequences are
taken into account the genomic length of the i-th indi-
vidual, |Gi|, is given by the total length of the DNA
sequence. In what follows, we use the term genome to
indicate both a DNA sequence G and the correspond-
ing set of genes G. The context will suggest the intended
appropriated meaning.

Choosing an optimal word length for gene dictionary
construction
A dictionary-based measure is highly sensitive to the
length k of the words that compose the dictionary. In
analyzing whole genome sequences, a crucial resolution
is given by k = log4|G|, where 4 is the cardinality of
the nucleotide alphabet [24, 25]. This value was proven
to reveal structural laws that emerge from the maximum
entropic difference between real genomes with random
ones of the same length. In our case, genes are repre-
sented by the amino acid sequences of the proteins they
encode, thus the alphabet to be considered is � rather than
the 4-symbols nucleotide alphabet. Thus, we take into
account the set of genetic sequences belonging to all the
n input genomes by setting the value of the optimal word
length k as:

k = log|�|
n∑

i=1
〈Gi〉.

Selection of candidate gene pairs
Unfortunately, no theory exists to define a non-empirical
threshold regarding the application of the Jaccard similar-
ity in the context of gene comparison. Thus, a preliminary
step filters pairs of gene candidate to be homologous.
The intersection coverage of the dictionaries of two genes
is used as a criterion of relational relevance between
sequences. The criterion requires that the k-mers of
Dk(s ∩ t) = Dk(s) ∩ Dk(t) have to occur in s and t with a
minimal percentage.

PanDelos creates a set CH of candidate homologous
genes by computing, for each pair of genes s and t, s ∈ G

i

and t ∈ G
j, the percentage of k-mer occurrences of s that

belong to D̂k(s, t). It is given by

pk(s → t) =
∑

w∈Dk(s,∩t) cs(w)

|s| − k + 1
.

PanDelos considers as homologous two genes s, t such
that both pk(s → t) and pk(t → s) must overcome the
minimum amount of 2/k.

The threshold 2/k is not empirically defined, but moti-
vated by an argument that we will briefly outline. If we
consider that from a sequence s we can extract at most
|s|/k distinct non-overlapping k-mers, then we realize
that, when the average multiplicity of k-mers in s is close
to 1, this fraction is close to 1/k of the number of all k-mer
occurrences of s. However, the lack of overlap denies any
possibility of reconstructing of s from such a k-dictionary,
because in this case there is no indication on how the dif-
ferent k-mers must be arranged to form s. Therefore, we
assume that a minimum amount of overlap between con-
secutive k-mers extracted from s is given by doubling the
above fraction 1/k. This argument suggests us to fix as
2/k the threshold of pk(s → t) and pk(t → s). In conclu-
sion, s and t are considered homologous candidate genes
if: pk(s → t) ≥ 2/k and pk(t → s) ≥ 2/k.

Dictionary based gene sequence similarity detection
For each pair of genomes, Gi and G

j, and for each can-
didate pair of genes (s, t), such that s ∈ G

i and t ∈ G
j,

PanDelos computes their sequences similarity by applying
a generalized Jaccard similarity among the k-dictionaries.
Note that, in the search for paralogous genes, i is
equal to j.

Given two sequences, s and t, and Dk(s ∪ t) = Dk(s) ∪
Dk(t) the union of their k-dictionaries, PanDelos uses the
following generalized Jaccard similarity Jk(s, t) on k-mer
multiplicities:

Jk(s, t) =
∑

w∈Dk(s∪t) min(cs(w), ct(w))
∑

w∈Dk(s∪t) max(cs(w), ct(w))
.

It takes values in the interval [ 0, 1]. It is independent of
the lengths of the compared sequences and thus it is suit-
able for comparing sets of sequences having a wide range
of lengths.

Extraction of gene pairs by bidirectional similarity
In order to obtain the set CHO of orthologous candidate
genes, PanDelos computes bidirectional best hits (BBHs)
on genes in CH.

