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Abstract

Background: Due to recent advances in sequencing technologies, sequence-based analysis has been widely applied
to detecting copy number variations (CNVs). There are several techniques for identifying CNVs using next generation
sequencing (NGS) data, however methods employing depth of coverage or read depth (RD) have recently become a
main technique to identify CNVs. The main assumption of the RD-based CNV detection methods is that the readcount
value at a specific genomic location is correlated with the copy number at that location. However, readcount data’s
noise and biases distort the association between the readcounts and copy numbers. For more accurate CNV
identification, these biases and noise need to be mitigated. In this work, to detect CNVs more precisely and
efficiently we propose a novel denoising method based on the total variation approach and the Taut String
algorithm.

Results: To investigate the performance of the proposed denoising method, we computed sensitivities, false
discovery rates and specificities of CNV detection when employing denoising, using both simulated and real
data. We also compared the performance of the proposed denoising method, Taut String, with that of the
commonly used approaches such as moving average (MA) and discrete wavelet transforms (DWT) in terms
of sensitivity of detecting true CNVs and time complexity. The results show that Taut String works better than
DWT and MA and has a better power to identify very narrow CNVs. The ability of Taut String denoising in
preserving CNV segments’ breakpoints and narrow CNVs increases the detection accuracy of segmentation
algorithms, resulting in higher sensitivities and lower false discovery rates.

Conclusions: In this study, we proposed a new denoising method for sequence-based CNV detection based
on a signal processing technique. Existing CNV detection algorithms identify many false CNV segments and fail
in detecting short CNV segments due to noise and biases. Employing an effective and efficient denoising method can
significantly enhance the detection accuracy of the CNV segmentation algorithms. Advanced denoising methods from
the signal processing field can be employed to implement such algorithms. We showed that non-linear denoising
methods that consider sparsity and piecewise constant characteristics of CNV data result in better performance in CNV
detection.
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Background
Understating the inherited basis of genomic variations
and their contribution to phenotypes is the major goal of
genomics. One of the main types of genomic variation is
copy number variation (CNV), defined as a phenomenon
in which sections of a genome, ranging from a few hun-
dred base pairs to a few mega base pairs, are repeated or
deleted [1, 2]. It is observed that 4.8–9.5% of the genome
contributes to CNV and they affect more nucleotides per
genome compared to single nucleotide polymorphism
(SNP) [3]. CNVs can change gene dosage, create new
genes, reshape gene structures, and modify gene expres-
sion regulatory elements [4, 5], and as a result they can
significantly influence gene expression and phenotypic
variation [6]. CNVs, particularly exon rearranging and
gene duplication, can be a major procedure driving gene
and genome evolution [7]. CNVs are associated with gen-
etic disease susceptibility [7, 8], evolution and normal
phenotypic variation. Recently several studies have indi-
cated that there is a relationship between CNVs and many
diseases including cancer [9]. CNV assessment is also
important in functional genomic studies since not consid-
ering CNVs can result in misinterpretation of gene expres-
sion, methylation or chromatin immunoprecipitation data
[10, 11]. The power to discover a relationship between
genomic variation and phenotype is limited by the sensi-
tivity, accuracy and comprehensibility of genomic vari-
ation identification methods. As a result, precise and
efficient detection of CNVs, and accessible CNV detection
software tools are very important in the advancement of
genomics.
For studying CNVs, using array-based technologies

has been a popular approach since late 1990s due to
their reasonable cost and relatively high resolution. [12].
With the arrival of next generation sequencing (NGS)
technologies [13] in the late 2000s and early 2010s; and
because of limitations of array-based technology associ-
ated with hybridization and resolution, sequence-based
CNV detection has become a more popular approach to
detect CNVs with higher accuracy and resolution [14].
Consequently, several computational tools have been de-
veloped to identify CNVs using NGS data. However, ac-
curate detection of CNVs from NGS data remains
challenging [15] for a variety of reasons, including the
big data nature of the NGS data, short-read lengths,
sequence-specific biases, library preparation biases, and
high level of noise. Comparative analyses of the perform-
ance of the CNV identification tools show that the tools’
false positive rates are high and agreements across the
tools is low [16–18].
In general, there are four major methods to detect

