
Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353
https://doi.org/10.1186/s12859-018-2301-4

RESEARCH Open Access

A GPU-based algorithm for fast node label
learning in large and unbalanced biomolecular
networks
Marco Frasca1*, Giuliano Grossi1, Jessica Gliozzo2, Marco Mesiti1, Marco Notaro1,
Paolo Perlasca1, Alessandro Petrini1 and Giorgio Valentini1

From Italian Society of Bioinformatics (BITS): Annual Meeting 2017
Cagliari, Italy. 05-07 July 2017

Abstract

Background: Several problems in network biology and medicine can be cast into a framework where entities are
represented through partially labeled networks, and the aim is inferring the labels (usually binary) of the unlabeled
part. Connections represent functional or genetic similarity between entities, while the labellings often are highly
unbalanced, that is one class is largely under-represented: for instance in the automated protein function prediction
(AFP) for most Gene Ontology terms only few proteins are annotated, or in the disease-gene prioritization problem
only few genes are actually known to be involved in the etiology of a given disease. Imbalance-aware approaches to
accurately predict node labels in biological networks are thereby required. Furthermore, such methods must be
scalable, since input data can be large-sized as, for instance, in the context of multi-species protein networks.

Results: We propose a novel semi-supervised parallel enhancement of COSNET, an imbalance-aware algorithm build
on Hopfield neural model recently suggested to solve the AFP problem. By adopting an efficient representation of the
graph and assuming a sparse network topology, we empirically show that it can be efficiently applied to networks
with millions of nodes. The key strategy to speed up the computations is to partition nodes into independent sets so
as to process each set in parallel by exploiting the power of GPU accelerators. This parallel technique ensures the
convergence to asymptotically stable attractors, while preserving the asynchronous dynamics of the original model.
Detailed experiments on real data and artificial big instances of the problem highlight scalability and efficiency of the
proposed method.

Conclusions: By parallelizing COSNET we achieved on average a speed-up of 180x in solving the AFP problem in the
S. cerevisiae, Mus musculus and Homo sapiens organisms, while lowering memory requirements. In addition, to show
the potential applicability of the method to huge biomolecular networks, we predicted node labels in artificially
generated sparse networks involving hundreds of thousands to millions of nodes.

Keywords: GPU-based Hopfield nets, Large-sized networks, Protein function prediction, Biological networks, Node
label prediction

*Correspondence: frasca@di.unimi.it
1AnacletoLab - Department of Computer Science, Università degli Studi di
Milano, Via Comelico 39, 20135 Milano, Italy
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2301-4&domain=pdf
mailto: frasca@di.unimi.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 64 of 100

Background
The Automated Function Prediction of proteins (AFP)
conveys the need of annotating the huge amount of
protein sequences with their biomolecular functions.
High-throughput sequencing technologies are rapidly
increasing the gap between known protein sequences and
proteins with experimentally annotated functions; indeed,
more than 60 millions of protein sequences are available
at the UniProt repository [1], and for instance less than 1%
of these sequences have manually curated annotations in
SwissProt [2]. Accordingly, the computational assignment
of the biological functions to the proteins of an organism
can greatly help in reducing this gap [3]. From this point
of view, AFP can be modeled as a set of binary classifica-
tion problems on graphs (one for every function), where
nodes represent proteins, edges encode their functional
similarity, and nodes are labeled according to the current
function (see Fig. 1). Two main characteristics of AFP are
the large imbalance between positive (proteins annotated
with the function under study) and negative nodes (the
remaining proteins), and the large size of the input graph,
since networks can contain millions of proteins (see for
instance multi-species protein networks [4]).

Numerous graph/network-based approaches have been
proposed by the scientific community to deal with
the AFP problem, ranging from methods relying on the
guilt-by-association principle [5], assuming proteins topo-
logically close in the graph are likely to share their func-
tions, to label propagation algorithms based on Markov
[6] and Gaussian Random Fields [7–10]. Other studies
based their evaluation on global [11] and local conver-
gence properties, the latter one exploiting Hopfield net-
works (HNs) [12], and parametric variants of this model
[13–15], including an extension of the Hopfield model

Fig. 1 AFP problem as a set of binary classification problems. The aim
is determining the color/label of unlabeled nodes/proteins, given the
graph topology and the labels of the known part of the graph

to a multi-category context [16, 17], where nodes are
inherently partitionable into separated categories (e.g. in
the multi-species protein networks). In addition, since
most AFP approaches exploit a protein neighborhood to
infer the functions of that protein, some works intro-
duced a generalization of the notion of pairwise-similarity
among nodes by taking into account the contribution of
neighbors shared by nodes [18, 19]. Finally, other rele-
vant studies adopted techniques based on random walks
[20–22], kernel matrices [23, 24], communities [25] and
co-citations [26].

Despite their large diversity and their effectiveness in
solving the AFP problem, most of the above mentioned
methods neglect the class-imbalance problem, leading to
classifiers tending to learn mainly the negative class, thus
often obtaining a sensible deterioration of their perfor-
mance [27]. Moreover, they do not suitably scale with the
input size, in terms of both memory usage and execution
time, since they usually adopt matrix representations to
embed the graph (without exploiting the graph sparsity),
and basically utilize sequential programming in their
model design. Indeed, recent and interesting works pro-
posed to use secondary memory-based technologies to
exploit the large disks available in standard computers to
apply to big data standard graph-based semi-supervised
learning algorithms; nevertheless, this can be done at the
expense of the efficiency, since the swapping between
secondary and primary memories data increases the com-
putational burden [28].

In this study we propose PARCOSNET (Parallel COS-
NET), a methodology for solving AFP problem specifically
designed to cope with the label imbalance problem and
the big size of input data. It extends COSNET (Cost-
Sensitive Neural Network) [14], a state-of-the-art semi-
supervised method for AFP based on HNs. COSNET
introduces a parametric HN to effectively handle the
label imbalance, but its available implementation [29] still
adopts a matrix representation of input data, allowing its
application (on ordinary off-the-shelf computer) only to
networks with few tens of thousands of nodes.

As first contribution, PARCOSNET reduces the memory
requirements of COSNET by adopting a sparse represen-
tation of both network connections and node labeling,
leveraging the sparsity of input graphs and the scarcity
of positive proteins characterizing data in the AFP con-
text. On the other side, the overall execution time is
remarkably reduced 1) by splitting the HN dynamics
over independent sets of neurons, where nodes in the
same independent set are updated in parallel, and 2)
by exploiting Graphics Processing Unit (GPUs) devices
under the CUDA (Compute Unified Device Architecture)
parallel programming model [30] to use one or multiple
GPUs in parallel along with the CPU. Specifically, multi-
ple GPU cores are assigned to a single independent set,

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 65 of 100

thus updating in parallel the neurons within each inde-
pendent set, while independent sets are in turn sequen-
tially updated to preserve the HN convergence properties.
Considering that usually multiple GO terms should be
predicted for each protein, the proposed implementation
adds another level of parallelism through the multithread-
ing execution, where each CPU thread is given an instance
of the AFP problem (a function to be predicted), and mul-
tiple threads are run in parallel (each using multiple cores
in parallel). This thereby results in a noticeable speed-up
with regard to the original COSNET implementation.

