
Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356
https://doi.org/10.1186/s12859-018-2310-3

RESEARCH Open Access

cuRnet: an R package for graph traversing
on GPU
Vincenzo Bonnici1, Federico Busato1, Stefano Aldegheri1, Murodzhon Akhmedov2,
Luciano Cascione2, Alberto Arribas Carmena2, Francesco Bertoni2, Nicola Bombieri1, Ivo Kwee2

and Rosalba Giugno1*

From Italian Society of Bioinformatics (BITS): Annual Meeting 2017 Cagliari, Italy. 05-07 July 2017

Abstract

Background: R has become the de-facto reference analysis environment in Bioinformatics. Plenty of tools are
available as packages that extend the R functionality, and many of them target the analysis of biological networks.
Several algorithms for graphs, which are the most adopted mathematical representation of networks, are well-known
examples of applications that require high-performance computing, and for which classic sequential implementations
are becoming inappropriate. In this context, parallel approaches targeting GPU architectures are becoming pervasive
to deal with the execution time constraints. Although R packages for parallel execution on GPUs are already available,
none of them provides graph algorithms.

Results: This work presents cuRnet, a R package that provides a parallel implementation for GPUs of the breath-first
search (BFS), the single-source shortest paths (SSSP), and the strongly connected components (SCC) algorithms. The
package allows offloading computing intensive applications to GPU devices for massively parallel computation and to
speed up the runtime up to one order of magnitude with respect to the standard sequential computations on CPU.
We have tested cuRnet on a benchmark of large protein interaction networks and for the interpretation of
high-throughput omics data thought network analysis.

Conclusions: cuRnet is a R package to speed up graph traversal and analysis through parallel computation on GPUs.
We show the efficiency of cuRnet applied both to biological network analysis, which requires basic graph algorithms,
and to complex existing procedures built upon such algorithms.

Keywords: Graph traversal, GPU parallel implementation, Biological network analysis, High-throughput omics
network annotation, Topological network analysis, Prize-collecting Steiner forest

Background
Biological networks are seen as graphs, where vertices
represent elements and edges are the relationships among
them. Analyzing biological networks mostly means apply-
ing basic graph traversal algorithms to find, for instance,
how two vertices are connected, which vertices can be
reached by a source, and which part of the network is
highly interconnected, i.e., every vertex is reachable from
every other vertex. These tasks are commonly embedded

*Correspondence: rosalba.giugno@univr.it
1Department of Computer Science, University of Verona, Strada le Grazie, 15,
Italy, Verona, Italy
Full list of author information is available at the end of the article

in more crucial sophisticated analyses [1, 2] to predict, for
example, protein functions [3] or to study complex dis-
eases by relating protein interaction networks to specific
conditions [4–7]. Due to the constantly increasing data set
complexity, such applications require high-performance
algorithms, for which classic sequential implementations
are become inappropriate. Alternative solutions are given
by parallel approaches, and in particular by those based
on GPU architectures, which allow sensibly reducing the
algorithm execution time [8].

In the context of biological network analysis and, more
in general, for statistical computing in Bioinformatics,
R is becoming one of the most widely used program-
ming environment. It provides easy-to-use packages to

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2310-3&domain=pdf
mailto: rosalba.giugno@univr.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 16 of 100

programmers and analysts for efficient and flexible data
modeling and analysis [9]. In this context, even though
some R packages based on GPU kernels have been
proposed (e.g., gpuR for algebraic operations https://cran.
r-project.org/package=gpuR), none of them provides par-
allel implementations of algorithms for network analysis.