Given a gene s ∈ G
i, the set of best hits of s towards a

genome G
j is given by:

BH
(
s,Gj) =

{
t ∈ G

j : Jk(s, t) = max
v∈Gj

Jk(s, v)
}

.
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The set of bidirectional best hits of s towards G
j is given

by:

BBH
(
s,Gj)={

t ∈ G
j : t ∈BH

(
s,Gj) and s ∈ BH

(
t,Gi)}

Only genes involved in at least one BBH are kept in CHO.
The BBH strategy is commonly used in pan-genomic

analyses, however, it may capture sequences having low
similarity. This behavior especially arises with singleton
sequences. Two unrelated singletons of the two genomes
may form a BBH simply because no orthologs exist and
they are reciprocally the best match. PanDelos avoids
these cases by performing the BBH strategy only on genes
in CH, i.e. on candidate genes ‘similar enough’.

In order to obtain the set CHP of paralogous candidate
genes, at the end of every 1-vs-1 genome comparison,
the minimum score of BBH orthologous candidate genes
is used to infer new paralogous. Recalling that PanDelos
has compared each genome to it self, the intra-genome
BBH with a score equal to or greater than the minimum
inter-genomes BBH score (orthology score) are accounted
as paralogous. This rule states that the score accounting
for orthologous sequences can be used as threshold to
define two genes as paralogous because their similarity is
strong at least as the minimum trusted similarity between
orthologs.

Gene family detection by network coherence refinement
PanDelos constructs an undirected weighted network
from homology information, where each vertex is labelled
with a pair (s,Gi) formed by a candidate gene and the
genome to which it belongs, and where an edge connects
two vertices if they are in CHO or CHP. The edge weights
are the scores computed applying the generalized Jaccard
similarity on candidate genes.

The network may be formed by several connected
components which are the starting homologous candi-
date gene families. A connected component is defined
inconsistent if it contains two genes belonging to the
same genome that are not accounted as paralogs, namely
which are not connected by an edge. The inconsistency
is resolved by recursively splitting the component into
subgroups until a set of consistent subgroups is reached.
PanDelos uses the Girvan-Newman algorithm for com-
munity detection which calculates the betweenness cen-
trality along the components and progressively removes
the edge with the highest centrality [26]. PanDelos nor-
malizes the edge weights by means of the maximum
weight present in each connected components.

The resulting pan-genomic structure is given by the
final set of consistent connected components plus single-
ton genes, i.e. the singleton vertices in the network. Com-
ponents containing genes of all genomes represent the
core of the pan-genome. The other components contain
the dispensable genes.

Data structures engineering for fast similarity computation
Limitations of enhanced suffix arrays for pan-genome
computations
Given a string s, a suffix array (SA) [27] reports the lex-
icographically ordered suffixes of s equipped with their
start position in s. Substring search by means of SA can
be sped up by performing binary searches. An enhanced
suffix array (ESA) [28] is a combination of SA with the
LCP (Longest Common Prefix) array giving the length of
the longest common prefix of a suffix with that one lex-
icographically preceding it. An ESA allows for efficient
recovery of the k-mers multiplicities [29]. The values of
the LCP array define contiguous regions of the ESA array,
called LCP-intervals, which identify all the occurrences
of k-mers. Additionally, an array of length N reports for
each suffix the distance from its start to the first forward
occurrence of a N symbol [30]. The N is used to represent
positions in s that must be discarded in dictionary oper-
ation. The ESA structure performs k-mer enumeration
in linear time by just doubling the memory requirement
of simple SA. Since each k-mer must be checked for N
inclusion, this verification increases the time complexity
by a factor of k. However, with the additional N array,
the complexity remains linear. Figure 2a gives an exam-
ple of ESA+N structure that has been built for the string
WLLPPP, and illustrates LCP intervals of 1-mers and
2-mers of the string.

Methodologies for efficient similarity calculation in sets
of strings have been developed by means of suffix trees
[31]. This type of data structure inspired the develop of
suffix arrays as a memory efficient implementation that
does not increase time requirements. However, enhanced
suffix arrays are useful for single reference string analysis,
but result less suitable to be applied to sets of strings.