CNVs from NGS data: 1) read depth, 2) paired-end
reads, 3) split reads, and 4) assembly [19–21]. Compared
to other methods, RD-based methods can identify the

exact number of CNVs, as the paired-end and split read
approaches can only detect the position of the potential
CNVs and not the copy numbers. Furthermore, RD-
based approaches can work better on large sized CNVs,
which are hard to detect by the paired-end and split read
approaches [22]. Assembly-based methods are used less
often in CNV detection because they are computation-
ally very demanding. Furthermore, eukaryotic genomes
contain a remarkable segmental duplication that render
poor performance of assembly-based methods in these
complex regions. Another problem with assembly-based
approaches is that they fail to handle haplotype se-
quences and as a result only homozygous structural
variations can be identified [23]. With availability of
high-coverage NGS data and because of the above rea-
sons, RD-based approaches have recently become a main
method to detect CNVs, particularly for targeted se-
quencing data such as whole exome sequencing (WES)
data. Mostly, in the RD-based approach, a non-overlap-
ping sliding window is utilized to measure the number
of reads that are aligned to a genomic region overlapped
with the window. It is hypothesized that the number of
short sequences that align to a position in the genome
(readcount) is proportional to the copy number at that
position. The readcount values, are used to detect CNV
regions using segmentation methods [24–34]. However,
existence of biases and noise distorts the correlation be-
tween copy numbers and the readcount values, which
reduces the RD-based methods’ ability to detect CNVs
accurately. Hence, a robust CNV detection method re-
quires elimination of biases and noise from data before
detecting CNVs. In general RD-based approaches include
two main steps: 1) preprocessing, and 2) segmentation. In
the preprocessing step, readcount data are generated, low
quality read counts are removed, and readcount data are
normalized to reduce bias. Even though readcount data is
very noisy, most of the CNV detection methods do not
employ denoising as part of their preprocessing step.
There are several sources for biases and noise in NGS

data such as GC bias, mappability bias, sample contam-
ination, sequencing noise, and experimental noise. GC
content has been found to affect read coverage on most
sequencing platforms and varies significantly along the
genome [35–37]. Due to biochemical differences in the
sequenced DNA, sequencing technologies act differently
on sequences with different GC content [38]. It has been
shown that segments of genome with low or high GC
content have low readcounts compared to other seg-
ments. As a result, there is a unimodal correlation be-
tween readcounts and G and C bases in the genome
[39–42]. Although the global structure of the distribu-
tion of readcounts with respect to the GC content (GC
bias curve) is consistent, the exact structure differs re-
markably across samples. Several methods have been
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proposed to remove GC bias, the most popular of which
is the Loess regression method [41, 43, 44].
In addition, because of short length of reads and the

existence of repetitive regions within the reference gen-
ome, a huge number of NGS reads cannot be clearly
mapped to the reference genome. Especially for WES
data, some regions of the genome have low or no cover-
age. Sequencing errors and mutations can lead to incor-
rectly mapped reads as well. These errors introduce a
challenge to the alignment process resulting in a mapp-
ability bias [15]. To reduce mappability biases, CNV
detection approaches typically utilize the number of
uniquely mapped short reads in a sample and a normal
reference and apply a Loess regression method [45, 46].
To compensate for GC and mappability biases, many
RD-based methods [26, 33, 34, 44] use the ratio of sam-
ple readcounts to normal reference readcounts.
Most of the CNV detection tools focus only on redu-

cing GC and mappability biases, which do not represent
all types of possible noise, and thus considerable amount
of noise remains untouched after normalization. A few
CNV detection tools employ denoising techniques such
as Bayesian approaches [28] and the discrete wavelet
transform (DWT) [47] to reduce noise from readcount
data. Signal processing techniques have been widely used
for effective noise reduction. These techniques are
broadly utilized to improve signal-to-noise ratio (SNR)
in engineering where signals are a mixture of the ori-
ginal signals and various types of complex noise. How-
ever, they have had a very limited application in
genomics [48–50]. Readcount data can be seen as a
noisy signal with some characteristics. First, it is sparse,
that means the total length of CNVs is much less that
the total length of genome. Second, since copy numbers
are discrete values, it is piecewise constant signal. Due
to the importance of the breakpoints of CNVs, denoising
methods that can preserve edges need to be used. Also,
a very challenging issue in CNV identification is the dif-
ficulty of detecting focal (narrow aberration) CNV re-
gions in the presence of extreme noise.
Because of the characteristics of readcount data and