This work presents cuRnet, an R package that provides
a wrap of parallel graph algorithms to the R environment.
As an initial proof of concept, cuRnet includes basic data
structures for representing graphs, a parallel implemen-
tation of Breadth-First Search (BFS) [10], Single Source
Shortest Paths (SSSP) [11], and Strongly Connected Com-
ponents (SCC) [12]. The package makes available GPU
solutions to R end-users in a transparent way, such that
GPU modules are invoked by R functions.

cuRnet has been compared with the BFS, SSSP, and SCC
implementation of the iGraph R package (http://igraph.
org/r/). Tests were run over on annotated undirected
protein interaction networks and on directed homology
networks provided by the STRINGdb [13].

cuRnet outperformed the iGraph sequential algorithms
especially on the largest networks. An average speed-up
of 3× have been observed, with a maximum of 30×.

cuRnet SCC and SSSP were used to underscore their
ability in helping researchers in providing clues on puta-
tive functional context of ncRNA molecules, and guide
the selection of a relevant functional readout [14, 15].
For this aim, we used available RNA sequencing dataset
of 21 prostate cancer cell lines (GEO accession number
GSE25183) to predict coexpression networks. We also
show how enabling the GPU implementation of graph
traversal algorithms in R has a potential to speed up exist-
ing complex procedures whose implementation mainly
depends on such calculations. The PCSF package for
R [16] is an example, which solves the Prize-collecting
Steiner Forest problem by making a massive use of SSSP.
It performs user-friendly analysis of high-throughput data
using the interaction networks (protein-protein, protein-
metabolite or any other type of correlation-based interac-
tion networks) as a template. It interprets the biological
landscape of interactome with respect to the data, i.e.,
to detect high-scoring neighbourhoods to identify func-
tional modules. A real case application of intensive PCSF
computation is reported on the analysis of Diffuse large
B-cell lymphoma gene expression data.

cuRnet and the PCSF application accelerated with cuR-
net are freely available on https://bitbucket.org/curnet/
curnet.

Methods
Figure 1 shows an overview of the full cuRnet stack,
by which R data is passed, as input data, to the GPU
environment for parallel computation. The input net-
work is represented, in R, through a standard R data

frame, where every edge between two vertices is stored
with the corresponding weight. By exploiting the Rcpp
library of R, an R-C++ wrapper has been developed
to automatically translate the network from the stan-
dard R representation to a C++ data structure, and to
link the algorithm invocation from the R to the C++
environment.

The network representation in the C++ environment
relies on the coordinate list (COO) data structure, which is
a mandatory step to generate the compressed sparse row
(CSR) data structure for the GPU computation. CSR is a
well-known storage format to efficiently represent graphs,
and it allows reaching high performance during the graph
traversal on the GPU.

The C++ interface allows handling the interaction with
the GPU device. It generates the host (CPU) represen-
tation of the graph starting from the rows in the data
frame, it initializes the GPU kernel, it handles the host
(CPU)-device (GPU) data exchanging, and, finally, it runs
the kernel for the parallel computation. The computation
result is retrieved from the device and passed back to R
through the Rcpp/C++ layers.

In what follows we briefly describe the parallel graph
traversal algorithms implemented in cuRnet. Given a
graph G(V , E), with a set V of vertices, a set E of edges,
and a weight function w : E → R, cuRnet takes G in
a dataframe X having three columns listing the network
edges and their weights. The dataframe can be built from
an iGraph object or from a textual file (.csv). The follow-
ing lines invoke the loading of the cuRnet package and the
construction of the graph data structure:
library(cuRnet)

cuRnet_graph(x)

We refer the reader to (https://bitbucket.org/curnet/
curnet) for a complete manual of the cuRnet usage.

Parallel implementation of breadth-first search for GPUs
The parallel graph traversal through BFS [10], which
is listed and analyzed in Additional file 1: Section 1 -
Algorithm 1 and Figure S1, respectively, explores the
reachable vertices, level-by-level, starting from a source s.
cuRnet implements the concept of frontier [17] to achieve
work efficiency. A frontier holds all and only the vertices
visited at each level. The algorithm checks every neigh-
bour of a frontier vertex to see whether it has been already
visited. If not, the neighbour is added into a new frontier.
cuRnet implements a frontier propagation step through
two data structures, F1 and F2. F1 represents the actual
frontier, which is read by the parallel threads to start the
propagation step. F2 is written by the threads to gener-
ate the frontier for the next BFS step. At each step, F2
is filtered and swapped into F1 for the next iteration.
When a thread visits an already visited neighbour, that
neighbour is eliminated from the frontier. When more

https://cran.r-project.org/package=gpuR
https://cran.r-project.org/package=gpuR
http://igraph.org/r/
http://igraph.org/r/
https://bitbucket.org/curnet/curnet
https://bitbucket.org/curnet/curnet
https://bitbucket.org/curnet/curnet
https://bitbucket.org/curnet/curnet


Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 17 of 100

Fig. 1 cuRnet stack overview cuRnet stack overview

threads visit the same neighbour in the same propaga-
tion step, they generate duplicate vertices in the frontier.
cuRnet implements efficient duplicate detection and cor-
rection strategies based on hash tables, advanced strate-
gies for coalesced memory accesses, and warp shuffle
instructions. Moreover, it implements different strate-
gies to deal with the potential workload imbalance and
thread divergence caused by any actual biological net-
work non-homogeneity. These include prefix-sum pro-
cedures to efficiently handle frontiers, dynamic virtual
warps, dynamic parallelism, multiple CUDA kernels, and
techniques for coalesced memory accesses.

The BFS result is a matrix s×|V |, where s is the number
of vertex sources from which the BFS is run. Each entry in
the matrix is the depth of the BFS from a source to a graph
vertex. The matrix is retrieved from the GPU device to R
through the Rcpp/C++ layers. BFS is ran by invoking the
following cuRnet function in the R environment:

depths <- cuRnet_bfs(g, c(sources))

Parallel implementation of single-source-shortest-path for
GPU
The cuRnet CUDA implementation of the SSSP algorithm
is based on the Bellman-Ford’s approach [11]. The paral-
lel algorithm is reported in Additional file 1: Section 1.
cuRnet SSSP visits the graph and finds the shortest path
d to reach every vertex of V from source s. Also in this
case, cuRnet exploits the concept of frontier to deal with
the most expensive step of the algorithm (i.e., the relax
procedure). At each iteration i, the algorithm extracts,
in parallel, the vertices from one frontier and inserts
the active neighbours in the second frontier for the next
iteration step. Each iteration concludes by swapping the
contents of the second frontier (which will be the actual
frontier at the next iteration) into the first one. Indeed, the
frontiers allow working only on active vertices, i.e., all and



Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 18 of 100

only vertices whose tentative distance has been modified
and, thus, that must be considered for the relax procedure
at the next iteration.

The result is a double numeric matrix (i.e., dis-
tances and predecessors), which are retrieved from the
GPU device to R through the Rcpp/C++ layer. They
are obtained by invoking the cuRnet functions CUR-
NET_SSSP and CURNET_SSSP_DISTS for the matrix
of shortest paths (returned as lists of predecessor
vertices) and the corresponding source-destination
distances:

ret <- cuRnet_sssp(g, c(sources))

dists = ret[["distances"]]

preds = ret[["predecessors"]]

Parallel implementation of strongly-connected
components for GPU
cuRnet implements a multi-step approach that applies
different GPU-accelerated algorithms for SCC decompo-
sition [12]. The algorithm is reported in Additional file 1:
Section 1. The multi-step approach consists of 3 phases.
In the first phase it iterates a trimming procedure to iden-
tify and delete vertices of G that form trivial SCCs (i.e.,
vertices with no active successors or predecessors). In the
second phase it iterates a forward-backward algorithm to
identify the main components. The first step is related
to the choice of the pivot for each set, where heuristics
can be applied to maximize vertices coverage within a
single iteration. Forward and backward closure is then
computed from this vertex, and up to four subgraphs are
generated. The first one is the component which the pivot
belongs to, and it is calculated as the intersection of the
forward and backward closure. The other three sets are
SCC-closed subgraphs that can be processed in parallel
at the next iteration. They correspond to the non-visited
vertices in the current set, to the forward closure but not
to the backward one, and to the backward-reachable ver-
tices, respectively. In the third phase the approach runs a
coloring algorithm to decompose the rest of the graph. A
unique color is firstly assigned to each vertex. The max
color is then propagated to the successor non-eliminated
vertices until no more updates are possible. Pivots are cho-
sen as the vertices which color is unchanged. Running the
backward closure from these vertices on the correspond-
ing set, cuRnet detects the components labelled with
that color.

