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Abstract

Background: The potential for astrocyte participation in central nervous system recovery is highlighted by in vitro
experiments demonstrating their capacity to transdifferentiate into neurons. Understanding astrocyte plasticity could
be advanced by comparing astrocytes with stem cells. RNA sequencing (RNA-seq) is ideal for comparing differences
across cell types. However, this novel multi-stage process has the potential to introduce unwanted technical variation
at several points in the experimental workflow. Quantitative understanding of the contribution of experimental
parameters to technical variation would facilitate the design of robust RNA-Seq experiments.

Results: RNA-Seq was used to achieve biological and technical objectives. The biological aspect compared gene
expression between normal human fetal-derived astrocytes and human neural stem cells cultured in identical
conditions. When differential expression threshold criteria of |log2 fold change| > 2 were applied to the data,
no significant differences were observed. The technical component quantified variation arising from particular
steps in the research pathway, and compared the ability of different normalization methods to reduce unwanted
variance. To facilitate this objective, a liberal false discovery rate of 10% and a |log2 fold change| > 0.5 were implemented
for the differential expression threshold. Data were normalized with RPKM, TMM, and UQS methods using JMP Genomics.
The contributions of key replicable experimental parameters (cell lot; library preparation; flow cell) to variance in the data
were evaluated using principal variance component analysis. Our analysis showed that, although the variance for every
parameter is strongly influenced by the normalization method, the largest contributor to technical variance was library
preparation. The ability to detect differentially expressed genes was also affected by normalization; differences were only
detected in non-normalized and TMM-normalized data.

Conclusions: The similarity in gene expression between astrocytes and neural stem cells supports the potential for
astrocytic transdifferentiation into neurons, and emphasizes the need to evaluate the therapeutic potential of astrocytes
for central nervous system damage. The choice of normalization method influences the contributions to experimental
variance as well as the outcomes of differential expression analysis. However irrespective of normalization method, our
findings illustrate that library preparation contributed the largest component of technical variance.
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Background
RNA “sequencing by synthesis” (RNA-Seq) emerged
over a decade ago as part of a suite of next generation
analytical methods that enable high throughput interro-
gation of genomes and transcriptomes. RNA-Seq is be-
coming the method of choice for gene expression
analyses due to technological advances that have
increased genome coverage and reduced sequencing
costs. RNA-Seq data acquisition mandates a substantial
investment from the investigator; therefore, it is im-
portant to understand choices that may introduce bias
or decrease the quality of the data. RNA-Seq poses par-
ticular challenges for researchers because standardized
best practices have yet to be universally adopted [1]. Al-
though next generation sequencing has fueled rapid
advances in data generation and statistical analyses,
technical procedures in the RNA-Seq workflow have
commanded relatively less scrutiny (reviewed in [2]).
RNA-Seq has proven especially informative for the

detection of genes that are differentially expressed
during biological processes such as organism develop-
ment and disease progression. The identification of
differentially expressed genes is achieved with a
multi-step workflow, and bias can be introduced in
both the data-generation and data-analysis phases.
The selection of appropriate normalization and data
analysis methods have received considerable attention,
and statistical algorithms that are specifically designed
to address RNA-Seq data postprocessing and evalu-
ation continue to evolve [3–9]. However, experiments
have shown that the results of RNA-Seq experiments
can also be affected by technical aspects of data gen-
eration, including the quality and amount of RNA
[10, 11] and library preparation [12–14]. These ex-
perimental findings illustrate that the RNA-Seq out-
comes can be confounded by the introduction of
technical variation as part of sample processing dur-
ing different phases of data acquisition and analysis.

The quantification of experimental variance that can
be introduced by different stages in the workflow
would be useful because of the difficulty and expense
that are involved in RNA-Seq data acquisition, and to
address experimental objectives for reproducibility.
In the current study, we quantify the variation intro-

duced during the experimental workflow, with the long
term goal of increasing the fidelity of ongoing experi-
ments with human cell lines derived from brain tissue
[15, 16]. To this end we collected RNA-Seq data from
two distinct neural cell lines, the federally approved
H9-derived human neural stem cell line (hNSC) and
normal human fetal-derived astrocytes (NHA). The mo-
tivation for comparing human fetal-derived astrocytes
with human neural stem cells is the result of a body of
literature that demonstrates the diverse plastic capacity
of astrocytes. In previous work, we show that normal
human fetal-derived astrocytes assume morphological
and transcriptomic properties that are typically ascribed
to neurons [16]. Others illustrate that, in many regions
of the brain, astrocytes regain the capacity to proliferate
within the astroglial lineage after brain injury (reviewed
in [17]). Astrocytic plasticity is also illustrated by the
finding that reactive astrocytes assume characteristics of
neural stem cells [18, 19]. Moreover, in vitro analyses
demonstrate the capacity of reactive astrocytes to prolif-
erate outside of their lineage, and differentiate into neu-
rons [17–20]. These findings illustrate the potential for
astrocytes to participate in neuronal regeneration after
brain injury, and demonstrate the need for increased re-
search efforts in this arena. Thus, this transcriptomic
analysis was undertaken with two primary objectives: (1)
to investigate potential parallels in the neuroplastic cap-
acities of normal human fetal-derived astrocytes and hu-
man neural stem cells, and (2) to assess variation
imparted in the experimental workflow by technical rep-
licates for RNA isolation, library preparation, and flow
cell sequencing.