the need for the accurate detection of breakpoints and
focal CNVs, in this work we used a total variation ap-
proach for denoising. In signal processing, total variation
[51, 52] approaches have been very successful in remov-
ing noise from a noisy sparse piecewise constant signal
while preserving edges. A noisy signal contains many
unwanted details that lead to high total variation that is
the summation of the absolute gradient of the noisy sig-
nal, while has few breakpoints. Therefore, a close match
to the original signal can be estimated by minimizing the
total variation of the signal. This optimization approach
can remove unnecessary details of the noisy signal and
at the same time preserve important ones such as

breakpoints and narrow changes. A very efficient imple-
mentation of total variation denoising is Taut String
[53], which solves the optimization problem in a
non-iterative in-place manner.
The main goal of this study is to develop an efficient

and effective denoising algorithm to remove biases and
noise from readcount data for better identification of
CNVs using NGS data. In this work, we introduced an ef-
ficient and accurate denoising technique based on a signal
processing approach, Taut String [53–55]. This approach
efficiently removes noise while preserves breakpoints and
prepares error free readcount data for the segmentation.

Methods
In this study, we use sparse and piecewise constant char-
acteristics of CNV signal to reduce readcount data noise.
We developed a denoising algorithm based on the Taut
String approach. Before applying denoising we first fil-
tered low quality readcount data and removed GC and
mappability bias from readcount data [56]. After apply-
ing denoising, a segmentation method was used to call
CNV regions from denoised readcount data. We applied
the circular binary segmentation (CBS) algorithm [57]
for segmentation.

Filtering low quality readcounts
We applied a sliding window approach to compute the
GC% and readcount value for each genomic window
with an optional size [58]. In this work, the size of win-
dows is 100 bp. We considered windows with read-
counts and GC content in the bottom and top 1%
percentiles as outliers and removed them.

Reducing bias
Several methods have been proposed for modeling and
removing GC and mappability biases from data [43, 45,
59, 60]. In order to remove GC bias, we followed the
weighted Loess regression method proposed in [43]. In
this method, a local weighted regression is applied to the
means of the number of reads mapped to windows with
a GC content of gc (percentage of G and C bases for
each window), mgcs [43]. It is observed that if there are a
few windows with a GC content of gc, then their corre-
sponding mgc values would be significantly higher or
lower than mgc values corresponding to other windows.
The weighted Loess regression method tries to remove
these local extremes, resulting in smoother values of
mgc. Then, using the smoothed mgcs, the number of
reads for each window will be corrected.
After applying GC bias correction on both sample and

normal readcount data, we compute the ratio of sample
to normal readcount for each window. These ratios can
also help to mitigate mappability bias.
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Reducing noise using taut string
The accuracy of CNVs detection is heavily influenced by
the noisiness of the readcount data that can be consid-
ered as readcount signals. It is observed that under
highly noisy readcount signals, CNV detection tools
identify many false CNVs (false positives (FPs) and false
negatives (FNs)). Therefore, reducing noise is an essen-
tial step in a CNV detection algorithm.
The log2 ratios of sample and normal readcounts can

be modeled as Eq. (1):

r ¼ f þ ε ; ð1Þ
where ε indicates noise and is defined as a vector of in-
dependent and identically distributed (iid) random vari-
ables with a normal distribution N(0, σN

2) (mean of 0
and standard deviation of σN). A denoising method tries
to recover the original signal f from the noisy observed
signal r.
There are several approaches for removing noise from

noisy signal. The characteristics of the noise and signal
should be considered for developing an appropriate noise
cancelation method. Fourier based filtering techniques
[61] and Kernel estimators [62] are identified as two popu-
lar approaches for removing noise. However, when the
noise and signal Fourier spectra overlap, these methods
cannot separate spectra completely and fail to detect ori-
ginal signal [63]. Identifying small CNV segments is an-
other challenge in a noisy environment. Usually, linear
denoising approaches cannot perform well in detecting
small CNV segments in low SNR environments. For a
noisy readcount signal, amplitude distortion happens
more often than spectra location distortion. In this situ-
ation, non-linear approaches that consider amplitudes
rather than locations of the spectra in their noise cancel-
ation procedure perform better. Furthermore, accurate
detection of breakpoints plays an important role in pre-
serving narrow CNVs while removing noise.
In this study, for estimating f from given noisy read-