We evaluated the PARCOSNET gain in terms of both
memory requirements reduction and execution speed-up
by testing COSNET and PARCOSNET in predicting the
Gene Ontology functional terms [31] for three eukary-
otic organisms. Furthermore, synthetic graphs of different
sizes, from hundreds of thousands to millions of nodes,
and of different densities have been generated to empir-
ically show the applicability of PARCOSNET on large
networks.

PARCOSNET source code has been publicly released for
evaluation and testing purposes, and is available on the
official AnacletoLab GitHub repository, at [32].

Methods
Experimental data
This section is devoted to the description of both real and
artificial networks used in throughout the paper.

Real data. Three organisms have been considered for the
AFP problem, namely Homo sapiens (human) and two
model organisms S.cerevisiae (yeast) and Mus musculus
(mouse). The input networks have been retrieved from the
STRING database, version 10.0 [4]: the STRING networks
are highly informative networks merging several sources
of information about proteins, coming from databases col-
lecting experimental data like BIND, DIP, GRID, HPRD,
IntAct, MINT or from databases collecting curated data
such as Biocarta, BioCyc, KEGG, Reactome. The total
number of proteins is 6391, 21151 and 19576 for yeast,
mouse and human organisms, respectively.

All networks have one large connected component, with
human and mouse networks with one or more smaller
connected components. Furthermore, the human net-
work is the most compact, having the smallest ratio

between the number of nodes and the network diameter
(see Table 1 for the network topological characteristics).

In the STRING database each protein-protein connec-
tion is associated with a confidence score: in principle,
discarding edges with confidence score lower than a fixed
threshold would allow to select more reliable connections;
on the other side, it would generate isolated proteins (pro-
teins with no connections), which accordingly should be
discarded from the analysis. Since the aim of this study is
supplying a methodolgy able to work on large networks,
no edge threshold has been applied, thus including all
available proteins.

Protein networks have been normalized as follows:
denoted by Ŵ the matrix obtained from the STRING con-
nections, the final network W is obtained by applying the
normalization

W = D−1/2Ŵ D−1/2,

where D is a diagonal matrix with non-null elements dii =∑
j Ŵij. Note that W is still symmetric.
Protein functional annotations have been retrieved from

the Gene Ontology (GO) database, using the UniProt
GOA releases 69 (9 May 2017), 155 (6 June 2017) and 168
(9 May 2017) respectively for yeast, mouse and human
organisms. The GO terms have been selected from all the
three branches Biological Process (BP), Molecular Func-
tion (MF), and Cellular Component (CC), by considering
terms with at least 50 annotated proteins with experi-
mental evidence, in order to obtain a minimal amount of
information for the prediction of GO terms. The num-
ber of the resulting GO terms is summarized in Table 2.
The mapping from UniProt to STRING protein identifiers
was carried out according to the mapping files provided at
UniProt repository.

Artificial data. In order to assess the performances in
terms of computational time and memory consumption
over larger datasets, the parallel implementation has also
been tested on several artificial datasets which have been
randomly generated. For random graphs we use the Erdős
model in which the graph size n and the probability p to
have an edge between a pair of nodes are fixed. In partic-
ular, the range chosen for n goes from 5 · 105 to 1.5 · 106,
while for p we chose values so as to reproduce a graph
density σ = np close to that of real biological network.

Table 1 Characteristics of protein networks

Organism Nodes Average degree Components Largest component size Diameter Weighted diameter

Yeast 6391 314.0563 1 6391 6 1.0925

Mouse 21151 596.3804 21 21105 9 1.8362

Human 19576 579.9477 2 19574 6 1.0302

Column Components denotes the number of connected components in the network, whereas Largest component size is the number of nodes in the largest
connected component. Diameter is the number of edges on the longest path between two nodes, without considering edge weights

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 66 of 100

Table 2 Number of GO terms with at least 5 annotations

Organism CC MF BP

Yeast 50 74 191

Mouse 85 112 733

Human 115 193 580

Edge weights were uniformly generated in [0, 1], while the
corresponding set of labels has been generated so as to
respect the unbalancing of realistic cases.

We run PARCOSNET, with the resulting 9 artificial
datasets and recorded the computation time and memory
consumption.

Automated protein function prediction
In the context of the automated protein function predic-
tion (AFP), proteins are represented by a set of nodes
V = {1, 2, . . . , n}, and relationships between proteins are
encoded through a symmetric n × n real weight matrix
W, whose elements wij represent functional similarities
between pairs (i, j) of proteins.

For a given functional class, the nodes V are labeled
with {+, −}, leading to the subsets P and N of positive
and negative nodes. For most existing taxonomies for AFP
usually the functional labeling is known only for a subset
S ⊂ V , while is unknown for U = V \ S. Moreover, let be
S+ = S ∩ P and S− = S ∩ N .

The Automated protein function prediction problem
consists in finding a bipartition (U+, U−) of U, where U+
and U− are the subsets of unlabeled proteins considered
as candidate for the classes U ∩ P and U ∩ N , respectively.
From this standpoint, AFP is set as a semi-supervised
learning problem on graphs, since protein functions can
be predicted by exploiting both labeled and unlabeled
nodes/proteins and the weighted connections between
them [33].

COSNET

COSNET (COst Sensitive neural Network) [13, 14] is a
neural algorithm recently proposed to face with the AFP
problem. More specifically, this technique relies on a
parametric family of the Hopfield model [34], where the
network parameters are learned to cope with the label
imbalance and the network equilibrium point is inter-
preted to classify the unlabeled nodes.

Formally, for a given a set of nodes V = {1, . . . , n},
COSNET is a triple H = 〈W , λ, ρ〉, where:

- W ∈ R
n×n is a symmetric weight matrix whose

elements wij ∈ [0, 1] represent the connection
strength between the neurons (nodes) i and j
(naturally wii = 0),

- λ = {λ1, . . . , λn} ∈ R
n denotes the neuron activation

thresholds,

- ρ ∈ [0, π
2) is a parameter which determines the two

neuron activation (state) values {sin ρ, − cos ρ}.
The rationale of the parameter ρ is to conceptually sep-
arate node labels and neuron activation values, since for
classical HNs activation values are in the set {−1(0), 1},
that means node labels and neuron activation values
coincide. Thus, appropriately learning the parameter ρ

allows the algorithm to counterbalance the large imbal-
ance towards negatives (see [14]).