Table 1 Steps in the RNA-Seq workflow and potential contributions to experimental variance. At each step in an RNA-Seq
experiment, different parameters can introduce unwanted variance that obscure the results of gene expression analyses. Detailed
discussions of these parameters are given by the sources in the References column

Step in RNA-Seq Workflow Potential Contributions to Variance Reference(s)

1. Experimental Design number of replicate samples; genetic background of samples [9]

2. RNA Isolation RNA integrity number (RIN) value (RNA quality); isolation method [1, 34]

3. Library Preparation initial quantity of RNA template; RNA processing: polyA+

(mRNA enrichment), rRNA− (rRNA depletion); preliminary amplification
steps

[1, 34]

4. Sequencing sequencing platform; depth of coverage; software for base-calls [42]

5. Preprocessing trimming adapter sequences and/ or low quality reads [1]

6. Mapping quality of reference genome, stringency [1, 34]

7. Normalization method [8, 35, 37]

8. Statistical Analysis method; stringency [1, 7]
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Methods
RNA sequencing
RNA-seq data can be confounded by the introduction of
unwanted statistical variance at any procedural step of
the data generation and data analysis procedures in
RNA-Seq experiments (Table 1). Variation in RNA-seq
data is typically regarded as random effects. Mixed
models are implemented in statistics to fit experimental
designs that include both fixed and random effects. The
variance of each random effect is known as a variance
component [21]. This study evaluates the potential vari-
ance contributions of steps 1, 3, 4, and 7 of the RNA-seq
workflow (Table 1). For details regarding how steps in
the RNA-seq workflow contribute to variance, the reader
is directed to the thorough explanations provided in the
references listed in Table 1.

Cell culture
Human neural stem cells
Gibco® H9 hESC-Derived Human Neural Stem Cells
(hNSC; ThermoFisher Scientific, N7800100) were cul-
tured in accordance with previously described protocols
[22]. Briefly, the manufacturer’s specifications for hNSC
were followed in order to culture two different cell lots
(lot A, #1402001; lot B; #1408001). 2 mL StemPro neural
supplement (Gibco®, A10508), 2 μg EGF (Gibco®,
PHG0314), 2 μg bFGF (Gibco®, PH60024), and 1 mL
Glutamax (Gibco®, 35,050–061) were combined with
97 mL Knockout DMEM/F-12 (Gibco®, 12,660–012) and
filter sterilized with a 0.2 μm porous membrane to pre-
pare 100 ml of complete hNSC serum free media, which
were stored in 10 mL aliquots.
Cells were thawed, resuspended in complete hNSC

serum free media, and centrifuged. The supernatant
containing cryoprotectant was removed before resus-
pending in complete hNSC serum free media and trans-
ferring cells (passage 0) to T-25 flasks (one flask per
ampule) coated with CellStart (Gibco®, A10142). Media
were replenished following every 48 h of incubation at
37 °C, 5% CO2. When cultures were ~ 80% confluent,
they were rinsed in DPBS (without calcium or magne-
sium) and partially digested with 2 mL of 37 °C Stem-
PRO Accutase for subculturing. When detachment was
observed under the microscope, cells were transferred
with 9 mL of media to tubes for centrifugation at 210 G
for 5 min. Supernatant was removed, cells were tritu-
rated in prewarmed media and transferred to T-25 flasks
coated with CellStart.

Normal human fetal-derived astrocytes
Normal human fetal-derived astrocytes (NHA; Lonza,
CC-2565) from two donor lots (lot A, #0000412568; lot
B, #0000402839) were cultured according to previously
established protocols [16, 22]. Vials of cells obtained

from the vendor were thawed and cultured in T-25
flasks (passage 0) with media changes following every
48 h of incubation at 37 °C, 5% CO2. At ~ 80% conflu-
ence (day 5) cells were subcultured by partial digestion
and plated in vessels recommended for hNSCs (T-25
flasks coated with CellStart; passage 1). 48 h after the
first passage, media were changed to complete hNSC
serum free media. NHA and hNSC were cultured in par-
allel conditions after this point.