Given two sequences, s and t, the comparison of their
k-dictionaries can be performed by listing the k-mers of
s and searching for them in t. Taking into account an
ESA+N structure, the k-mers listing is performed in |s|
time, and the search of each k-mer in t takes O(k · log(|t|))
time. Since at most |s| distinct k-mers are in s, the overall
time is O(|s| · k · log(|t|)).

The search described above takes into account only
Dk(s), but t may contain k-mers not listed in the dictio-
nary of s, thus the time requirement is doubled because
Dk(t) must also be scanned. In 1-vs-1 genome compari-
son, the process must be repeated for every pair of genes
belonging to the two genomes, resulting in a highly expen-
sive procedure. In the next section, we address a way to
efficiently improve the procedure.

PanDelos data structure engineering
We extend the ESA+N structure [30] in order to speed
up the comparison of k-dictionaries when multiple
sequences are taken into account. The goal is to compute
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Fig. 2 Examples of indexing structures. In the top-side of the image a, an example of the indexing structure ESA+N is shown for the string WLLPPP.
The string is indexed by lexicographically sorting its suffixes. The array SA, LCP and N are computed according to the ordering. The indexing
structure is composed by the three arrays, and the other columns shown on the image are virtually extracted. The SA array stores star positions of
suffixes and it is used to keep trace of the lexicographic ordering. Values along the LCP and N arrays are used to identify intervals that correspond to
specific k-mers [30]. The 1-mer L is identified by an interval that covers the first two positions of the structure, while the 1-mer P covers three
positions and the 1-mer W cover one positions. Thus, the multiplicity of L, P and W are respectively 2, 3, and 1. 2-mers intervals are shown in the
second columns,from the left. Note that the third position is not cover when 2-mer intervals are extracted because it can not identify the start of any
2-mer. The second section of the image b, c, d, e, f, show the extension the indexing structure in order to manage set of strings. Four input strings,
s1, s2, t1 and t2 are indexed. Firstly, a global string is built by concatenating the four strings and by putting a special symbol (represented as N) on
the concatenation joints. Then, similarly to the single string case, suffixes of the global sequences are sorted in lexicographic order. The sorting
procedure defines the content of the SA array and LCP, N and SID arrays are computed in accordance with it. The SID array informs for each suffix the
sequences from which it originates. The indexing structure helps in extracting the information, namely the multiplicities of 2-mers in every
sequence, that is ideally represented in the matrix b. The illustrations d, e and f show the final values that the matrices M, P1 and P − 1 take after
every 2-mer of the global sequence have been taken into account

the generalized Jaccard similarities between a set of
sequences simultaneously.

The generalized Jaccard similarity between s and t can
be expressed as:

Jk(s, t) = a
b + c

,

where a is the sum of the minimum multiplicities of k-
mers shared by the two sequences, b is the sum of the

maximum multiplicities of the shared k-mers, and c is the
sum of the multiplicities of k-mers appearing only in one
of the two sequences.

Given a and b for every pair of sequences, then c is
obtained as

c = (|s| + |t| − 2k + 2) − (a + b),
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where (|s| + |t| − 2k + 2) is the sum of multiplicity of all
k-mers in s and t. Therefore it can be rewritten as:

Jk(s, t) = a
|s| + |t| − 2k + 2 − a

.

Given two genomes, G
1 = {s1, . . . , sn} and G

2 =
{t1, . . . , tm}, genes are concatenate in a single global
sequence s1 ·N · · · · ·N · sn ·N · t1 ·N · · · · ·N · tm. An ESA+N
structure is built, and the concatenation by N symbols
ensures that extracted k-mers do not cross between gene
sequences. The data structure is extended with a further
array, called SID. Given an LCP-interval, that represents a
specific k-mer, the content of the corresponding interval
in the SID array reports the identifiers of the sequences in
which the k-mer is present. Moreover, the number of time
a sequence identifier is repeated within the interval corre-
sponds to the multiplicity of the k-mer within the specific
sequence.

For each pair of sequences involved in the interval, we
compute the sum of minima (the a term in the generalized
Jaccard formula) by computing the partial of such sums
and storing them in a matrix M

M[ i, j] =
∑

w∈Dk(si∪tj)

min
(
csi(w), ctj(w)

)
,

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Once the matrix is filled, the similarities are finally

computed by the formula:

J
(
si, tj

) = M[ i, j]
|si| + ∣∣tj

∣∣ − 2k + 2 − M[ i, j]
.