A relevant issue for the correct design of this kind of
recurrent neural networks is the synchronization of its
computing nodes. The Hopfield model is a discrete-time
dynamical system which admits synchronous or asyn-
chronous updating or even both if an hybrid setting is
admitted. In case of asynchronous (sequential) updating,
each unit is updated independently from the others at
any time t. Thus, by denoting with π = π(1), · · · , π(n)

an arbitrary permutation on nodes V and with xπ(i)(t)
the state of neuron π(i) at time t, the dynamics assumes
the form:

xπ(i)(t + 1) =
{

sin ρ, if hπ(i)(t + 1) ≥ 0
− cos ρ, otherwise (1)

where

hπ(i)(t + 1) =
π(i−1)∑

j=π(1)

wπ(i)jxj(t + 1)

+
π(n)∑

j=π(i+1)

wπ(i)jxj(t) − λπ(i).

The convergence properties depend on the weight
matrix structure W and the rule by which the nodes
are updated. In particular, if the matrix is symmetric, it
has been proved that the network converges to a stable
state when operating in asynchronous mode, while it con-
verges to a cycle of length at most 2 when operating in
a synchronous (fully-parallel) mode. The proof of these
properties is grounded on the so-called energy function,
which is non decreasing when the state of the network
x = (x1, x2, . . . , xn) changes as a result of a computation
(1). Since the energy function is upper-bounded, it follows
that the system will converge to some state. In the clas-
sic discrete Hopfield model the energy function has the
following quadratic form:

E(x) = −1
2

xT W x + xTλ. (2)

As a major result, it has been shown that (2) is a Lyapunov
function for the Hopfield dynamical systems with asyn-
chronous dynamics, i.e., for each t > 0, E(x(t + 1)) ≤
E(x(t)) and exists a time t̄ such that E(x(t)) = E(x(t̄)), for
all t ≥ t̄. Moreover, the reached fixed point x̂ = x(t̄) is a
local minimum of (2).

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 67 of 100

The overall scheme of the COSNET algorithm adopting
dynamics (1) can be sketched as follows:

INPUT. A symmetric weight matrix W ∈ [0, 1]n×n, a
labeling function y : V → {+, −}; the subsets
S+, S− and U of positive, negative and unlabeled
instances, respectively; an initial value x(0) ∈ {sin ρ,
− cos ρ, 0}n; a permutation π on the set U.

Step 1. Learn the parameters ρ = ρ̄ and λi = λ̄ ∈ R on
the sub-network restricted to labeled nodes S such
that the state represented by known labels is “as close
as possible” to a minimum of the network energy.

Step 2. Regularize the network dynamics in order to pre-
vent the network stucking into trivial energy minima
by suitably changing the thresholds and the connec-
tion weights (see [14] for more details). Hereafter,
abusing notation, we assume this regularization is
embedded in the connections wij and thresholds λi,
fer each i, j ∈ V .

Step 3. Run the sub-network restricted to unlabeled
nodes embedding the learned parameter ρ̄ and λ̄

until an equilibrium state û is reached. On the base of
state û compute the bipartition (U+, U−) of U into
the positive and negative neurons.

OUTPUT. A bipartition (U+, U−).

Step 1 and 2 allow the method to deal with label-
ing imbalance, since the first step counterbalances the
predominance of negatives in the node neighborhood,
whereas the second step ensures to avoid trivial states
composed of all negative predictions.

Parallel COSNET

The goal of this work is to speed-up the COSNET algo-
rithm by introducing a partial synchronous updating of
the computational units in order to parallelize the net-
work evolution stage while preserving the asynchronous
dynamics. Since in AFP context the weight matrix W is
usually sparse, several nodes are independent from each
others.

The basic idea is thereby to partition the nodes belong-
ing to the undirected graph G = 〈V , EW 〉 (with edge set
EW induced by W) into a small number of independent
subsets, which can be done recasting the problem as a
vertex coloring problem of G.

Let a vertex coloring be a map σ : V → C, where C is
a set of distinct colors. We say that a coloring is proper if
adjacent vertices of G receive distinct colors of C, which in
turn means that if (i, j) ∈ EW , then σ(i)
= σ(j). Clearly,
in any proper vertex coloring of G the vertices that receive
the same color are independent. A k-coloring of a graph G
is a vertex coloring of G that uses at most k colors and G is
said to be k-colorable if it admits a proper vertex coloring
using at most k colors. Hereafter, we denote a proper k-

coloring by a partition P = {V1, . . . , Vk} of the vertex set
V into k independent subsets.

Under this setting it is easy to show that by simultane-
ously updating the nodes of each element Vi of P , one at a
time, whatever the permutation of {1, . . . , k} is, the Hop-
field network asynchronous dynamics is preserved. This
implies that, given an initial state, the network is guaran-
teed to converge to a unique fixed point which is a local
minimum of (2). To see that this property holds, we can
start by observing that each partition P induces a permu-
tation πP (that for sake of notation we simply denote by π)
on the set V such that, for all i = 1, . . . , k, the subse-
quence πi = πi(1), . . . , πi(ni) collects the nodes within
Vi = {πi(1), . . . , πi(ni)}, being ni = |Vi|. The permutation
π , for a fixed P , is then written as the juxtaposition of all
subsequences π = π1, · · · , πk .

It is easy to see now that, synchronously updating all
nodes in the subsequence πi, but asynchronously accord-
ingly to an arbitrary permutation ω = ω(1), . . . , ω(k)

on all subsequence indexes {1, . . . , k}, the constraints pre-
scribed by the asynchronous updating rule are respected.
Indeed, given the permutation π(ω) = πω(1), · · · , πω(k)

induced by a k-coloring P and the permutation ω of
the partition indexes, by applying the following partially-
parallel update

∀u ∈ πω(i), xu(t + 1) =
{

sin ρ, if hu(t + 1) ≥ 0
− cos ρ, otherwise

(3)

where

hu(t + 1) =
∑

v∈πω(1)···πω(i−1)

wuvxv(t + 1) (4)

+
n∑

v∈πω(i+1)···πω(k)

wuvxv(t) − λu.

done in parallel on u ∈ πω(i) and sequentially over
πω(1), · · · , πω(k), we obtain the same attractor as in (1)
with sequential update dictated exactly by π = π(ω).

Therefore, the following PARCOSNET algorithm -
which stands for “Parallel COSNet” - encompassing a
graph coloring strategy and adopting the Hopfield dynam-
ics (3), can be sketched as follows:

INPUT. Idem as in COSNET; a k-coloring P =
{U1, . . . , Uk} of U inducing the permutation π ; a
permutation ω on the first k integers.

Step 1. Idem as in COSNET.
Step 2. Idem as in COSNET.
Step 3. Run the sub-network restricted to unlabeled

nodes embedding the learned parameters ρ̄, λ̄ and
following updating (3) in parallel for nodes in Ui and
sequentially across sets Ui by following the update

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 68 of 100

permutation π(ω) = πω(1), · · · , πω(k) until an equi-
librium state û is reached. On the basis of state
û compute the bipartition (U+, U−) of U into the
positive and negative neurons.