Spontaneous differentiation
The second passages of lot A and lot B from NHA and
hNSC were subcultured by partial digestion as described
above, and cultured according to the manufacturer’s
specifications for spontaneous differentiation as de-
scribed previously [22]. Briefly, cells were titered using a
hemocytometer and plated in T-25 flasks coated with
poly-L-ornithine (Sigma P3655) and laminin (Thermo-
Fisher, 23,017,015) at a density of 2500 cells/cm2 in
complete hNSC serum free media. After 24 h, media
were replenished with 97% Knockout DMEM/F-12, 1%
Glutamax, and 2% StemPro neural supplement. Every
48 h, 75% of the media were replenished with 97%
Knockout DMEM/F-12, 1% Glutamax, and 2% StemPro
neural supplement while ensuring that cells were not ex-
posed to air. After the 10-day differentiation protocol
suggested by the manufacturer, images were captured
and RNA was isolated as described in the following
sections.

Live cell imaging with phase contrast microscopy
Phase contrast images of living cells were acquired with
Metavue image capture software (Molecular Devices)
prior to RNA isolation. Images were captured with a
Coolsnap HQ CCD camera (Photometrics) attached to
the projection port of an inverted Nikon TE-2000
microscope.

Sample preparation and sequencing
RNA was isolated as previously described [16, 22] using
the instructions for the PureLink® RNA Mini Kit
(Ambion). DNA was removed as previously described
[16, 22] using the instructions for the DNA-free™ kit
(Ambion). An Agilent 2100 Bioanalyzer was used to
evaluate RNA quality. RNA samples (n = 4) with RIN
Values greater than 8.9 were divided in half and submit-
ted to the BioMicro Center at the Massachusetts Insti-
tute of Technology where two different libraries for each
condition were prepared as follows (8 libraries total).
10 ng of total RNA was used as input for cDNA prepar-
ation with the SMART-Seq v3 Ultra Low Input RNA Kit
for Sequencing (Clonetech) according to the manufac-
turer’s specifications. Fragmented samples were trans-
ferred to the SPRI-works for BioMicro Center adapter
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ligation, multiplex barcoding, size selection, and enrich-
ment using BioMicro Center PCR primers. An AATI
Fragment Analyzer™ (Advanced Analytical) was used to
assess the libraries for fragment size and distribution.
Multiplexed samples were sequenced twice according to
the protocol for 150 base pair (bp) paired end (PE) reads
on an Illumina NextSeq sequencer. Reads mapping to
the forward and reverse strands were pooled because the
libraries were not prepared with strand-specific
protocols.

Quality control, filtering, and alignment
Phred scores were assessed with FastQC, a quality con-
trol software program, to evaluate base call accuracy in
accordance with previous methods [22, 23]. Reads with
average minimum quality scores corresponding to 99%
base call accuracy at every nucleotide position (Phred
score > 20) were retained. The Burrows-Wheeler Aligner
(BWA-MEM, v0.7.10) was used to align fastq files to the
human genome (v hg 19). JMP Genomics (v 8.0, SAS
Institute, Inc.) was used to import SAM files and
summarize gene counts based on the UCSC human
genome annotation (hg 19). A thresholding filter of a
minimum raw read count greater than 10 per gene was
applied to the data, yet no genes were removed following
the application of this detection threshold. The
evaluation of overall gene expression (instead of

isoform-specific expression) facilitated the evaluation of
data using standardized methods.

Normalization
Read counts were normalized to account for varying lane
sequencing depth and other potential technical effects as
described previously [22]. JMP Genomics was used to log2
transform the sequence data and to normalize it using
three different methods: (1) reads per kilobase of exon per
million reads mapped (RPKM), (2) trimmed means of M
component (TMM), (3) upper-quartile scaling (UQS).
RPKM-normalized data is scaled by a factor that con-
siders the both the library size and gene length.
TMM-normalized data represents the average after re-
moving the highest and lowest data points and does
not consider library size. UQS-normalized data is ad-
justed based on the size of the library.