The cuRnet SCC computation results in a vector of
associations between vertices and strongly component
IDs. It is retrieved from the GPU device to R through the
Rcpp/C++ layer and obtained by invoking the following
cuRnet function:

scc_ids <- cuRnet_scc(g)

Results
We evaluated the cuRnet performance by comparing its
execution time with the corresponding sequential imple-
mentations provided in the iGraph R package (http://
igraph.org/r/). The cuRnet software requires a GPU device
with compute capabilities at least 3.0. We performed tests
on two different GPU devices running on a machine
equipped with an AMD Phenom II X6 (3GHz) host pro-
cessor, 64 GB RAM, Ubuntu 14.04 OS, and CUDA Toolkit
v 8.0. The first device is an NVIDIA Maxwell GeForce
GTX 980 GPU having 16 SMs (2048 CUDA cores) and
8 GB of GDDR5 memory, and it is capable of concur-
rently executing 32,768 threads. The second device is an
NVIDIA Tesla K40 comprised of 12 GB of GDDR5 mem-
ory and 15 SMs (2880 CUDA cores), and it is able of con-
currently executing 30,720 threads The two GPU devices
have equal memory technology but they differ in the num-
ber of threads that they can concurrently execute and in
the internal architecture. The technology of the Maxwell
architecture is more recent than the Tesla one. For these
reasons, the first device is expected to show better per-
formances, compared with the second device, in many
applications. In what follows, we show the main results we
obtained by running tests on the Maxwell device, while
we run a subset of the benchmarks on the Tesla device
to show a comparison of performance between the two
architectures.

Data
We used the STRING dataset [13], which mainly con-
tains Protein-Protein Interaction (PPI) networks of several
organisms, varying from microbes to eukaryotes. We used
the R package STRINGdb to download the data. We refer
the reader to Additional file 1: Section 2 for details on the
data.

We retrieved the undirected unlabeled networks related
to Homo sapiens, Danio rerio and Zea mais (see
Additional file 1: Figures S2, S3 and S4 for a descrip-
tion of the network characteristics). Those species were
chosen among the organisms having the largest networks
stored in STRING, to cover the biological diversity that
can be encountered in performing analysis of biological
networks. For each network, we varied the threshold on
the assigned edge scores to obtain sparse as well as dense
networks.

We created a benchmark of undirected label networks by
using the pvalues of differential expression values regard-
ing the treatment of A549 lung cancer cells by means of
Resveratrol, a natural phytoestrogen found in red wine
and a variety of plants shown to have protective effects
against the disease [13] (see Additional file 1: Figure S5).
We used such values to label the above networks.

We also created a set of directed unlabelled networks
(see Additional file 1: Figure S6) as follows. We used

http://igraph.org/r/
http://igraph.org/r/


Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 19 of 100

the complete set of 115 archaea species to create homol-
ogy networks having incremental amount of involved
organisms. The homology information between proteins
is measured by sequence BLAST alignments. For each
protein, STRING reports the best BLAST hits [18], w.r.t.
the given species. Horizontal gene transfer is a frequent
phenomenon in microbes [19], and homology networks
are used to search for gene families shared by several
organisms [20].

The running time to create graph data structures in
cuRnet and iGraph from the above datasets is reported
in Additional file 1: Figures S7 and S8. In general,
cuRnet requires half the time of iGraph to perform
such a task.

cuRnet performance
We tested cuRnet BFS on undirected unlabeled networks
and SSSP on undirected labeled networks related to Homo
sapiens, Danio rerio and Zea mais by varying the number
of sources ranging from just to few vertices to a 20% of ver-
tices. Figures 2 and 3 (see also Additional file 1: Figures S9
and S10) show the execution time of the BFS and SSSP,
as well as the corresponding speedup w.r.t. the sequential

counterpart. Running times were evaluated as an average
of 10 runs.