OUTPUT. A bipartition (U+, U−).
Despite the additional computational cost for finding

a suitable k-coloring, PARCOSNET shows a significant
performance speed-up compared to original algorithm,
mainly due to the structure of partition P and the number
of processors N at hand. Although in many applications
it is required to find a partition P having minimum car-
dinality (also called the chromatic number of G), our par-
allelization task is instead aimed at making the evolution
of the Hopfield neural system in COSNET as fast as pos-
sible; therefore, we rather seek a k-coloring able optimize
the computational efficiency of the processors. In the fol-
lowing we discuss some implementation issues regarding
a specific parallel architecture provided by GPUs rather
than to carry out cost analysis for abstract theoretical
models.

GPU Implementation
Originally designed for graphics applications, GPUs have
gradually acquired increasing importance for scientific
computing and computer simulations and their process-
ing power is one order of magnitude higher than current
generation CPUs. This considerable computational power,
due to specific hardware design, has paved the way for
big data applications. For instance, in many domains it
is frequent to address problems on very large graphs,
often involving millions of vertices and graphics accelera-
tor hardware has become a cost-effective parallel platform
to solve them [35].

For this reasons, an implementation of PARCOSNET
specifically targeted to NVIDIA GPUs [32] has been
developed for assessing the effectiveness and perfor-
mances of the algorithm. This implementation has been
developed under the CUDA (Compute Unified Device
Architecture) programming model [30]. Also under the
same programming paradigm, a parallel implementation
of a Greedy Graph Coloring (GGC) algorithm has been
developed for solving the graph coloring problem, as
required by the PARCOSNET algorithm.

A GPU processor is composed by an array of Stream-
ing Multiprocessors (SM), each composed by a variable
number of CUDA cores, depending on the generation of
the GPU. Therefore, a single GPU processor can be seen
as an array of thousands of simplified processing cores
capable of scheduling and concurrently running a very
large number of threads. Threads are executed according
to the SIMT (Single Instruction Multiple Thread) archi-
tecture, a variation of the SIMD execution model (Single
Instruction, Multiple Data) in which every thread in a
block is executed independently.

Both in PARCOSNET and GGC this execution model
feature has been exploited to achieve a high level of fine
grained parallelism: in the GGC algorithm, each node of
the graph is assigned to a thread, while in the Hopfield
dynamics, an entire block of threads, ranging from 32
to 512, is assigned to a neuron for updating its state.
Launching a very large number of threads has a useful
consequence in the CUDA programming model, since it
helps to hide latencies between the processing core and
the on-board video RAM, where data are stored.

One of the major difficulty in GPU programming lies
in managing its complicate memory model, since data
can be stored in different address spaces, each one hav-
ing its own trade-offs in terms of accessing speed and
size; on top of that, CUDA kernels - i.e. programs that
run on the GPU - are able to access only data residing
on the on-board RAM, therefore the host system must
copy the relevant part of data on the GPU before the
actual computation starts, and copy back the results after
the computation ends. Repeatedly copying data back and
forth the GPU causes latencies that slow down the compu-
tation. In PARCOSNET a good trade-off has been achieved
through several strategies. First of all, to cope with the lim-
ited amount of video ram, the graph is stored in the host
RAM by means of a compressed representation, such that
the entire net takes roughly (2×n+2×m) doubles, being
n and m respectively the number of nodes and the num-
ber of edges of the net; this is possible by exploiting the
sparsity of the net. Then, only the unlabeled portion of the
graph is copied into GPU memory and processed, further
reducing the transmitted data volume.

Another strategy to minimize latencies occurring in the
GPU programming model is to reduce the number of
synchronization points between the host system and the
GPU. In an ideal heterogeneous system, the host and the
hardware accelerator should work independently for max-
imizing concurrency, but this does not hold true if the
algorithm requires several synchronization points; when
such events happen, one device may be put to halt, wait-
ing for the other to reach the synchronization point, thus
slowing down the computation. This was the case of
the Greedy Coloring, where each iteration on the GPU
required a validation on the host system. We solved this
issue by writing a coloring kernel which is rather inde-
pendent from the system host, exploiting CUDA Dynamic
Parallelism, where each kernel can spawn a set of sub-
kernels (this is opposed to the traditional kernel launching
model, where only the host system is allowed to launch
computational tasks on the GPU). In this way, the entire
coloring task does not require any synchronization by the
host, which is therefore free to accomplish other tasks and
concurrency between GPU and host is maximized.

In the following subsections, the parallelization schemes
and some implementation issues about the GGC and

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 69 of 100

PARCOSNET algorithms are presented. Also, CPU multi-
threading and memory consumption are briefly discussed.

Parallel Greedy Graph Coloring
As highlighted in previous section, graph coloring is a key
strategy to make an efficient use of parallel (SIMT) archi-
tecture because it allows to split complex tasks into small
independent subtasks that can be carried out concur-
rently. In our setting, each subtask can be identified by the
so called Maximal Independent Set (MIS) of a graph, i.e., a
maximal collection of vertices I ∈ V subject to the restric-
tion that no pair of vertices in I are adjacent. This sub-
graph structure is strictly connected to coloring, because
it represents a common parallel approach for graph color-
ing, leveraging the parallel MIS algorithm as a subroutine
(see the schema in Algorithm 1). In this approach, a
partition P = {V1, . . . , Vk} is conceived as a collection
of MISs yielded by subsequent call of the Luby paral-
lel algorithm [36] (called LUBYMIS in the pseudocode)
which works in a greedy fashion. The idea is that in every
round i it finds a subset Ī ⊂ V which is an indepen-
dent set. Then it adds Ī to the current independent set I,
and removes Ī and its neighbors N (Ī) from the current
graph V ′ (see pseudocode). If Ī ∪ N (Ī) is a constant frac-
tion of |V ′|, then it will only needs O(log |V |) rounds to
determine I. It will instead ensure that by removing such
subset from the graph, it removes a constant fraction of
the edges. The final subset I at round i is then considered
as set Vi in the partition P .

To choose Ī in parallel, each vertex v independently adds
itself to Ī with a well chosen probability p(v). Since we
want to avoid adding adjacent vertices to Ī, we will pre-
fer to add low degree vertices. But, if for some edge (u, v),
both endpoints were added to Ī, then we keep the higher
degree vertex. The above strategy is concisely summed
up in the statement called choice in the GPULUBYMIS
pseudocode.

From an implementation standpoint, the latter proce-
dure has been implemented in SIMT fashion through the
curand library made available within CUDA toolkit. Each
thread handles a node of the whole graph, draws a ran-
dom number between 0 and 1 uniformly distributed and
establishes whether it belongs or not to the MIS under
construction.

Parallel COSNET

In this section, the implementation of the parallel
Hopfield algorithm using CUDA programming model,
sketched in the pseudocode of Algorithm 2, is presented
and analyzed.