Table 2 Experimental parameters contributing to variation in
the study were assessed by analysis of eight forward and eight
reverse RNA-Seq data files from each cell line (32 data files total)

Component Number of Replicates Type of Variation Effect

Cell line 2 (NHA, hNSC) Conditional Fixed

Lot 2 per cell line Technical Random

Library preparation 2 per lot Technical Random

Flow Cell 2 per library Technical Random

Fig. 1 Neural stem cells (hNSC; a, c) and normal human astrocytes (NHA; b, d) were cultured under spontaneous differentiation conditions for
10 days. Live cells were imaged with phase contrast optics, prior to extraction of RNA for transcriptome analysis. Representative images are
shown from both cell lines for two lots: Lot A (a, b); Lot B (c, d). Scale bar = 50 μm. Adapted by permission from Springer [22], Copyright 2017
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Statistical analyses
In accordance with previous approaches, the data were fit
to a Poisson model as part of the JMP Genomics ANOVA
analysis [22]. Poisson models are established in the litera-
ture as representative distributions of the technical vari-
ation in RNA-seq [24, 25]. The step-up false discovery rate
(FDR) method of Benjamini and Hochberg was used to ad-
just p-values for multiple comparisons in the statistical ana-
lysis undertaken with JMP Genomics [26]. The multiple
comparison adjustment is important because of the large
number of genes that are compared with RNA-seq data
analysis [27]. The variance contributions from the fixed cell
line variable and the random variables (library preparation,
flow cell, cell lot; Table 2) were calculated with principal
variance component analysis using JMP Genomics. Due to
the similarities in the tissues of origin for these two cell
lines, as well as the parallel culture conditions, we expected
that a low number of genes would be differentially
expressed. Therefore, potential differences in gene expres-
sion were evaluated using a false discovery rate of 10% and
a |log2 fold change| value of 0.5. For a detailed description
of the statistical analyses used in this study, refer to [28, 29]
and the literature for JMP Genomics v 8.0.

Responsible conduct and reproducibility
Our experimental design was influenced by the guidelines
for preclinical research set forth by the NIH, as previously
described [22]. The WA09 (H9) embryonic stem cell line
served as the source of the hNSCs, and the NIH registry
for human embryonic stem cells retains the information
about the WA09 (H9) stem cell line (NIH approval num-
ber NIHhESC-10-0062). NHA were de-identified and pro-
duced by Lonza, who retains the record of donor consent.
In accordance with the manufacturers’ specifications, both
cell lines were used within 10 population doublings (3
passages). The human species origins of both cell lines
were verified with RNA-Seq (see below). Although the re-
view of experiments using de-identified, commercially
available, human cell lines produced before 2015 is ex-
empt from Institutional Review Board, the protocol de-
scribed herein was approved by the NMSU Institutional
Biosafety Committee (approval # 1401SE2F0103).
At the MIT BioMicro center, a single blind protocol was

used to collect sequence data without prior knowledge of
the nature of the biological samples. Groups were assigned
to the sequence data by researchers at NMSU who
assessed the outcomes. The standards set forth by the
HUGO Gene Nomenclature Committee guided the use of
official gene symbols in this manuscript.

Results
Live cell imaging with phase contrast microscopy
Morphological differences between human neural stem
cells and normal human fetal-derived astrocytes cultured

in an identical spontaneous differentiation environment
are visible in phase contrast images (Fig. 1). Human
neural stem cells (Fig. 1a, c) appeared smaller in size and
grew at a higher density than normal human fetal-de-
rived astrocytes (Fig. 1b, d). The stellate morphology
that is characteristic of astrocyte cultures was prevalent
in normal human fetal-derived astrocyte cultures. The
long processes, typical of neurons, were visible in both
cell lines but were more ubiquitous in human neural
stem cell cultures.

Evaluation of sequence quality and read distribution
FastQC evaluation of RNA-Seq read quality revealed that
in forward reads, the average Phred scores for all read
positions met the criteria for 99% base call accuracy
(Phred score > 20). In reverse reads, base pairs 140–150
dropped in quality from ~ 28 to ~ 14. Sample, library
preparation and flow cell showed differences in the raw
read count output (Table 3). The fourth flow cell pro-
vided a greater number of reads than the other flow cells
(in some cases more than twice the amount). Data
evaluation illustrated that reads were not preferentially
distributed among smaller or larger genes. Moreover, the
increase in reads from the fourth cell was distributed
throughout the transcriptome. Multiple alignments per
read (~ 70) were observed from all alignments, a finding
that is consistent with other alignment data acquired
from total RNA libraries constructed using the

Table 3 Sequencing reads counts from replicate samples. Two
libraries (1,2) were prepared from RNA isolated from two lots of
cells (A,B) from each cell line (NHA and hNSC). Data from two
distinct flow cells was collected from each of the eight RNA-Seq
libraries, for a total of 16 forward and 16 reverse data files

Cell line Flow Cell Lot Library Total Reads

hNSC 1 A 1 19,113,825

hNSC 1 B 1 19,551,997

hNSC 2 A 1 28,782,901

hNSC 2 B 1 29,327,349

hNSC 3 A 2 31,909,377

hNSC 3 B 2 30,372,982

hNSC 4 A 2 45,893,035

hNSC 4 B 2 44,421,228

NHA 1 A 1 19,293,695

NHA 1 B 1 14,893,476

NHA 2 A 1 28,848,603

NHA 2 B 1 22,180,928

NHA 3 A 2 34,703,198

NHA 3 B 2 34,057,549

NHA 4 A 2 50,551,021

NHA 4 B 2 49,729,736
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Clonetech SMART technology [30]. Scatterplot matrices
were prepared to compare the distribution of data from
technical replicates for each cell line (Fig. 2). The Pear-
son coefficient values (r > 0.98) indicate a strong positive
correlation between all technical replicates for both cell
lines.