Additional file 1: Figures S11, S12, S13 and S14 show
the total running time including the call to the function
primitives, plus the time required for building the graph
data structures. Highly functional networks have small
sizes and the execution time of the two implementations is
in terms of few seconds, obtaining however speedups up
to 5×. The time of both packages highly depends on the
number of source vertices, but the slope of cuRnet is sen-
sibly lower than iGraph. On average, iGraph shows similar
performance up to a small percentage of sources (0.5%).
Above that, cuRnet shows up to 15× speedup w.r.t. the
sequential counterpart. The time requirements and the
general speedup are similar for the three species.

We tested cuRnet SCC performance on directed
unlabelled networks representing inter-species proteins
homology. Figure 4 shows the running time and corre-
sponding speed-ups by increasing the size of the extracted
homology networks, up to the final one of 114 species. As
for the previous benchmarks, running times were evalu-
ated as an average of 10 runs. Additional file 1: Figure S15
reports the total running time including the graph data

Fig. 2 cuRnet performance vs iGraph on computing breath first search. Three different score thresholds, 0, 200 and 900, were applied, and different
amounts of source vertices were selected



Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 20 of 100

Fig. 3 cuRnet performance vs iGraph on computing shortest paths distances. Three different score thresholds, 0, 200 and 900, were applied, and
different amounts of source vertices were selected. The underlying charts show running times of cuRnet and iGraph in calculating distance of
shortest paths within the PPI of the selected species for every combination of score threshold and amount of selected sources

structure generation. cuRnet shows an extremely low
slope w.r.t. iGraph, and the speedup increases by increas-
ing the network size up to a maximum of 14×. Additional
file 1: Figures S16, S17 and S18 report the performance of
cuRnet measured by running the software on two differ-
ent GPU architectures. Regarding BFS, the device with the
Maxwell architecture outperforms the Tesla device, how-
ever also the less recent device shows good speed-ups, up
to 10×, w.r.t. iGraph.

Finally, we tested a modified version of PCSF R package
[16] where the original sequential SSSP implementation
has been replaced by the parallel SSSP implementation of
cuRnet. PCSF, taken an input network, may give prizes
to vertices according to the measurements of differential
expression, copy number, or number of gene mutations.
After scoring the interactome, the PCSF identifies high-
confidence subnetworks, the neighborhoods in interac-
tion networks potentially belonging to the key pathways
that are altered in a disease. It also interactively visual-
izes the resulting subnetworks with functional enrichment
analysis. The running time of the PCSF module is highly
dominated by SSSP computations and the application of

the cuRnet SSSP provided up to 9× speedup for the
total execution times of the PCSF (see Fig. 5). This
allows for even more rigorous computations on larger
networks.

Discussion
cuRnet allows users to quickly retrieve ncRNA-pathway
associations and individual genes contributing to them. To
evaluate the cuRnet performance in making highly con-
fident ncRNA function predictions, we analysed a case
study with the well-known lncRNA involved in cancer
called MALAT1. Noncoding RNAs (ncRNAs) are emerg-
ing as key molecules in human cancer but only a small
number of them has been functionally annotated [15].
Using the guilt-by-association principle is possible to infer
functions of lncRNAs on a genome-wide scale [21]. This
approach identifies protein coding genes significantly cor-
related with a given lncRNA using gene-expression analy-
sis. In combination with enrichment strategies, it projects
functional protein coding gene sets onto mRNAs corre-
lated with the lncRNA of interest, generating hypotheses
for functions and potential regulators of the candidate



Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 21 of 100

Fig. 4 cuRnet performance vs iGraph on computing strongly connected components. Running times, and corresponding speed-ups, of cuRnet and
iGraph on increasing the size of the extracted homology network, up to the final one of 114 species. Left-side charts show total running, includes
the call to the SCC primitive, plus the time required for construction of graph data structures. Right-size charts show comparisons performed by
timing only the execution of the SCC algorithm

lncRNA. We used a public RNA sequencing dataset of
21 prostate cancer cell lines sequenced on the Illumina
Genome Analyzer and GAII (GEO accession number
GSE25183) and built up a large-scale gene association
network using cuRnet SCC (Pearson method as pair-
wise correlations). We extracted the sub-networks where
MALAT1 is present and calculated single-source shortest
paths, mean distance of shortest paths within this subnet-
work, and mean distance of shortest paths over the whole
big graph. Gene Set Enrichment Analysis (GSEA) was car-
ried out to identify associated biological processes and
signalling pathways [22]. We computed overlaps of genes
in the MALAT1 sub-networks with gene sets in MSigDB