count data/signal, we employed an effective and efficient
non-linear noise cancelation approach based on the total
variation denoising for one-dimensional (1-D) discrete
signals [53, 54] that can preserve edges and narrow seg-
ments. The total variation denoising has the ability to
identify local extreme values in data with low SNR by es-
timating a piecewise constant signal [64, 65].
Given a noisy signal r = (r1, r2,…, rn), the goal is to esti-

mate the denoised signal f̂ which minimizes the eq. (2).

min
f

1
2

Xn

i¼1

ri− f ij j2 þ λ
Xn−1

i¼1

f iþ1− f i
�� �� ; ð2Þ

for some regularization parameter λ ≥ 0. The first term is
used to measure the fitting error between noisy signal
ri and denoised signal fi, and the second term is used to

measure the penalty caused by the difference between
change-points fi and fi + 1 using a sparsity-inducing regu-
larizer (λ). The challenging part is selecting appropriate
value for λ. In [54], λ is chosen as λ ¼ cn

1
2σ for some

C > 0 , where σ is computed as σ = 1.48/ √ 2 {| r2 − r1 | ,
…, | rn − rn − 1 | }.
This optimization problem can generate a piecewise

constant signal whose number of breakpoints, k, is a
non-increasing function of λ [64]. It considers the smallest

integer k and tries to find f̂ with k local extreme values.
To solve this total variation optimization problem, we

used the efficient Taut String approach. Taut String is an
in-place non-iterative linear time method for 1-D TV

denoising. Taut String defines a vector of running sums

Ri ¼
Pi

u¼1 ru , 1 ≤ i≤n. Then equation (2) is converted to
equation (3) using fi = si − si − 1 for 1 ≤ i ≤ n [66].

min s∈ℝnþ1

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ si−si−1j j2

q
subject to

s0 ¼ 0; sn ¼ Rn; and max 1≤ i≤n si−Rij j≤λ
ð3Þ

To minimize equation (3), suppose a tube of radius
ϑ = 0.5λ consists of the lower bound li≔ Ri − ϑ and the
upper bound ui≔ Ri + ϑ. Then, assume that there exist a
string connecting (1,R1) and (n,Rn), restrained to lie within
the tube, and it is pulled to the point that it is tight, touch-
ing the tube (at possibly multiple “knots”) on either side.
Taut String tries to solve this problem by using the great-
est convex minorant and least concave majorant of the
upper and lower strings Ri + ϑ and Ri − ϑ. The solution of

this optimization, f̂ , can be considered as a string between
Ri − ϑ and Ri + ϑ that is pulled tight.
To improve the convergence rate at local extremes, we

used the method introduced by Davies and Kovac [54]
that combines the Taut String with a multiresolution
bound over estimated residuals and utilizes an additional
local squeezing step to the Taut String estimate. In this
approach, Taut String checks if the deviation between

the observed data and f̂ satisfy the multiresolution cri-
terion [54], if not, it uses local squeezing of tube. It
means that it squeezes the tube by multiply a value
γ ∈ (0, 1) to λ and obtains new upper and lower bound.
This approach starts from the fixed point s0 = 0. It grad-
ually calculates the greatest convex minorant of the
upper bounds, and the smallest concave majorant of the
lower bounds on the tube. A segment of the Taut String
can be detected when both curves intersect. Then, the
algorithm is restarted at the end of the detecting seg-
ment and is run until all Taut String segments have been

identified. By employing this approach, computing f̂ is
an efficient procedure and it is linear in time (O(n)) [54].
This algorithm yields piecewise constant functions. On
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each constant interval, the denoised values is equivalent
to the mean of the corresponding observations, except
for local extrema of the fit. This algorithm removes very
low-frequency noise while keeping the location of
change-points (breakpoints).