Normalization
Normalization methods were assessed by determining
the reduction of variation between technical replicates
and the presence of differentially expressed genes be-
tween the two cell lines. Heat maps of sample-to-sample
correlation coefficients were clustered with the Ward
method. The influence of normalization on the data is
evident in the hierarchical cluster analysis (Fig. 3). Log2
transformed data, RPKM normalized data, and UQS
normalized data cluster the samples based on cell line.
In contrast TMM normalized data did not cluster sam-
ples based on any of the experimental parameters. The
UQS normalized data produced the most coherent heat

maps (Fig. 3d). Principal component analyses revealed a
similar trend among the normalization methods (Fig. 4).
In the PCA plots, samples were closely associated with
other samples of the same cell line with data normalized
using all methods except TMM (Fig. 4c).

Lot, library preparation, and flow cell effects
The proportions of variance resulting from different experi-
mental parameters were uncovered using principal variance
component analysis with JMP Genomics (Table 2). The
normalization method affected the variance proportions
that were contributed by the experimental components
(Fig. 5). Experimental variation between log2 transformed,
non-normalized data and RPKM normalized data showed
the smallest change of all normalization methods (< 2% dif-
ferent). In contrast, the proportion of variance contributed
by library preparation was increased to over 50% in TMM
normalized data, as compared to under 20% with other
normalization methods. In TMM normalized data, the per-
centage of variance based on cell line decreased to 16%

Fig. 2 Scatterplot matrix illustrating correlation between technical replicates. Read counts for each gene are plotted against read counts from
technical replicates for hNSC (top right of diagonal) and NHA (bottom left). Comparisons are made by flow cell (FC), library (Lib) and cell lot (Lot)
for both cell lines. Correlation coefficients between each pair of samples are shown on the top left of each box
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from over 50% with other normalization methods. The
greatest contribution from cell line was seen in UQS
normalization (75%) as compared to other methods (16%,
TMM normalized; 57%, log2 transformed; 58% RPKM nor-
malized). UQS normalization also resulted in the greatest
contribution from the cell lot to the experimental variance
(5%), which was almost double the contribution from lot in
non-normalized data (3%) and in data normalized with
other methods (3%, RPKM; 3%, TMM). The increased con-
tributions from cell line and lot that were observed with
UQS normalization were accompanied by decreased contri-
butions from library preparation (11%) flow cell (6%), and
residual (5%) variance as compared to other normalization
techniques.
Differences between replicate cell lots, libraries, and

flow cells were evaluated by looking at the log2 fold
change values between replicate samples (Fig. 5). Regard-
less of normalization method, cell lot had the smallest
distribution of log2 fold change values (Fig. 5). While
replicate flow cells had larger log2 fold change values
than cell lot, UQS normalization was found to reduce
the log2 fold change values for flow cell by half (Fig. 5).
Library preparation was found to have the largest distri-
bution of larger log2 fold change values, regardless of
normalization method (Fig. 5). We also found that
TMM normalization increased the variance contributed

by library preparation beyond the conditional variance
that was observed between the two cell lines.

Differential expression
We expected to observe similar gene expression patterns
in the two cell lines selected for this study because both
are of central nervous system lineage, and were cultured
under identical conditions. Previous RNA-seq analyses
by our laboratory have implemented differential expres-
sion criteria of |log2 fold change| > 2, padj < 0.1 [16].
When these restrictions are applied to the data, analysis
uncovers no significant differential expression between
normal human fetal-derived astrocytes and human
neural stem cells cultured under identical conditions.
The other goal of this study was to quantify technical
variation that arises in the experimental workflow, and
compare the effectiveness of different normalization
methods in reducing unwanted variance. To facilitate
this objective, we imposed a more liberal false discovery
rate of 10% and a |log2 fold change| > 0.5 for the differ-
ential expression threshold criteria. This analysis re-
vealed that the choice of normalization method affected
our ability to detect significant differential gene expres-
sion between the two cell lines (Table 4). Even with
these generous constraints, the analysis of differential
expression resulted in no significant genes for RPKM