In this way, we avoid comparisons between sequences
that do no share any k-mers, and eliminate the logarithmic
factor of searching k-mers into multiple suffix arrays, one
for each gene sequence.

Similarly, two additional matrices are stored in order to
calculate candidate homologous genes: P1[ i, j] reporting
the percentage of multiplicities of k-mers in sishared with
tj, and P2[ i, j] storing the vice versa:

P1[ i, j] =
∑

w∈Dk(si∩tj)

csi(w)

|s| − k + 1

P2[ i, j] =
∑

w∈Dk(si∩tj)

ctj(w)

|t| − k + 1
.

Figure 2 reports an example for four sequences that are
concatenated into a single one. Then 2-mers, and their
associated sequences identifiers, are retrieved from the
data structure. In the example, two genomes are com-
pared. The first genome contains the sequences s1 and
s2, and the second genome contains the sequences t1 and
t2. The word length 2 is chosen as best k value, thus
sequences are compared by means of the multiplicities
of the 2-mers they contain. Ideally, the matrix (c) has to

be computed in order to calculate the Jaccard similarity
between the sequences. For higher values of k, the storage
and update of such matrix may require high computa-
tional efforts, thus its rows are computed on the fly by
identifying k-mer intervals along the indexing structure
and by iterating them. A linear iteration over the structure
lists the 2-mers, together with the number of times they
appear within each original sequence. During the iteration
the three matrices M, P1 and P2, in Fig. 2d, e and f, are
updated. After that every 2-mer have been iterated, Jac-
card similarity are computed by means of the M matrix,
while coverage percentage are computed by means of the
P1 and P2 matrices.

Results
PanDelos has been compared to Roary and EDGAR.
Roary is a stand-alone computational tool written in Perl.
It runs under Linux systems and is takes as input genomic
data in GFF format. We used the tool with its default
parameter settings, except for the experiments regarding
the Mycoplasma genus where we performed parameter
tuning to improve its performance. EDGAR is a web based
tool, it gives precomputed analyses performed on indi-
viduals grouped by living species. PanDelos is a pipeline
composed of Java and Python modules and takes in input
genomic data in GFF format. Tests were run on a machine
equipped with an Intel Core i7-5960X CPU and 64 Gb of
RAM on top of which an Ubuntu 16.04 64 bit Linux OS is
installed.

Several notions of phylogenetic distance have been
defined in the literature. Each distance captures a specific
aspect of genome evolution. Here, we refer to a distance
[32] that is widely used to infer phylogenetic trees of bac-
terial populations [33]. The measure computes the cosine
similarity between the composition vectors of the pro-
teomes of the compared genomes. The distance reaches a
minimum of 0 for genomes having the same composition,
and a maximum of 1 for completely unrelated proteomes.

Comparisons on real collections of genomes
We compared PanDelos, EGDAR and Roary on four real
cases. We used two collections of genomes originally used
to evaluate the performances of Roary and EDGAR, i.e.
7 isolates of the Typhi serotype of the Salmonella enter-
ica species which is known to have very closely related
genomes, and 14 isolates of the Xanthomonas campestris
species. The Typhi serotype and the Xanthomonas genus
has been used as reference case to study performances
respectively of Roary and EDGAR. We further selected,
from EDGAR available datasets, 10 isolates of Escherichia
coli species, and 64 isolates of Mycoplasma genus. These
two collections show opposite properties for what con-
cerns phylogenetic distances, in fact, the primer is a group
of closely related genomes and the latter represents a
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collection of highly distant sequences. The identifiers of
the selected isolates are reported in Additional file 1:
Tables S1–S4. Their properties, summarized in Additional
file 1: Figures S1–S4, show changes in the number of
sequences of the genomes. An high variability in genetic
sequence lengths is also reported (from 13 to thousands of
amino acids).