To face with the parallelization of the asynchronous
dynamics (broadly described in previous sections), it
should be noted that at the base of this neural architec-
ture there is an intrinsic parallelism in the computation

Algorithm 1 Parallel greedy coloring

Input: graph G = 〈V , E〉
Output: coloring (partition) P = {V1, . . . , Vk}

P ← ∅
i ← 1 � first color
while G
= ∅ do

Vi ← GPULUBYMIS(G)

P ← P ∪ {Vi}
Z ← Vi ∪ N (Vi) � union of Vi with its neighbors
G ← sub〈V − Z, E〉� induced subgraph excluding Z
i ← i + 1 � set new color

end while

procedure GPULUBYMIS(G)
I ← ∅
G′ = 〈V ′, E′〉 ← G = 〈V , E〉
while G′
= ∅ do

choice Ī ⊆ V ′ � select an independent set of G′
I ← I ∪ Ī
Z ← Ī ∪ N (Ī) � union of Ī with its neighbors
G′ ← sub〈V ′ − Z, E〉 � induced subgraph

excluding Z
end while
return I � MIS of G

end procedure

of the activation function (4): each single neuron imple-
ments this simple thresholding function, whose state is
either “active” or “not active”. This state is determined by
calculating the weighted sum of the states of its connected
neurons. If the sum exceeds the threshold, the state will
change to active, otherwise, the neuron will be non-active.
WU is the matrix of connections among nodes in U.

All these observations are captured in what we call
GPUHOPFIELDNET procedure within the pseudocode.
This algorithm naturally exposes two different levels of
parallelism which can be exploited for realizing an effec-
tive scheme well suited for GPU execution. These levels
correspond to two nested and different tasks: the first
consists in concurrently compute the update of all nodes
sharing the same color (i.e., belonging to i-th cluster Vi),
while the second consists in executing in parallel the addi-
tion and thresholding required for the updating of the
state of each neuron. Also, the tasks are characterized by
different granularity, the latter being more fine-grained
than the former.

The first and more coarse-grained task, i.e. concurrently
updating all the nodes having the same color, has been
tackled by sequentially launching k different instances of
the GPUHopfieldNet kernel during each iteration, being k
the number of colors returned by the coloring algorithm.

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 70 of 100

Algorithm 2 PARCOSNET: Hopfield net (Step 3)

Input: net H = 〈WU , λ̄, ρ̄〉, k-coloring P =
{U1, . . . , Uk} of vertices in U
Output: final state û

u ← 0 � net state
nonstop ← true � stop flag
while nonstop do

u′ ← u
for i ← 1, k do

u′ ← GPUHOPFIELDNET(H, Ui, u′)
end for
if u
= u′ then

u ← u′
else

nonstop ← false
end if

end while

procedure GPUHOPFIELDNET(H, U , u)
for all v ∈ U do � in parallel

use SIMT to compute hv � compute (4)

uv ←
{

sin ρ, ifhv ≥ 0
− cos ρ, ifhv < 0 � compute (3)

end for
û ← u
return û � partially update fixed point

end procedure

Note that this approach respects the sequential require-
ments of the Hopfield dynamics. Each kernel is launched
with a different configuration reflecting the number of
nodes belonging to each cluster Vi. In particular, we assign
|Vi| CUDA thread blocks to the i-th kernel, i.e. one CUDA
thread block per node.

To perform the second task, i.e. to update the state
of each neuron, a fixed number nT of threads (ranging
from 32 to 1024) is in turn assigned to each thread block.
To process the weigthed contributions of each neuron
neightborhood, we proceed in SIMT fashion using shared
memory among all threads in the same block and apply-
ing the known primitive called parallel reduction: this is
a tree-based approach used within each CUDA thread
block frequently applied to process very large arrays of N
elements. It can be shown that, having at disposal P CUDA
threads physically in parallel (P processors), the time com-
plexity of the parallel reduction is O(N/P + log N). By
varying nT , the algorithm can be adapted to the density of
the graph: very dense graphs will benefit from an increase
of nT , since more threads will speed-up the evaluation
of the neighborhood and the computation of the parallel
reduction.

CPU multithreading and data representation
On top of the parallelization of the Hopfield dynamics and
graph coloring, PARCOSNET exploits the independence
of protein functions (target classes) to further accelerate
the computation, since as stated in the introduction mul-
tiple AFP problems can be solved concurrently. As shown
in Fig. 2, in PARCOSNET we put this natural additional
level of parallelism by means of CPU multi-threading,
where each target class is assigned to a different CPU
thread. In this implementation, each thread reads a dif-
ferent class labeling, trains the net and then executes the
coloring and Hopfield dynamics on the GPU. This dramat-
ically improves the performances of the overall process
since each AFP instance is independent, therefore multi-
ple instances can be run concurrently. On the other side,
CPU multi-threading implies to share the resources of a
single GPU among multiple CPU threads, leading to seri-
alization latencies. To deal with this problem, we exploited
a CUDA compiler option that allows to assign at run-
time each CPU thread to a different CUDA stream, where
a CUDA stream is a queue of commands or operations
that are executed in a specific order; while operations
on a stream are executed sequentially, operations in dif-
ferent streams may be executed concurrently or out of
order with respect to one another. In the specific case of
PARCOSNET, kernel executions belonging to different
AFP problems are interleaved and executed concurrently.

Also, the algorithm in principle could benefit of addi-
tional GPU devices to split the workload, for instance, in a
system with 2 GPUs, all the odd-numbered CPU threads
might offload the parallel computation to the first GPU,
while the even-numbered to the second GPU.

An issue that arises when working with big datasets is
memory consumption. We chose to adopt a compressed
format for storing the net and the labeling y. Indeed, by
exploiting the sparsity of W, for each node solely its neigh-
bors are kept in memory at run time; moreover, leveraging
the scarcity of positives, only the nodes belonging to the
minority class are maintained, thus saving huge amount of
memory when the input graph contains millions of nodes.

Results
Real data
Although COSNET has already been validated in
[14, 15, 37] to solve AFP, for sake of completeness we
report in Table 2 its performances in predicting the
GO terms. The generalization abilities of COSNET have
been assessed through a 5-fold cross validation (CV),
and evaluated in terms of Precision (the proportion of
positives correctly predicted) and Recall (the proportion
of real positive discovered) combined in the F measure,
which is the harmonic mean of precision and recall. In
this context, where positives are rare, these measures
are more informative than the error rate. Moreover, to

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 71 of 100

Fig. 2 CPU/GPU schema of the PARCOSNET parallelization. Multiple CPU threads are launched in parallel each one solving the AFP problem for a
given class/protein function. The GPU thread blocks, each composed of several CUDA threads, first solve the coloring problem for the graph and
then concurrently process all neurons of a given color, for all colors in sequence. A further fine-grained level of parallelism is finally introduced by
assigning to each neuron a thread block to perform the neuron level local computations

evaluate the ability of COSNET as ranker, we also report
the Area Under the Precision Recall Curve (AUPRC),
measure adopted in the recent CAFA2 international
challenge to evaluate protein ranking [38]. To provide a
protein ranking for COSNET related to the current GO
term, we use the neuron state at equilibrium, as done in
[15, 39]. Table 3 contains the corresponding results
averaged across terms in each GO branch.