Fig. 3 Heat maps depict Pearson correlation coefficients and hierarchical cluster analysis with the Ward method (Green, hNSC; Violet, NHA).
Pearson correlation coefficients (r values; Blue ~ − 1, Red = 1) and clusters were computed for log2 transformed data (a), RPKM-normalized data
(b), TMM normalized data (c) and UQS normalized data (d). The cell lot (A, B), library (1, 2), and flow cell (F1, F2, F3, F4) are identified with sample
annotation in the order: lot.library.flow cell. Adapted by permission from Springer [22], Copyright 2017
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normalized and UQS normalized data. In contrast, ana-
lysis of non-normalized data and TMM normalized data
yielded 165 and 143 differentially expressed genes, re-
spectively, after removal of duplicate genes. Table 4 re-
ports the ten genes with the largest |log2 fold change|
values for each normalization method. The maximum
|log2 fold change| values detected by the four methods
ranged from 0.41 (UQS normalized data) to 0.62 (non-
normalized data).
Four of the top ten genes with the largest |log2 fold

change| values between cell lines were identified by all
normalization methods (italicized). Three genes were
common to three methods, while six genes were identi-
fied by two methods, and one gene was exclusive to one
method (Table 4). Nine of the ten genes with the largest
|log2 fold change| values that were calculated with log2
transformed and TMM normalized data were identical.
Seven of the top ten genes with the largest |log2 fold
change| present in RPKM normalized data were also
identified with TMM normalized and UQS normalized
data. The genes with the largest |log2 fold change| values
were well distributed by size (> 10 kb, 7.5%; 5–10 kb,
30%; 1–5 kb, 67.5%; < 1 kb, 7.5%) and ranged from
413 bp to ~ 28 kb.

Biological relevance of differentially expressed genes
The 143 differentially expressed genes that were identified
with ANOVA analysis of TMM-normalized data were se-
lected for downstream evaluation of potential emergent
biological themes. All 143 genes were upregulated in neural
stem cells by a margin of 1.4 to 1.5 times the expression
level in normal human fetal-derived astrocytes (|log2 fold
change| > 0.5), and analyzed collectively. The online re-
source STRING identified 125 protein nodes, which formed
9 distinct networks with 31 edges under the application of
a high stringency filter (Fig. 6, unconnected nodes re-
moved) [31]. The average node degree was 0.496, and the
local clustering coefficient average was 0.215. STRING re-
vealed three significantly enriched GO terms in the human
neural stem cell- upregulated genes: serine-type endopep-
tidase activity (8 genes), serine-type peptidase activity (7
genes), and phosphatidate phosphatase activity (3 genes).
Analysis of the differentially expressed genes using KEGG
(Homo sapiens) revealed that the most enriched metabolic
pathways were “Metabolic pathways” (6 genes, not shown),
“Neuroactive ligand-receptor interaction” (5 genes, Fig. 7),
“cAMP signaling pathway” (5 genes, Additional file 1:
Figure S1), PI3K-Akt signaling pathway (5 genes,
Additional file 2: Figure S2) [32].

Fig. 4 Principal component analyses (PCA) for log2 transformed data (a), RPKM-normalized data (b), TMM normalized data (c) and UQS
normalized data (d) depict the effect of normalization on sample grouping by cell line (Green, hNSC; Violet, NHA)
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Fig. 5 Conditional (cell line) and technical (library, lot, flow cell) contributions to variation between replicate samples. Box plots (a, c, e, g) show log2
fold-changes between technical replicates for both cell lines (hNSC, green; NHA, violet) and between cell lines (blue). Pie charts demonstrate that the
contribution of different components to sample variance (b, d, f, h). Principal variance component analysis revealed the influence of cell line (blue),
flow cell (red), library preparation (yellow), cell lot (light green), and re-sidual variance (black). The estimates are shown for log2 transformed data (a, b),
RPKM normalized data (c, d), TMM normalized data (E,F) and UQS normalized data (G, H). Adapted by permission from Springer [22], Copyright 2017

Table 4 Genes with the largest fold change between hNSC and NHA cell lines (p-values)
aLog2Transformed RPKM Normalized aTMM Normalized UQS Normalized

PARD6G-AS1 (4.7 × 10−3) HNRNPU (2.8 × 10−10) PARD6G-AS1 (4.7 × 10− 3) ZNF496 (6.1 × 10−7)

HNRNPU (1.6 × 10−7) ZNF496 (2.2 × 10−8) HNRNPU (1.5 × 10−7) PARD6G-AS1 (1.9 × 10−2)

RNF126 (4.8 × 10−4) PARD6G-AS1 (5.0 × 10− 3) RNF126 (4.9 × 10− 4) HNRNPU (1.8 × 10− 10)

OR4F17 (2.8 × 10− 3) RNF126 (2.0 × 10− 4) OR4F17 (2.8 × 10− 3) ACTB (1.1 × 10− 3)