Data sets
Simulated readcount data sets
We generated simulated data to evaluate the perform-
ance of our proposed denoising method in identifying
true CNVs and their breakpoints. For this purpose,
50 simulated readcount signals were generated with
known true CNV segments as gold standard. Each
data point represents a readcount value of a genomic
window. By adding different levels of Gaussian white
noise to these readcount data, we generated noisy
readcount signals with different SNRs, where SNR is
defined as SNR = (P _ original signal)/(P _ noise ). A
Gaussian white noise has a perfectly flat power with
Pnoise ¼ σ2N .

Simulated sequencing data sets
We used simulated WES data sets with known true
CNVs as gold standard. The simulated data were gener-
ated by CNV-Sim tool (https://github.com/NabaviLab/
CNV-Sim). We generated 10 data sets using CNV-Sim
for chromosome 1. We aligned simulated short reads to
the reference genome (hg19) using the BWA software
tool [67]. We generated readcounts from aligned se-
quencing data by utilizing the bedtools suit [58] and
employing100bp sliding window. We used these simu-
lated data to investigate the performance of the CNV de-
tection tools in terms of sensitivity, false discovery rate,
and specificity.

Real data sets
For this work, we downloaded 10 Breast cancer tumor
and matched normal WES data from the Cancer Gen-
ome Hub (https://cghub.ucsc.edu/index.html). We used
BWA to align these sequencing data. The bedtools suit
[58] and 100 bp sliding window were utilized to generate
readcount signals from the aligned sequencing data. The

Fig. 1 Denoising with a) Taut String and b) DWT c) MA. Using simulated readcount data at SNR = 7

Fig. 2 The effect of the squeezing factor on a) Sensitivity b) FDR of CNVs detection. Using simulated readcount data
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array-based CNV results from the same samples pro-
vided by the cancer genome atlas (TCGA) were used for
benchmarking and evaluating the performance of the
denoising methods in terms of sensitivity, false discovery
rate, and specificity. We downloaded the CNV results
from the SNP array platform from the Genomic Data
Commons data portal (https://portal.gdc.cancer.gov).

Results
Simulated readcount data
In this section, we compared the performance of Taut
String, with DWT and moving average (MA) denoising
approaches. Figure 1 shows the simulated readcount sig-
nal before and after applying denoising methods on a
noisy signal with SNR = 7. It can be seen that Taut String
works better compared to DWT and MA in preserving
edges and generating piecewise constant data. To com-
pare the performance of these denoising methods in
more detail, we computed sensitivities and false discov-
ery rates (FDRs) of calling CNV segments applying the
CBS segmentation. Also, we computed the breakpoint
accuracy of the detected CNV segments using the

denoising methods at different levels of noise. We inves-
tigated the effect of Taut String in calling true CNVs
with different lengths. Furthermore, we investigated the
detection power of true CNV using the Taut String
denoising with different values of local squeezing γ.

The effect of the squeezing factor γ on the taut string
performance
We evaluated the performance of Taut String in terms of
sensitivity in detecting true CNVs using different values of
the squeezing factor γ .We used the 50 simulated read-
count data sets that we explained above. Figure 2 shows
that the sensitivities in calling CNV segments improve by
using squeezing factors close to 1. We can see that select-
ing an appropriate squeezing factor is important. When γ
is small the algorithm ends rapidly as all multiresolution
coefficients satisfy the multiresolution criterion quickly
and generate many local extreme values. Some of them
are outlier and lead to detect more FP CNVs. When γ is
nearly 1, the algorithm takes more time and identifies
smaller number of local extreme values. Applying Taut
String without using the squeezing factor results in lower

Fig. 3 a) Sensitivity and b) FDR of detection of amplified CNVs segments before and after applying denoising methods for different SNR. Using
Simulated Readcount data

Fig. 4 a) Sensitivity and b) FDR of detection of deleted CNVs segments before and after applying denoising methods for different SNR. Using
simulated Readcount data
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sensitivity and lower FDR compared to using the squeez-
ing factor. Considering a tradeoff between time cost and
accurate detection of CNVs segments, we chose γ = 0.5 for
the rest of our work.