Table 1 reports the average phylogenetic distances
within the analyzed real populations. The Escherichia coli
dataset has the most similar genomes, in fact their phylo-
genetic distances reach the lowest values. The population
with the higher variability is given by the Mycoplasma
dataset. Details regarding phylogenetic distances of these
datasets are show in Additional file 1: Figures S5–S8.

The three tools show a similar performance on the
7 closely related isolate of Salmonella enterica, whereas
Roary showed low performances on Xanthomonas
campestris collection (see Tables 2 and 3). For each tool,
the number of gene families shared among genomes that
compared tools have found is shown. Singletons appear
in only one genome, core genes are shared among all
the 7 genomes, and the remaining accessory genes are
shared from 2 to 6 genomes. On the contrary, the com-
parison related to the Xanthomonas campestris collection
showed a low performance of Roary (see Table 3). In
fact, while PanDelos and EDGAR found circa 9k gene
families, Roary reported more than 17k groups. Roary
found a double amount of singletons and groups shared
among a low number of genomes. Notably, PanDelos and
EDGAR discovered the presumably correct pan-genome
content having a high number of singletons and core
genes. Similar results are reported for the Escherichia coli
(see Table 4) collection. However, as for the Xanthomonas
campestris collection, Roary found a large number of fam-
ilies in sets composed by a low number of genomes. The
percentage of core genes, w.r.t. the total aggregated fami-
lies, computed by PanDelos was 37%, while Roary reached
a percentage equal to 31%. In Mycoplasma isolates, Pan-
Delos found 22 core genes while EDGAR only 14 (see
Table 5). Among those 14 genes, only one was absent
on the list of 22 core genes given by PanDelos. Pan-
Delos and EDGAR found a total of 13,181 and 12,344
families, respectively, thus the core percentages are less
than 1% (0.16% and 0.17%). Roary, launched with default

Table 1 Phylogenetic distances (average and standard
deviation) for the four real datasets

Species Distance

Escherichia coli 0.28 (0.13)

Salmonella enterica 0.37 (0.34)

Xanthomonas campestris 0.69 (0.25)

Mycoplasma 0.92 (0.21)

Table 2 Number of genomes per gene family in 7 serotype Typhi
of the Salmonella enterica species

Genome count PanDelos EDGAR Roary

1 241 219 236

2 74 72 87

3 27 28 35

4 93 42 108

5 213 246 213

6 469 491 464

7 3748 3749 3751

Total 4865 4847 4894

The table reports the count of gene families found in a given amount (from 1 to 7)
of genomes, for each of the tested algorithms. Families found in only 1 genome are
the singletons, whereas families found in all 7 genomes are the core families. The
whole dataset consists of 31,311 gene sequences (CDS) that were clustered in more
then 4800 gene families by the three approaches

parameters, did not detect core genes. It found dispens-
able families shared among at most 12 genomes and did
not discover genes with higher sharing. We decided to
reduce the Roary threshold on the BLAST score, which is
by default equal to 95%, until Roary reported core genes.
With an identity threshold set to 65% , Roary found only 2
core genes. A detailed description of the core genes found
by the three approaches in given in Additional file 1: Table
S5. PanDelos and EDGAR are in accordance for 10 core
genes. The results obtained for all the four collections are
graphically summarized in Additional file 1: Figure S9.

Table 3 Number of genomes per gene family in 14
Xanthomonas campestris species

Genome count PanDelos EDGAR Roary

1 3050 2572 7143

2 743 854 1864

3 797 873 2112

4 585 600 3811

5 233 249 1086

6 159 201 86

7 110 111 40

8 128 143 104

9 400 431 797

10 196 222 12

11 107 98 13

12 203 181 54

13 715 630 642

14 1742 1829 50

Total 9168 8994 17814

The table reports the count of gene families found in a given amount (from 1 to 14)
of genomes, for each of the tested algorithms. The dataset consists of a total of
56,759 input gene sequences
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Table 4 Number of genomes per gene family in 10 Escherichia
coli isolates

Genome count PanDelos EDGAR Roary

1 1819 1593 2589

2 740 781 1083

3 916 990 1270

4 463 527 523

5 287 301 265

6 322 332 290

7 201 223 172

8 228 224 145

9 354 338 312

10 3075 3084 2951

Total 8405 8443 9600

The dataset consists of a total of 48,980 input gene sequences

Comparisons on collections of synthetic genomes
Since in real data we don’t know the exact phylogeny,
we created a synthetic benchmark simulating genomes
evolution.