LINC01002 (2.3 × 10− 3) OR4F17 (2.6 × 10− 3) LINC01002 (2.3 × 10− 3) RNF126 (1.6 × 10− 3)

LOC105376854 (2.7 × 10− 4) LOC105376854 (9.6 × 10− 5) LOC105376854 (2.7 × 10− 4) OR4F17 (1.2 × 10− 2)

HCN2 (5.8 × 10− 4) MBD3 (6.1 × 10− 6) HCN2 (5.9 × 10− 4) LINC01002 (1.0 × 10− 2)

PRSS57 (5.3 × 10− 4) ARHGAP45 (1.2 × 10− 5) PRSS57 (5.5 × 10− 4) ARHGAP45 (2.1 × 10− 4)

MBD3 (3.9 × 10− 5) CIRBP-AS1 (8.0 × 10− 6) MBD3 (4.1 × 10− 5) ADAMTSL5 (6.5 × 10− 5)

ARID3A (2.4 × 10− 4) ADAMTSL5 (8.3 × 10− 6) CIRBP-AS1 (4.8 × 10− 5) ARID3A (7.2 × 10− 4)

Significanta differentially expressed genes were only uncovered following log2 transformation and TMM normalization (Benjamini-Hochberg FDR = 10%). Common
genes shown in italics

Knight and Serrano BMC Bioinformatics 2018, 19(Suppl 14):412 Page 47 of 176



Discussion
This study is a biological and technical assessment of
RNA-Seq data from human cell lines that are used as ex-
perimental models for brain tissue. Reports of the poten-
tial for astroglia to transdifferentiate into neurons
prompted the comparison of normal human fetal-derived
astrocytes and human neural stem cell lines [16–20]. In
our experiments, both cell types were cultured in identical
conditions that are reported to initiate spontaneous differ-
entiation of human neural stem cells. Phase contrast mi-
croscopy demonstrated that, although both cell lines
propagate under identical spontaneous differentiation
conditions, normal human fetal-derived astrocytes and
human neural stem cells do not appear similar in size or
shape (Fig. 1). Despite their morphological differences, a
transcriptomic comparison of normal human fetal-derived
astrocytes and human neural stem cells did not reveal sig-
nificant differences in gene expression between the two
cell lines according to our previously established threshold
criteria for RNA-Seq analyses [16]. The transcriptomic
similarity between human fetal-derived astrocytes and hu-
man neural stem cells supports the potential for human
fetal-derived astrocyte transdifferentiation. This finding is
congruent with previous investigations that have illumi-
nated the plastic capacity of astrocytes (reviewed in [17]).
Results from this RNA-seq analysis stand in stark con-

trast to the results from microarray experiments that

compare normal human fetal-derived astrocytes with hu-
man neural stem cells, where ~ 350 genes are reported
to be upregulated by 5-fold in normal human
fetal-derived astrocytes [33]. Although this discrepancy
could be due to differences in technology (RNA-seq vs.
microarray), or the number and type of replicate samples
used for the statistical analyses, the differences in culture
conditions are the most likely source of the different ex-
perimental outcomes. In the experiments by Malik et al.
(2014), normal human fetal-derived astrocytes were cul-
tured on uncoated tissue culture polystyrene in the
media recommended by Lonza, and although the au-
thors did not mention the substrate used for stem cell
culture, the H9 derived human neural stem cells were
cultured in the stem cell basal propagation media rec-
ommended by Gibco. In contrast, our data was acquired
from normal human fetal-derived astrocytes and
H9-derived human neural stem cells that were both cul-
tured under identical conditions recommended by Gibco
for spontaneous differentiation of human neural stem
cells, including coating dishes with identical substrates
(CellStart). Discrepancies between our outcomes and
those of Malik et al. (2014) can be reconciled by the fact
that human neural stem cells differentiate into astro-
cytes, oligodendrocytes, or neurons depending on the
media and substrate selection.
The technical aspect of these experiments assesses vari-

ation that arises in the RNA-seq workflow, and compares
the ability of different normalization methods to minimize
unwanted variance. The many considerations that are ne-
cessary for the design of robust RNA-Seq experiments
have been elegantly summarized by others [1, 34]. Critical
factors include the sequencing platform, depth of cover-
age, and budget and availability constraints that limit the
number of experimental samples. The technique selected
for library preparation can be constrained by RNA yield
and quality, which often reflect the nature of the experi-
mental samples. The origin of the experimental sample
also plays a role in the availability of biological or technical
replicates for sequencing. The current study quantifies the
contribution of a subset of experimental parameters to
technical variance, and evaluates the effectiveness of
normalization methods in minimizing this variance. Out-
comes of our experiments are intended to inform re-
searchers during the design of RNA-Seq experiments.
We quantified technical variation in an RNA-Seq com-

parison of two human neural cell lines based on cell lot, li-
brary preparation, and flow cell (Table 2). While flow cells
differed in raw read count number (Table 3), only a small
change in the distribution of the raw data was apparent
when comparing across cell lots, library preparations, or
flow cells (Fig. 2). Data normalization, which is intended
to reduce technical noise and fit the data to similar distri-
butions, was undertaken using RPKM, TMM, and UQS