C2 CP (Canonical pathways) and hallmark gene sets
[22]. Several cancer related pathways such as epithelial
mesenchymal transition (EMT) and DNA replication
were enriched, which implies that MALAT1 sub-networks
might be involved in the metastasis related pathways
[23]. In addition, we identified an over-representation
of gene sets that corresponds to the validated MALAT1
functionality reported in the literature: cell cycle, e2f-
targets, proliferation, B-MYB-related, and G2M check-
point [14, 24].

We applied the PCSF to analyze Diffuse large B-cell
lymphoma (DLBCL), which is the most common form
of human lymphoma. Based on gene expression profiling



Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 22 of 100

Fig. 5 Performance of the GP-GPU aided PCSF package versus its serial counterpart. Charts show running time and related speed-ups of the original
PCSF R package and the modified version where the SSSP primitive of the Boost library has been replaced with the GP-GPU based approach, named
cuPCSF. Tests were performed on the human direct label PPI network by applying three score thresholds. Right-side charts show performances for a
single PCSF run, while charts on the right side show executions of randomized selections. The GP-PGU based PCSF reaches speed-ups up to 9×. The
parallelized version outperforms better on increasing the network size as well as the amount of terminal vertices. Randomization procedures
introduce additional non-parallelized steps performed by the methodology, thus speed-ups reach a maximum of 5×

studies DLBCL can be divided into two subgroups, the
germinal center B-cell (GCB) and the activated B-cell like
(ABC), with different clinical outcome and response to
therapies [25, 26]. Therefore, it is important to understand
underlying molecular mechanism of two subtypes. A pub-
lic gene expression datasets GSE10846 from Gene Expres-
sion Omnibus online repository (https://www.ncbi.nlm.
nih.gov/geo) has been used in the analysis. The dataset is
composed of 350 patients being 167 ABC and 183 GCB.
We run the PCSF separately for ABC and GCB patients
providing top 100 differentially expressed genes as ter-
minals and their absolute fold changes as prizes. The
STRING database (version 13) [27] is provided as a tem-
plate network by applying some filtering steps described
in [6], which afterwards had 15,405 nodes and 175,821
genes.

An interactive visualization of the subnetwork for
ABC patients is shown in Fig. 6. PCSF also performs
enrichment analysis on subnetworks by employing either
EnrichR [28] API or topGO [29] that can be speci-
fied by the user. For the resulting subnetwork of ABC

patients, the hallmark of ABC-DLBCL, as constitutive
activation of nuclear factor kappa-B (NFKB) signalling,
was confirmed by the enrichment of NFKB pathway
(cluster in purple) and up-regulation of well defined
ABC genes including IRF4, FOXP1, IL6, BATF and
PIM2 among others [30]. In parallel, PCSF subnetwork
for GCB patients (see Additional file 1: Figure S19)
showed activation of the PI3K/Akt/mTOR signalling
pathway (cluster in red) and over-expression of ger-
minal center markers such as BCL6, LMO2, MME
(CD10) and MYBL1, reproducing the findings given
in [30, 31].

Conclusion
cuRnet has been developed to be easy to use both
as a stand-alone analysis application and as a core
primitive to be incorporated in more complex algo-
rithmic frameworks. cuRnet has been structured to
modularly include, as current and future work, a
wide collection of algorithms for biological network
analysis.