The COSNET implementation is publicly available as
an R package [29], where the time consuming procedures
(e.g. parameter learning and Hopfield dynamics) for effi-
ciency reasons are implemented in C language. Moreover,
this package adopts a matrix representation for the input
network, since the R language is optimized for matrix-
based computations.

Table 3 Average COSNET performance in predicting GO protein
functions

Organism Precision Recall F AUPRC

Yeast - CC 0.3467 0.5139 0.4023 0.363

Yeast - MF 0.3317 0.4609 0.3815 0.3237

Yeast - BP 0.4042 0.5231 0.4486 0.4079

Mouse - CC 0.2068 0.2383 0.2198 0.1517

Mouse - MF 0.1861 0.2377 0.2068 0.1411

Mouse - BP 0.1473 0.1725 0.1582 0.0935

Human - CC 0.2238 0.2765 0.2448 0.1709

Human - MF 0.1847 0.2302 0.2032 0.1356

Human - BP 0.1485 0.1793 0.1611 0.0972

Then we tested PARCOSNET on the same data sets,
pointing out that its classification performances are the
same as COSNET. The aim is assessing the computational
speed-up achieved by PARCOSNET with respect to the
already available COSNET implementation. To this end
we tested both versions under the same setting, i.e. 5-fold
cross validation, and the same learning parameters.

PARCOSNET has been executed using 1, 4, 8 and 12
CPU threads; to assess the scalability of the multithread
approach, even the overall CPU occupancy of each exe-
cution has been computed. Also the maximum memory
footprint and the execution time have been collected; the
latter is used to evaluate the speed-up defined as Ts/Tp,
where Ts and Tp are the execution times of sequential and
parallel implementation, respectively.

All tests have been performed on the same host sys-
tem, a workstation having 2 Intel Xeon E5 − 2620v3 CPUs
clocked at 2.40 GHz, 64 GB of RAM memory, 2 TB disk
and Linux Ubuntu 16.04 as operating system. The work-
station is equipped with an NVidia GeForce GTX980 GPU
card, featuring 2048 CUDA cores, 4 GB of dedicated on-
board video memory and having Compute Capability 5.2.
The C++ portion of the code has been compiled wit GCC
5.4.0, while the rest (that is, the CUDA kernels) with
NVCC 8.0.44. As for COSNET, it has been executed under
R version 3.4.2.

Table 4 reports the average execution time in seconds of
COSNET, and PARCOSNET, for computing an entire CV
cycle for a single GO term.

To better evaluate the contribution of multithreading,
Table 6 shows the average CPU occupancy of each execu-
tion of PARCOSNET. Data collected in this table is useful

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 72 of 100

to assess the scalability of the parallelization over the
number of CPU threads. Optimal values for this tables
should be ideally near 100%×n, with n number of threads
assigned to the task. As an example, optimal scalability
for PARCOSNET executed on 12 CPU threads is achieved
when occupancy reaches 1200%.

Finally, to evaluate also the memory usage, Table 7
reports the maximum memory footprint of COSNET and
PARCOSNET when predicting a single GO term. For COS-
NET, memory usage excludes the memory required by the
R interpreter itself, thus counting just the space of objects
created by R and C procedures.

Artificial data
Tests performed on the artificial dataset are aimed to eval-
uate the potential application of PARCOSNET on big data.
We tested the method on single labeling, and accordingly
the method has been executed in a single CPU thread
mode. Table 8 shows the average execution time in sec-
onds and the maximum memory occupancy in GB of
PARCOSNET. Three dataset sizes have been considered,
(each corresponding to a column in the table) and, for
each size, datasets having different density (average degree
per node) have been generated.

Discussion
Real data
The time reduction obtained by PARCOSNET is impres-
sive (Table 4): for instance on mouse data the execution
time is reduced from around 107s to 1.71s, when using a
single thread. Multithreading further accelerates the exe-
cution, passing to 0.54s, 0.33s and 0.28s respectively when
using 4, 8, and 12 CPU threads. To better understand
these results, in Table 5 the speed-up gained by PARCOS-
NET when compared with COSNET is also reported. Even
when using a single thread implementation, PARCOSNET
achieves a speed-up of range 31.64× (yeast) and 62.90×
(mouse), whereas it gains up to two order of magnitude
with respect to COSNET implementation when using in
multithreaded version, up to 383.18× on mouse data.

Moreover, PARCOSNET occupancy is not far from
the optimal value when using 4 threads, while slightly
decreasing (in proportion) when the number of threads

Table 4 Average CPU time in seconds for COSNET and
PARCOSNET to perform a CV cycle on one GO term

Method Yeast Mouse Human

COSNET 8.86 107.57 84.03

PARCOSNET 0.28 1.71 1.49

PARCOSNET 4 0.09 0.54 0.48

PARCOSNET 8 0.07 0.33 0.31

PARCOSNET 12 0.06 0.28 0.26

Table 5 Average speed-up Ts/Tp , where Ts and Tp are the
average execution time of COSNET and PARCOSNET to perform
an entire cross-validation on one GO term

Method Yeast Mouse Human

PARCOSNET 31.64x 62.90x 56.39x

PARCOSNET 4 98.44x 199.20x 175.06x

PARCOSNET 8 126.57x 325.96x 271.06x

PARCOSNET 12 147.66x 384.18x 323.19x

increases (see Table 6). This is due to the fact that all the
CPU threads concurrently access the same GPU, creating
a minor bottleneck in computation. Indeed, we are fairly
sure that adding others GPU to the host system might
significantly improve the occupancy in multithread exe-
cution, since the workload can be equally divided between
the devices.

PARCOSNET has been executed with 1, 4, 8 and 12 CPU
threads, but only the execution of 1 thread is reported,
since the allocation footprints for the 4, 8 and 12 thread
execution are pretty similar: as a matter of fact, maxi-
mum memory consumption is reached before the actual
computation starts, i.e. while importing and compressing
the network file (Table 7). Results show that, thanks to
the compressed representation of both the net and label-
ing, memory usage is remarkably decreased, ranging from
almost the half memory used by PARCOSNET on yeast, to
less than one third on human and mouse.