Fig. 6 STRING analysis of protein networks. STRING identified 125
protein nodes within the 143 hNSC-upregulated genes. The nodes
formed 9 distinct networks with 131 edges under the application of a
high stringency filter. Protein nodes were mcl-clustered with an inflation
parameter of three, and edges indicate various types of node interaction
that are depicted by individual colors. Smaller protein nodes indicate a
lack of 3D structural information about the individual protein
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methods. RPKM normalization had a slight impact on the
distribution of data as compared to the non-normalized
(log2-transformed) samples, and marginally reduced the
variance introduced by technical parameters of the experi-
mental workflow by 1% (Figs. 3a, b, 4a, b, 5a-d). These
findings are congruent with results from previous analyses
[7, 22, 35, 36]. UQS normalization resulted in a similar
data distribution across experimental samples, and re-
duced the technical variation in our data by 18% as com-
pared with non-normalized samples (Figs. 3d, 4d, 5g, h).
In contrast, TMM-normalization appeared to decrease the
coherence of the data, and increased technical variance by
41% (Figs. 3c, 4c, 5e, f ).
The increase in technical variance with TMM

normalization that we observed stands in contrast to
previous studies [36]. TMM normalization is favored in
the literature for its ability to account for the large dy-
namic range of RNA-Seq data, minimize type I error,

reduce variance, and retain the ability to detect differen-
tially expressed genes [35–37]. In accordance with previ-
ous reports, TMM was the only normalization method
that permitted the detection of differentially expressed
genes in our analysis (FDR = 10%, |log2 fold change| >
0.5; n = 143; Table 4) [22, 35–37]. The increased tech-
nical variance that we observed following TMM
normalization agrees with outcomes from a previous
comparison of normalization methods based on bias and
variance, where TMM normalization was not recom-
mended, but normalization implemented by the DESeq
and PoissonSeq packages for the R programming lan-
guage performed well [38].
Concerns about replication and reproducibility in next

generation sequencing analyses were the primary motiv-
ation for the technical component of this study [39].
The results from our principal variance component ana-
lysis support the recommendation for replicate library

Fig. 7 KEGG analysis of metabolic networks. KEGG analysis identified the most enriched metabolic networks for 143 hNSC-upregulated genes.
Neurointeractive ligand-receptor interaction (depicted here) was one of the second most enriched networks for this gene list with five genes
present in the network
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preparation made by the SEQC Consortium [40]. More-
over, these findings contribute to the body of literature
that underscores the impact of normalization method on
gene expression analyses [8, 22, 35–38, 41]. It is our
hope that the quantification of technical variance pre-
sented in this manuscript empowers the decisions of in-
vestigators in the design of RNA-Seq experiments, and
encourages the validation of normalization method be-
fore undertaking gene expression analyses.

Conclusion
The transcriptomic comparison between human
fetal-derived astrocytes and human neural stem cells re-
vealed strong similarities between these two cell types.
This finding adds to an expanding body of literature that
highlights the neurogenic capacity of astrocytes, and war-
rants downstream investigations into their therapeutic po-
tential. Principal variance component analysis of the 16
RNA-Seq data files revealed that library preparation intro-
duced the greatest proportion of technical variance to the
experiment. The three normalization methods differed in
ability to reduce the technical variance introduced by dif-
ferent experimental parameters. We observed that the
choice of normalization method affected our ability to de-
tect differences in gene expression during comparative
analysis of the neural and glial transcriptomes. Our results
underscore the requirement for inclusion of replicate li-
brary preparations as part of RNA-Seq experimental de-
sign, and emphasize the importance of normalization
method selection for differential expression analyses.

Additional files

Additional file 1: Figure S1 KEGG analysis of metabolic networks. KEGG
analysis identified the most enriched metabolic networks for 143 hNSC-
upregulated genes. “cAMP signaling pathway” (depicted here) was one of
the second most enriched networks for this gene list with five genes
present in the network. (TIF 9788 kb)

Additional file 2: Figure S2 KEGG analysis of metabolic networks. KEGG
analysis identified the most enriched metabolic networks for 143 hNSC-
upregulated genes. “PI3K-Akt signaling pathway” (5 genes, (depicted
here) was one of the second most enriched networks for this gene list
with five genes present in the network. (TIF 9123 kb)
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