Sensitivity and FDR of identifying CNV segments
Using the 50 sets of simulated readcount signals with dif-
ferent levels of noise (σN from 0.47 to 0.05), we compared
the sensitivities in detecting CNV segments using DWT,
Taut String and MA. Segment-based comparison [18],
which considers the overlap between detected CNVs re-
gions and benchmark CNVs, was used to compute true
positives (TPs), FN, and FPs. The segment-based FPs and
TPs were used to calculate sensitivities, specificities and
FDRs. “GenomicRanges” R package from Bioconductor
[68] is applied to calculate overlapping regions between
detected CNVs and benchmark CNVs. A threshold of ±

thr for log2ratios was used for calling CNV segments. TP
happens when a detected amplified/deleted segment has
an overlap of 80% or more with a benchmark amplified/
deleted segment. FN happens when an amplified/deleted
segment in the benchmark does not have an overlap of
80% or more with any detected amplified/deleted regions.
FP happens if there is no overlap of 80% or more between
a detected CNV region and any benchmark CNVs. Sensi-
tivity and FDR are defined as TP/(FN + TP) and FP/(FP +
TP), respectively.
Figures 3 and 4 show the sensitivity and FDR of de-

tecting amplified and deleted segments, respectively,
with thr = 0.2. It can be seen that all three denoising
methods improve sensitivity and FDR of CNV detection.
However, edge protecting approaches (Taut String and
DWT) can improve sensitivity and FDR significantly bet-
ter than MA, and Taut String outperforms DWT in de-
tecting CNVs. All three methods perform better for
higher SNRs. Even at a high SNR condition, the segmen-
tation algorithm without denoising provides so many
false detections, where employing Taut String can result
in near perfect detection.

Breakpoint accuracy in different level of noise
The three denoising methods DWT, MA and Taut String
were applied to the 50 simulated readcount data with
different level of SNRs ranging from 1 to 20 (σN from
0.47 to 0.05). Then, CNVs’ segments were identified
from the denoised and noisy readcount data by using
CBS. We defined breakpoint accuracy as the frequency
of identifying exactly true start and end points of de-
tected CNVs’ segments. We used the known start and
end points of simulated CNVs’ segments to compute
these frequencies. Figure 5 shows the performance of
DWT, Taut String and MA in detecting breakpoints. As
also depicted in Fig. 1, we can observe that using an ap-
propriate smoothing approach before segmentation im-
proves the breakpoint accuracy significantly. It can be
seen that DWT and Taut String outperform MA. At

Fig. 5 Breakpoint accuracy before and after applying denoising for
different SNR, using simulated readcount data

Fig. 6 Sensitivity and FDR of detection of amplified CNV segments with different CNV lengths
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lower levels of SNR (higher noise), DWT and Taut String
perform almost similar but at higher levels of SNRs Taut
String performs slightly better than DWT. For having a
high accuracy of CNV breakpoints detection, the denois-
ing method should provide sharp edges with less fluctu-
ation around the edges. Denoised signals using Taut
String show less fluctuation at the breakpoints compared
to DWT and MA (Fig. 1). Taut String denoising is more
powerful to preserve edges leading to better perform-
ance in breakpoint detection.

The effect of denoising methods in detecting CNVs with
different lengths
Each data point in simulated data represents a readcount
value of a sliding window. Simulated data sets contain
CNV segments with different length (in window size)
ranging from 1 to 10 k. Figures 6 and 7 show the sensi-
tivities and FDRs in detecting CNVs with different
length using Taut String and DWT. We can see that in
general sensitivity and FDR is better in detecting larger
CNVs. However Taut String outperforms DWT for nar-
rower CNVs. For CNV segments with lengths between 1
and 20, sensitivity in detecting amplification/deletion is
0.60/0.66 when using Taut String, and is 0.42/0.34 when
using DWT. We can see a stronger pattern in FDRs. For
CNV segments with lengths between 1 and 20, FDR in
detecting amplification/deletion is 0.21/0.18 when using
Taut String and is 0.35/0.32 when using DWT.

Simulated sequencing data using CNV-Sim
As explained above, we generated 10 simulated paired-
end WES data sets with read length of 100 bp for
chromosome 1 using the CNV-Sim simulator. Using
simulated sequencing reads from genomes that con-
tain known CNVs, we calculated sensitivities and
FDRs of detecting CNVs with and without using
denoising. We used the lists of known simulated CNV
for benchmarking.