Artificial data
Interestingly, PARCOSNET is able to predict node labels
on graphs with 1.5 millions of nodes and average degree
300 in around 10 minutes, and using around 32 GB of
RAM, nowadays available on the majority of ordinary off-
the-shelf computers (Table 8). Furthermore, PARCOSNET
shows a good scalability in terms of both computa-
tional time and memory consumption. The execution
time increases less than linearly with the density, and lit-
tle more than linearly with the number of nodes. The
memory usage grows less than linearly with the number
of nodes and little more than linearly with the density.
This is likely due to the fact that most of the memory

Table 6 Average CPU occupancy in percentage for PARCOSNET

to perform a CV cycle on every GO term. Optimal scalability is
achieved when the occupancy reaches 100% × n, with n the
number of CPU threads

Method Yeast Mouse Human

PARCOSNET 99% 100% 100%

PARCOSNET 4 345% 364% 368%

PARCOSNET 8 613% 659% 692%

PARCOSNET 12 815% 941% 975%

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 73 of 100

Table 7 Average memory usage in GigaBytes (GBs) for COSNET

and PARCOSNET when running cross-validation to predict GO
terms

Method Yeast Mouse Human

COSNET 0.40 3.73 3.26

PARCOSNET 0.27 1.13 0.94

consumption occurs with the import and compression of
the net. Nevertheless this limitation can be addressed by
off-line preprocessing the data and then importing the
resulting file in compressed format for PARCOSNET pro-
cessing. This strategy would allow PARCOSNET to process
even larger datasets: as an example, the actual memory
footprint recorded during the computation of the dataset
composed by 1.5 million nodes with the average density of
300 edges per nodes, is around 4 GB of RAM memory and
1 GB of GPU memory, which is a tiny fraction compared
to the maximum quantity of RAM used for compressing
the graph.

Conclusions
PARCOSNET is a method for the automated function
prediction (AFP), well-suited to process large protein
networks with strongly unbalanced labels. PARCOSNET
introduces a parallel and sparse implementation of COS-
NET, a state-of-art imbalance-aware method for predict-
ing protein functions, which allows both to remarkably
speeding up the computation and reducing the memory
requirements. In particular, the dynamics of the Hopfield
network on which COSNET builds upon is parallelized by
solving a vertex coloring problem on the graph/network,
partitioning nodes into sets of independent nodes which
are updated in parallel by using Graphics Processing Unit
(GPUs) devices and CUDA programming. By leveraging
the sparsity of biological networks and of the available
annotated proteins characterizing the AFP context, PAR-
COSNET adopts a sparse representation for both network
connections and protein functions/labels. This, together
with the parallel design and the usage of GPU devices,

Table 8 Average CPU time in seconds and maximum memory
consumption in GB for PARCOSNET to perform a single CV cycle
on one class over the synthetic datasets

Number of nodes

Density (σ) 500k 1000k 1500k

50 Time 45.3 137 330

Memory 1.94 3.86 5.81

100 Time 54.3 166 360

Memory 3.69 7.37 11.1

300 Time 92.9 248 609

Memory 10.7 21.4 32.1

allows to significantly speed-up the computation with
ordinary single-species biological networks, and opens
the avenue to efficiently predict protein functions in large
multi-species networks on ordinary computers, as shown
in the experiments performed with synthetic networks
having millions of nodes and hundreds of millions of
edges.

Abbreviations
AFP: Automated function prediction; CUDA: Compute unified device
architecture; CV: Cross validation; GCC: GNU compiler collection; GO: Gene
Ontology; GPU: Graphics processing unit; HN: Hopfield network; SIMT: Single
instruction multiple thread; SIMD: Single instruction, multiple data

Funding
This study was partially funded by Regione Lombardia, LISA project titled
“HyperGeV : Detection of Deleterious Genetic Variation through
Hyper-ensemble Methods ”, and by Università degli Studi di Milano, project
number 15983, titled “Discovering Patterns in Multi-Dimensional Data”, which
also funded the publication costs.

Availability of data and materials
The code presented in this study is available at https://github.com/
AnacletoLAB/ParCOSNet.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 10, 2018: Italian Society of Bioinformatics (BITS): Annual Meeting
2017. The full contents of the supplement are available online at https://
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-
supplement-10.

Authors’ contributions
The authors equally contributed to the development of the method, its
implementation and in conducting the experiments. All the authors
supervised the study and contributed to write the article, read and approved
the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1AnacletoLab - Department of Computer Science, Università degli Studi di
Milano, Via Comelico 39, 20135 Milano, Italy. 2Department of Dermatology,
Fondazione IRCCS Ca’ Granda„ Ospedale Maggiore Policlinico, 20122 Milan,
Italy.

Published: 15 October 2018

References
1. The UniProt Consortium. UniProt: a hub for protein information. Nucleic

Acids Res. 2015;43(D1):204–212. https://doi.org/10.1093/nar/gku989.
2. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ,

Poux S, Bougueleret L, Xenarios I. In: Edwards D, editor. New York: Springer;
2016, pp. 23–54. https://doi.org/10.1007/978-1-4939-3167-5$_$2.

3. Friedberg I. Automated protein function prediction-the genomic
challenge. Brief Bioinform. 2006;7:225–42.

https://github.com/AnacletoLAB/ParCOSNet
https://github.com/AnacletoLAB/ParCOSNet
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-10
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-10
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-10
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1007/978-1-4939-3167-5$_$2

Frasca et al. BMC Bioinformatics 2018, 19(Suppl 10):353 Page 74 of 100

4. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D,
Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks,
integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):447–52.
https://doi.org/10.1093/nar/gku1003.

5. Oliver S. Guilt-by-association goes global. Nature. 2000;403:601–3.
6. Chaudhari G, Avadhanula V, Sarawagi S. A few good predictions:

Selective node labeling in a social network. In: Proceedings of the 7th ACM
International Conference on Web Search and Data Mining. WSDM ’14.
New York: ACM; 2014. p. 353–62. https://doi.org/10.1145/2556195.
2556241.

7. Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using gaussian
fields and harmonic functions. In: ICML. AAAI Press; 2003. p. 912–19.

8. Tsuda K, Shin H, Scholkopf B. Fast protein classification with multiple
networks. Bioinformatics. 2005;21(Suppl 2):59–65.

9. Zhou D, Bousquet O, Navin Lal T, Weston J, Scholkopf B. Learning with
local and global consistency. In: Advances in Neural Information
Processing Systems. Cambridge: MIT Press; 2004. p. 321–28.

10. Mostafavi S, Ray D, Farley DW, Grouios C, Morris Q. GeneMANIA: a
real-time multiple association network integration algorithm for
predicting gene function. Genome Biol. 2008;9(Suppl 1):4.

11. Vazquez A, Flammini A, Maritan A, Vespignani A. Global protein function
prediction from protein-protein interaction networks. Nat Biotechnol.
2003;21:697–700.

12. Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S.
Whole-genome annotation by using evidence integration in
functional-linkage networks. Proc Natl Acad Sci U S A. 2004;101:2888–93.

13. Bertoni A, Frasca M, Valentini G. Cosnet: A cost sensitive neural network
for semi-supervised learning in graphs. In: Proceedings of the 2011
European Conference on Machine Learning and Knowledge Discovery in
Databases - Volume Part I. ECML PKDD’11. Berlin: Springer; 2011. p.
219–34. https://doi.org/10.1007/978-3-642-23780-5_24.

14. Frasca M, Bertoni A, Re M, Valentini G. A neural network algorithm for
semi-supervised node label learning from unbalanced data. Neural Netw.
2013;43:84–98. https://doi.org/10.1016/j.neunet.2013.01.021.