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo


Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 23 of 100

Fig. 6 The PCSF subnetworks for ABC patients. The node sizes and edge widths are proportional to the number of appearance in multiple PCSF
runs. Circular nodes are terminals and algorithm uses triangular nodes to connect terminals. Nodes are colored according to subnetwork
membership. The resulting subnetwork for ABC patents was significantly enriched in NFKB pathway (cluster in purple located at top right of the
figure) and composed of up-regulated ABC genes including IRF4, FOXP1, IL6, BATF and PIM2

Additional file

Additional file 1: Supplemental materials. (PDF 1695 kb)

Abbreviations
BFS: Breadth-first search; GPU: Graphic processing unit; PCSF: Prize-collecting
steiner forest; SCC: Strongly connected component; SSSP: Single source
shortest path

Acknowledgements
We thank the Fondo Sociale Europeo provided by Regione del Veneto for
partially supported this work.

Funding
This work has been partially supported by the following projects:
GNCS-INDAM, Fondo Sociale Europeo, and National Research Council Flagship
Projects Interomics; JOINT PROJECTS 2016-JPVR16FNCL; JOINT PROJECTS
2017-B33C17000440003; project of the Italian Ministry of Education,
Universities and Research (MIUR) “Dipartimenti di Eccellenza 2018-2022”.
Publication costs have been founded by the Department of Computer
Science, University of Verona (Italy), and the Institute of Oncology Research
(Switzerland).

Availability of data and materials
Data and materials are available at the web site https://bitbucket.org/curnet/
curnet.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 10, 2018: Italian Society of Bioinformatics (BITS): Annual
Meeting 2017. The full contents of the supplement are available online at
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-
19-supplement-10.

Authors’ contributions
LC, NB, IK and RG designed the model. VB, FB (Busato), SA, MA implemented
the model. AAC and FB (Bertoni) validated the model. All authors contributed
to the writing of the manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, University of Verona, Strada le Grazie, 15,
Italy, Verona, Italy. 2Institute of Oncology Research (IOR), Via Vincenzo Vela 6,
Bellinzona, Switzerland.

https://doi.org/10.1186/s12859-018-2310-3
https://bitbucket.org/curnet/curnet
https://bitbucket.org/curnet/curnet
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-10
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-10


Bonnici et al. BMC Bioinformatics 2018, 19(Suppl 10):356 Page 24 of 100

Published: 15 October 2018

References
1. Scardoni G, Tosadori G, Faizan M, Spoto F, Fabbri F, Laudanna C.

Biological network analysis with centiscape: centralities and experimental
dataset integration. F1000Research. 2014;3.

2. Rinnone F, Micale G, Bonnici V, Bader GD, Shasha D, Ferro A, Pulvirenti A,
Giugno R. Netmatchstar: an enhanced cytoscape network querying app.
F1000Research. 2015;4.

3. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein
function. Mol Syst Biol. 2007;3(1):88.

4. Simões SN, Martins-Jr DC, Brentani H, Fumio R. Shortest paths ranking
methodology to identify alterations in PPI networks of complex diseases.
In: Proceedings of the ACM Conference on Bioinformatics, Computational
Biology and Biomedicine. ACM; 2012. p. 561–3.

5. Moon JH, Lim S, Jo K, Lee S, Seo S, Kim S. PINTnet: construction of
condition-specific pathway interaction network by computing shortest
paths on weighted PPI. BMC Syst Biol. 2017;11(2):15.

6. Akhmedov M, LeNail A, Bertoni F, Kwee I, Fraenkel E, Montemanni R.
A Fast Prize-Collecting Steiner Forest Algorithm for Functional Analyses in
Biological Networks. In: International Conference on AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems. Springer; 2017. p. 263–76.

7. Alaimo S, Bonnici V, Cancemi D, Ferro A, Giugno R, Pulvirenti A.
DT-Web: a web-based application for drug-target interaction and drug
combination prediction through domain-tuned network-based
inference. BMC Syst Biol. 2015;9(3):4.

8. Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing
units in bioinformatics, computational biology and systems biology. Brief
Bioinform. 2016;18(5):870–85.

9. Gentleman RC, et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol. 2004;5(10):80.

10. Federico B, Nicola B. BFS-4K: an efficient implementation of BFS for kepler
GPU architectures. IEEE Trans Parallel Distrib Syst. 2015;26(7):1826–38.