The generated population can be represented as an n-
ary tree, where the root is the common ancestor genome.
Leaves of the tree are genomes without progeny. Starting
from an existing genome, we generated descendants by
vertical transmission (copy of parent genes), loss of parent
genetic material or addition of new genetic material (in
order to simulate horizontal transfer). Synthetic genera-
tion of gene families is a studied problem in literature [34].
However, few studies have proposed the development of
a methodology to simulate genome evolution in a pan-
genome context. The IGM model [35] simulates vertical
and horizontal transmission but the actual implementa-
tion is able to create and evolve genes having almost the
same lengths, that is an unfeasible behavior considering

Table 5 Number of genomes per gene family in 64 Mycoplasma
genus

Genome count PanDelos EDGAR Roary Roary-65

1-10 12,218 11,180 21,140 15,240

11-20 676 825 604 737

21-30 156 166 0 59

31-40 31 54 0 4

41-50 38 51 0 6

51-60 27 40 0 5

61-64 35 28 0 5

Total 13,181 12,344 21,744 16,056

The table reports the count of gene families found in a given amount (from 1 to 64)
of genomes, for each of the tested algorithms. The dataset consists of a total of
47,385 input gene sequences

the real variability in gene length. The SimBAC approach
[36] simulates variations at the genomic level that can
occur during bacterial evolution but it does not keep trace
of gene transmission. Thus, the real homology relation-
ships are lost. For these reasons, we decided to implement
an in-house procedure, in order to simulate bacterial
evolution, that is inspired by existing approaches. The
procedure traces homology relationships and generates
synthetic collections that show properties similar to real
bacterial populations. The procedure is briefly described
above.

From a parent gene set, 0.1% of genes are removed and
1% totally new genes are added. The 80% of the transmit-
ted genes were varied by adding, removing or changing
a given percentage of amino acids. Finally, the 0.01% of
the genes were duplicated. We generated 4 populations
of 2000 individuals from 2 real Mycoplasma genomes by
applying two different variation percentages, 0.5% and 1%.
From each population, we extracted the 50 individuals
closest to the ancestor genome, referred to as roots, and 50
peripheral individuals (leaves of the n-ary tree), referred
to as leaves.

Additional file 1: Figure S10 shows phylogenetic
relationships of the four 2k-individuals populations.
Structural properties of the phylogenetic tree of one
of the populations are reported in Additional file 1:
Table S6. The number of total individuals, the num-
ber of peripheral genomes, and the average number of
descendants are shown for each depth of the tree. The
generated populations show compositional properties,
namely number of genes per genomes, variation of gene
lengths within each genome and pan-genomic trends
that are similar to real collections (see Additional file 1:
Figure S11). The realistic composition and trends are
also maintained in the 50-individuals sub-populations
(see Additional file 1: Figure S12). Table 6 reports
average phylogenetic distances within the extracted sub-
populations and further details are given in Additional
file 1: Figures S13–S20. The synthetic sub-populations
show realistic distances. The roots extracted from
populations generated with 0.5% locus variation per-
centage seem to show unrealistic average distances,
however, the detailed information shows genomic
distances similar to the Escherichia coli collection.

We used the synthetic dataset as a golden truth to com-
pare PanDelos, EDGAR and Roary on quality of retrieved
families. We evaluated the performances of the method-
ologies by comparing the set of homology relationships
that they extract from the input genomes and how
such relationships infer the pan-genomic distribution.
We measured the number of true positive (TP) relation-
ships retrieved by each approach, the correct homologies;
the number of false positive (FP) relationships, i.e. the
wrong reported homology relationships; the number of
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Table 6 Phylogenetic distances (average and standard
deviation) for the four extracted synthetic sub-populations

G37 (Mycoplasma genitalium)

Variation perc.