To calculate Sensitivity and FDR, we used a gene-
based approach [18]. First, we used CBS to call CNV
segments and then we annotated the identified CNV
segments to derive CNV gene lists. We used “cghMCR”
R package from Bioconductor [69] to identify CNV
genes using Refseq gene identifications. A threshold of
±thr for log2 ratios was used to detect CNV genes, that
is: amplification for log2 ratios > thr, deletion for log2 ra-
tios < − thr, and No CNV for log2 ratios between −thr
and thr. Here, we used thr = 0.5. Table 1 shows defini-
tions for sensitivity (true positive rate (TPR)), FDR or
1-Precision, and specificity (SPC). Table 2 shows overall
performance of the denoising methods using the simu-
lated short read data.
Similar to simulated readcount data we observed that

denoising improves the performance of CNV identifica-
tion; and Taut String outperforms DWT. Using the Taut
String denoising, the sensitivity of detecting amplifica-
tions improves from 79.65 to 87.17% and the sensitivity
of detecting deletions improves from 78.64 to 88.15%.

Real data
To investigate the performance of the denoising methods
in identifying CNVs, we evaluated the results of CNV de-
tection with and without applying denoising methods
using the real data sets. The results are shown in Table 3.
It can be seen that denoising methods improve the per-
formance of the CNV detection. In overall, by using the
Taut String denoising method, the sensitivity of detecting
amplifications improves from 50.99 to 69.52% and the
sensitivity of detecting deletions improves from 60.37 to

Fig. 7 Sensitivity and FDR of detection of deleted CNV segments with different CNV lengths

Table 1 Possible results for each candidate CNV genes

CNV gene Not identified Identified

Present FN TP

Not present TN FP

Performance metrics:

Sensitivity = TP
FNþTP FDR = FP

FPþTP Specificity = TN
FPþTN
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79.93%. As expected, Taut String works better than DWT
in denoising real readcount data results in higher sensitiv-
ity and specificity in CNV detection. Removing noise by
Taut String and DWT, increases the number of both TP
and TN and decreases the number of both FP and FN
leading to improving the overall performance of a CNV
detection method.
Using the real data sets, we compared the copy num-

ber values, in log2 ratios, of detected CNV genes with
those of their corresponding benchmark CNV genes, be-
fore and after applying Taut String and DWT. Results
show that after using Taut String, copy number values of
76.87% of amplified genes and 70.26% of deleted genes
differ from their benchmark copy number values less
than 20% of the benchmark copy number values. Table 4
shows the results when using no denoising, DWT and
Taut String.
When using Taut String denoising, the average of dif-

ferences between the detected copy number values and
the benchmark copy number values are %25 and %36 of
the benchmark copy number values across all amplified
and deleted genes, respectively. These averages when
using no denoising and using DWT are shown in Table 5.
Taut String outperforms DWT in providing more accur-
ate copy number values as shown in Table 4 and Table
5. As can be seen in these tables, using denoising is
beneficial in terms of improving accuracy of copy num-
ber values as well.

Runtime comparison
CBS segmentation is the most commonly used and ef-
fective segmentation methods; however, it is slow when
readcount data are very noisy. This is because it uses an
iterative algorithm based on the variance of the data.
Denoising methods that smooths readcount data can
help to speed up the segmentation by CBS. As we show
in Fig. 1, Taut String generates smoother data with more
clear edges (low fluctuations at breakpoints), which

results in faster segmentation by CBS. In this section, we
calculated the overall runtime of denoising and segmen-
tation algorithm together using real and simulated data
sets on a 64-bit Windows 10 Operating System, with
intel core i7-7500 U 2.7 GHz CPU and 16 GB DDR4
memory. The time complexity of Taut String and DWT
are O(n) and O(nlogn) respectively [70]. From the run-
time perspective, applying Taut String and CBS algo-
rithms subsequently surpasses applying DWT and CBS.
Using the real data sets, on average, DWT and CBS
combination took 76.35 min while Taut String and CBS
combination took only 21.23 min. We observed similar
behavior using simulated data. On average, DWT and
CBS took 30.67 s while Taut String and CBS took only
10.45 s.