11. Busato F, Bombieri N. An Efficient Implementation of the Bellman-Ford
Algorithm for Kepler GPU Architectures. IEEE Trans Parallel Distrib Syst.
2016;27(8):2222–3.

12. Stefano A, Jiri B, Nicola B, Federico B, Milan C. Parametric multi-step
scheme for gpu-accelerated graph decomposition into strongly
connected components. In: Euro-Par 2016: Parallel Processing Workshops
- Euro-Par 2016 International Workshops, Grenoble, France, August 24-26,
2016, Revised Selected Papers. 2016. p. 519–31.

13. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A,
Lin J, Minguez P, Bork P, Von Mering C, et al. string v9. 1: protein-protein
interaction networks, with increased coverage and integration. Nucleic
Acids Res. 2012;41(D1):808–15.

14. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y,
Gorospe M, Prasanth SG, Lal A, Prasanth KV. Long noncoding rna malat1
controls cell cycle progression by regulating the expression of oncogenic
transcription factor b-myb. PLoS Genet. 2013;9(3):1–18.

15. Huarte M. The emerging role of lncrnas in cancer. Nat Med. 2015;21:1253.
16. Akhmedov M, Kedaigle A, Chong R, Montemanni R, Bertoni F, E F,

Kwee I. Pcsf: An r-package for network-based interpretation of
high-throughput data. PLoS Comput Biol. 2017;13(7).

17. Cormen T, Leiserson C, Rivest R, Stein C. Introduction to Algorithms. MIT
press; 2009.

18. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein
families. Science. 1997;278(5338):631–7.

19. Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the
web of life. Nat Rev Genet. 2015;16(8):472–82.

20. Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV,
Mushegian A. A low-polynomial algorithm for assembling clusters of
orthologous groups from intergenomic symmetric best matches.
Bioinformatics. 2010;26(12):1481–7.

21. Mestdagh P, Fredlund E, Pattyn F, Rihani A, Van Maerken T, Vermeulen J,
Kumps C, Menten B, De Preter K, Schramm A, et al. An integrative
genomics screen uncovers ncrna t-ucr functions in neuroblastoma
tumours. Oncogene. 2010;29:3583–92.

22. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics.
2011;27(12):1739–40.

23. Wang D, Ding L, Wang L, Zhao Y, Sun Z, Karnes RJ, Zhang J, Huang H.
Lncrna malat1 enhances oncogenic activities of ezh2 in castration-resistant
prostate cancer. Oncotarget. 2015;6(38):41045.

24. Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, Revenko A,
Arun G, Stentrup M, Groß M, et al. The noncoding rna malat1 is a critical
regulator of the metastasis phenotype of lung cancer cells. Cancer Res.
2013;73(3):1180–9.

25. Testoni M, Zucca E, Young K, Bertoni F. Genetic lesions in diffuse large
b-cell lymphomas. Ann Oncol. 2015;26(6):1069–80.

26. Dalla-Favera R. Molecular genetics of aggressive b-cell lymphoma.
Hematol Oncol. 2017;35(S1):76–9.

27. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P, et al. The string database in 2011:
functional interaction networks of proteins, globally integrated and
scored. Nucleic Acids Res. 2010;39(suppl_1):561–8.

28. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR,
Ma’ayan A. Enrichr: interactive and collaborative html5 gene list
enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128.

29. Alexa A, Rahnenfuhrer J. topgo: enrichment analysis for gene ontology.
R Package Version. 2010;2(0).

30. Roschewski M, Staudt LM, Wilson WH. Diffuse large b-cell lymphoma
[mdash] treatment approaches in the molecular era. Nat Rev Clin Oncol.
2014;11(1):12–23.

31. Pon JR, Marra MA. Clinical impact of molecular features in diffuse large
b-cell lymphoma and follicular lymphoma. Blood. 2016;127(2):181–6.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Parallel implementation of breadth-first search for GPUs
	Parallel implementation of single-source-shortest-path for GPU
	Parallel implementation of strongly-connected components for GPU

	Results
	Data
	cuRnet performance

	Discussion
	Conclusion
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