Extr. type 0.5% 1%

Roots 0.17 (0.6) 0.24 (0.07)

Leaves 0.55 (0.17) 0.68 (0.17)

M129 (Mycoplasma pneumoniae)

Variation perc.

Extr. type 0.5% 1%

Roots 0.15 (0.05) 0.22 (0.07)

Leaves 0.55 (0.14) 0.64 (0.19)

true negative relationships (TN), i.e. the correct discarded
homology relations; the number of false negative rela-
tionships (FN), i.e. the links that are not extracted by the
approach but that are present in the synthetic data. Then

we combine the above measures into an f-measure which
informs about the accuracy of the results. The measure
reaches the best value at 1 and the worst at 0.

Table 7 shows that PanDelos and EDGAR keep an high
amount of true positives, that is also reported for Roary
on roots collections. Roary significantly decreases TP in
leaves collections, and this behavior is directly linked
to an increase in false negatives. PanDelos and EDGAR
are mostly not affected by false positives, while Roary
decreasing performance follows the increase in the num-
ber of input sequences. The total number of possible
relationships reaches the order of billions of links when
all the input sequences can be linked to each other. How-
ever, PanDelos and EDGAR show a good performance
in discarding most of unfeasible relationships (TN val-
ues). Both algorithms have f-measure values closed to 1
for every collection, but PanDelos shows higher values.
Roary shows very low performances in leaves datasets.

Table 7 Performances of PanDelos, EDGAR and Roary on the synthetic datasets

TP FP FN TN f-measure CDiff

PanDelos

G37 0.5% Roots 1,263,632 0 2324 1,386,060,388 0.9991 1

M129 0.5% Roots 1,689,082 0 4060 2,460,563,516 0.9988 2

G37 1% Roots 1,259,344 0 5310 1,385,219,936 0.9979 0

M129 1% Roots 1,689,682 0 3024 2,467,589,288 0.9991 0

G37 0.5% Leaves 1,278,188 0 25,374 1,756,053,000 0.9902 24

M129 0.5% Leaves 1,695,228 0 47,376 3,086,359,452 0.9862 57

G37 1% Leaves 1,270,658 0 45,042 1,735,332,524 0.9826 64

M129 1% Leaves 1,773,110 196 57,320 3,144,153,456 0.9840 210

EDGAR

G37 0.5% Roots 1,258,382 0 7574 1,386,060,388 0.9970 34

M129 0.5% Roots 1,663,846 0 29,296 2,460,563,516 0.9913 139

G37 1% Roots 1,253,564 0 11,090 1,385,219,936 0.9956 48

M129 1% Roots 1,665,186 0 27,520 2,467,589,288 0.9918 132

G37 0.5% Leaves 1,269,670 0 33,892 1,756,053,000 0.9868 154

M129 0.5% Leaves 1,671,400 0 71,204 3,086,359,452 0.9791 319

G37 1% Leaves 1,269,724 0 45,976 1,735,332,524 0.9822 197

M129 1% Leaves 1,753,318 98 77,112 3,144,153,554 0.9785 267

Roary

G37 0.5% Roots 1,212,344 0 53,612 1,386,060,388 0.9784 179

M129 0.5% Roots 1,598,840 856 94,302 2,460,562,660 0.9711 247

G37 1% Roots 1,166,946 0 97,708 1,385,219,936 0.9598 383

M129 1% Roots 1,541,422 1244 151,284 2,467,588,044 0.9529 537

G37 0.5% Leaves 348,356 112 955,206 1,756,052,888 0.4217 3520

M129 0.5% Leaves 423,836 154 1,318,768 3,086,359,298 0.3912 5619

G37 1% Leaves 97,710 24 1,217,990 1,735,332,500 0.1383 6302

M129 1% Leaves 468,466 64 1,361,964 3,144,153,588 0.4075 4674
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This behavior is also reflected in the CDiff value, which
measures the number of gene families that have been
erroneously split or merged by the tools w.r.t. the golden
truth. Ideally, a gene family is a connected component in
the homology network formed as a clique, namely every
possible edge between the vertices of the component
are present. A discovery methodology may miss some of
the edges in a component, but without losing the whole
connectivity. On the contrary, high amounts of missing
edges may split components, and wrongly assigned links
may merge multiple components. CDiff values reported
for PanDelos are mostly linked to phylogenetic dis-
tances, in fact, low values are reported for collections
of highly similar genomes, the roots, and higher values
are expressed for datasets of more distant genomes, the
leaves. A similar trend is observed for CDiff values of
EDGAR, however, the methodology is affected by higher
values compared to PanDelos.