Discussion
Readcount data’s noise and biases distort the association
between copy numbers and read coverages. These biases
and noise need to be removed from noisy readcount
data in order to have more accurate CNV identification.
In this study, we proposed to use a signal processing ap-
proach based on total variations and Taut String to re-
duce readcount noise. In general, denoising improves
sensitivity and FDR of CNV detection. However, edge
protecting denoising approaches (e.g. Taut String and
DWT) significantly outperform regular denoising methods
(e.g. MA). In fact, a denoising method that can generate
less fluctuations and sharper edges at breakpoints, such as
Taut String, leads to detecting more accurate CNVs
compared to other methods (e.g. DWT and MA). Using
simulated and real data, we showed that Taut String out-
performs DWT and MA approaches in terms of sensitiv-
ity, FDR, and specificity in CNV detection. The major
advantage of Taut String is its ability in preserving CNV
segments’ breakpoints, resulting in increasing the detec-
tion accuracy of a CNV segmentation method, especially
in detecting narrow CNVs. Due to Taut String power in

Table 2 Overall Performance of The Denoising Methods Using the simulated WES data generated by CNV-Sim Data

Denoising Methods Amplified CNVs Deleted CNVs

Sensitivity FDR Specificity Sensitivity FDR Specificity

Before applying denoising method 79.65% 35.23% 80.93% 78.64% 37.03% 81.02%

After applying DWT 86.87% 22.88% 91.32% 87.20% 20.54% 90.32%

After applying Taut String 87.17% 22.94% 92.82% 88.15% 23.65% 89.49%

Table 3 Overall Performance of The Denoising Methods Using the Real WES Data

Denoising Methods Amplified CNVs Deleted CNVs

Sensitivity FDR Specificity Sensitivity FDR Specificity

Before applying denoising method 50.99% 42.06% 80.45% 60.37% 64.32% 56.71%

After applying DWT 68.81% 41.65% 79.92% 77.65% 54.32% 72.23%

After applying Taut String 69.52% 40.21% 84.51% 79.93% 50.72% 77.25%
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estimating piecewise constant signals, the identified CNV
segments have more accurate breakpoints and copy num-
ber values. In addition, the Taut String method is very effi-
cient. The complexity of its algorithm is linear in time.
NGS data are big and using an efficient and fast CNV
detection method is essential. The proposed method is an
effective and practical approach to improve CNV identifi-
cation due to its high efficiency and its power to detect
true CNVs. However, adjusting the optimization param-
eter for Taut String, which indicates the upper bound and
lower bound of error is challenging. In order to have a
high accurate denoising approach, selecting an appropri-
ate error bound is critical. Having a global error bond re-
duces the effectiveness of Taut String. Local squeezing
that reduces the error bond locally by a constant factor
improves the performance of Taut String. When this con-
stant factor is small, the algorithm takes less time and
many extreme values will be generated. In contrast, when
this constant factor is close to one, we can have more
accurate CNV detection while the computational time
increases.

Conclusions
Denoising readcount data for CNV detection methods that
are based on depth of coverage, can remarkably improve
the accuracy of CNV detection. However, most of the
current CNV detection tools do not employ denoising tech-
niques, which results in low sensitivity and high false posi-
tive rates. Also, noise cancellation algorithms need to be
very efficient in order to not increase the overall complexity
of CNV identification. In this work, we developed an effi-
cient and effective denoising method based on signal pro-
cessing approaches. The proposed method uses the total
variation approach for cancelling noise and employs the
non-iterative, in-place Taut String algorithm to obtain the
optimal approximation of denoised data. Signal processing

approaches have a long history in noise cancellation and
can be extremely valuable for improving the accuracy of
CNV detection. Selecting an appropriate denoising ap-
proach depends on the characteristics of the noise and sig-
nal. From a signal processing point of view, readcount
data are sparse, discrete, and piecewise constant. Noise
cancelation algorithms for these types of signals usually
are Fourier based denoising methods and Kernel estima-
tors. These techniques cannot separate spectra correctly.
As a result, they can reduce noise, but are not able to pre-
serve edges. By contrast, total variation denoising methods
can simultaneously preserve edges, remove noise, and
generate piecewise constant signals, even at high levels of
noise. We used Taut String for efficient implementation of
total variation denoising. To investigate the performance
of the Taut String denoising approach, we compared the
accuracy of detecting CNV segments when using Taut
String denoising with those of when using DWT and MA
denoising methods. DWT, which is commonly used in
bioinformatics, is also an efficient and nonlinear smooth-
ing method. However, this study showed that Taut String
outperform DWT in both efficiency and accuracy.
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