Finally, we evaluated the execution times of PanDe-
los and Roary over synthetic data. Figure 3 shows time
costs of the two methodologies on varying the number of
analyzed genomes, from 10 to 50. Times were recorded
for the four 2k-individuals datasets extracted from the
populations generated starting from the Mycoplasma gen-
italium G37 genome. Roary outperforms PanDelos on

the roots dataset generated with a 0.5% locus variation
percentage that is the collection with the lowest, and prob-
ably unrealistic, average phylogenetic distance (see also
Table 6). The two approaches show comparable perfor-
mances on the roots dataset obtained with 1% locus varia-
tion. However, the 0.24 average distance of this collection
is lower than the averages computed on real datasets (for
which the minimum is 0.28 of the Escherichia coli collec-
tion, see Tables 1 and 6). PanDelos clearly outperforms
Roary on leaves datasets (the ones that show average dis-
tances similar to real cases). Moreover, the performance
of PanDelos is shown to be not affected by phylogenetic
distances, but it is only dependent on the number of
input genomes. This trend is in contrast with the perfor-
mance of Roary that is affected by the number of input
genomes and also by phylogenetic distance. In fact, for
both datasets, the running time of PanDelos has a sta-
ble increase of 15x (from 32 to 507 s on 0.5% variation,
and from 39 to 509 s on 1% variation). On the contrary,
Roary has an increase of 14x (from 159 to 2320 s) on
the 0.5% variation dataset, and 17x (from 202 to 3448 s)
on the 1% variation dataset. Similar results were obtained
by running the two tools on the synthetic datasets gen-
erated from the Mycoplasma pneumoniae M129 genome
(see Additional file 1: Figure S21).

Fig. 3 Execution times of PanDelos and Roary over the four synthetic datasets extracted form the two populations generated from the Mycoplasma
genitalium G37 genome. Time requirements have been measured by taking into account five different amounts of analyzed genomes, from 10 to
50. Execution times are reported in seconds
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Discussion
For what concerns collections regarding real cases, in gen-
eral, Roary performs similarly to the two other method-
ologies on populations with low phylogenetic distances,
namely Salmonella enterica and Escherichia coli, but it is
quiet different on the other dataset by reporting a higher
number of singletons and a lower amount of core families.
On the contrary, PanDelos and EDGAR show coherent
trends and the homology detection of both approaches
can be considered realistic. However, PanDelos was able
to detect more core genes in the collections having the
highest and most variable phylogenetic distances.

Regarding synthetic benchmarks, the low performance
of EDGAR, mainly expressed by CDiff values higher than
PanDelos, may be linked to the high amount of false neg-
ative homology relations that cause the break of gene
families into subgroups. This result agrees with the behav-
iors of PanDelos and EDGAR obtained on the collection
of 64 real Mycoplasma individuals.

Conclusions
We presented PanDelos, a methodology for discovering
pan-genome contents of closely related and phylogenetic
distant genomes. The advantages of the approach are the
absence of user-defined parameters, a similarity measure
based on dictionaries, and the choice of the optimal dic-
tionaries by applying theoretical concepts emerging from
informational analysis of genomes [24]. PanDelos dom-
inates the intrinsic complexity of phylogenetic distances
among input genomes by searching for gene communities
over a global normalized homology network. Finally, Pan-
Delos extends the suffix array data structure for efficiently
computing the similarity between sets of sequences. Com-
parisons in real and synthetic cases have demonstrated the
outperforming of PanDelos on the existing methods Roary
and EDGAR.

Endnote
1 Delos is the core island of the Cyclades archipelago.

Additional file

Additional file 1: Supplementary materials of PanDelos: a dictionary-based
method for pan-genome content discovery. (PDF 5543 kb)
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