15. Frasca M. Automated gene function prediction through gene
multifunctionality in biological networks. Neurocomputing. 2015;162:
48–56. https://doi.org/10.1016/j.neucom.2015.04.007.

16. Frasca M, Bassis S, Valentini G. Learning node labels with multi-category
hopfield networks. Neural Comput & Applic. 2016;27(6):1677–92. https://
doi.org/10.1007/s00521-015-1965-1.

17. Frasca M, Bertoni A, Sion A. Neural Nets and Surroundings: 22nd Italian
Workshop on Neural Nets, WIRN 2012, May 17-19, Vietri sul Mare, Salerno,
Italy. A Neural Procedure for Gene Function Prediction. Smart Innovation,
Systems and Technologies. Berlin: Springer; 2013, pp. 179–88. https://doi.
org/10.1007/978-3-642-35467-0$_$19.

18. Chua HN, Sung W-K, Wong L. Exploiting indirect neighbours and
topological weight to predict protein function from protein–protein
interactions. Bioinformatics. 2006;22:1623–30. https://doi.org/10.1093/
bioinformatics/btl145.

19. Bogdanov P, Singh AK. Molecular function prediction using
neighborhood features. IEEE/ACM Trans Comput Biol Bioinforma. 2010;7:
208–17.

20. Szummer M, Jaakkola T. Partially labeled classification with Markov
random walks. In: Advances in Neural Information Processing Systems
(NIPS), vol. 14. Cambridge: MIT Press; 2001. p. 945–52.

21. Azran A. The rendezvous algorithm: Multi- class semi-supervised learning
with Markov random walks. In: Proceedings of the 24th International
Conference on Machine Learning (ICML). New York: ACM; 2007. p. 49–56.
https://doi.org/10.1145/1273496.1273503.

22. Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet. 2008;82(4):
948–58.

23. Valentini G, Armano G, Frasca M, Lin J, Mesiti M, Re M. RANKS: a flexible
tool for node label ranking and classification in biological networks.
Bioinformatics. 2016;32:2872–4. https://doi.org/10.1093/bioinformatics/
btw23.

24. Frasca M, Cesa-Bianchi N. Multitask protein function prediction through
task dissimilarity. IEEE/ACM Trans Comput Biol Bioinforma. 2017;99.
https://doi.org/10.1109/TCBB.2017.2684127. In press.

25. Mislove A, Viswanath B, Gummadi KP, Druschel P. You are who you
know: Inferring user profiles in online social networks. In: Proceedings of

the Third ACM International Conference on Web Search and Data Mining.
WSDM ’10. New York: ACM; 2010. p. 251–60. https://doi.org/10.1145/
1718487.1718519.

26. Bhagat S, Cormode G, Muthukrishnan S. Node classification in social
networks. In: Social Network Data Analytics. Boston: Springer US; 2011.
p. 115–148.

27. Japkowicz N, Stephen S. The class imbalance problem: A systematic
study. Intell Data Anal. 2002;6(5):429–49.

28. Mesiti M, Re M, Valentini G. Think globally and solve locally: secondary
memory-based network learning for automated multi-species function
prediction. GigaScience. 2014;3(1):1–14. https://doi.org/10.1186/2047-
217X-3-5.

29. Frasca M, Valentini G. COSNet: An R package for label prediction in
unbalanced biological networks. Neurocomputing. 2017;237:397–400.
https://doi.org/10.1016/j.neucom.2015.11.096.

30. NVIDIA. CUDA programming guide. 2017. http://docs.nvidia.com/cuda.
Accessed 8 July 2018.

31. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.
Gene ontology: tool for the unification of biology. Nat Genet.
2000;25(1):25–9.

32. AnacletoLab. ParCOSNet official repository. 2017. https://github.com/
AnacletoLAB/ParCOSNet. Accessed 30 Nov 2017.

33. Bengio Y, Delalleau O, Le Roux N. Label Propagation and Quadratic
Criterion. In: Chapelle O, Scholkopf B, Zien A, editors. Semi-Supervised
Learning. MIT Press Scholarship Online; 2006. p. 193–216.

34. Hopfield JJ. Neural networks and physical systems with emergent
collective compatational abilities. Proc Natl Acad Sci. 1982;79(8):2554–8.

35. Harish P, Narayanan PJ. In: Aluru S, Parashar M, Badrinath R, Prasanna
VK, editors. Accelerating Large Graph Algorithms on the GPU Using
CUDA. Berlin, Heidelberg: Springer; 2007, pp. 197–208.

36. Luby M. A simple parallel algorithm for the maximal independent set
problem. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing. STOC ’85. New York: ACM; 1985. p. 1–10.

37. Frasca M, Bertoni A, Valentini G. UNIPred: unbalance-aware Network
Integration and Prediction of protein functions. J Comput Biol.
2015;22(12):1057–74. https://doi.org/10.1089/cmb.2014.0110.

38. Jiang Y, Oron TR, Clark WT, Bankapur AR, D’Andrea D, Lepore R, et al. An
expanded evaluation of protein function prediction methods shows an
improvement in accuracy. Genome Biol. 2016;17(184) .https://doi.org/10.
1186/s13059-016-1037-6.

39. Frasca M, Pavesi G. A neural network based algorithm for gene
expression prediction from chromatin structure. In: IJCNN. IEEE; 2013. p.
1–8. https://doi.org/10.1109/IJCNN.2013.6706954.

https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1145/2556195.2556241
https://doi.org/10.1145/2556195.2556241
https://doi.org/10.1007/978-3-642-23780-5_24
https://doi.org/10.1016/j.neunet.2013.01.021
https://doi.org/10.1016/j.neucom.2015.04.007
https://doi.org/10.1007/s00521-015-1965-1
https://doi.org/10.1007/s00521-015-1965-1
https://doi.org/10.1007/978-3-642-35467-0$_$19
https://doi.org/10.1007/978-3-642-35467-0$_$19
https://doi.org/10.1093/bioinformatics/btl145
https://doi.org/10.1093/bioinformatics/btl145
https://doi.org/10.1145/1273496.1273503
https://doi.org/10.1093/bioinformatics/btw23
https://doi.org/10.1093/bioinformatics/btw23
https://doi.org/10.1109/TCBB.2017.2684127
https://doi.org/10.1145/1718487.1718519
https://doi.org/10.1145/1718487.1718519
https://doi.org/10.1186/2047-217X-3-5
https://doi.org/10.1186/2047-217X-3-5
https://doi.org/10.1016/j.neucom.2015.11.096
http://docs.nvidia.com/cuda
https://github.com/AnacletoLAB/ParCOSNet
https://github.com/AnacletoLAB/ParCOSNet
https://doi.org/10.1089/cmb.2014.0110
https://doi.org/10.1186/s13059-016-1037-6
https://doi.org/10.1186/s13059-016-1037-6
https://doi.org/10.1109/IJCNN.2013.6706954

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Experimental data
	Real data.
	Artificial data.

	Automated protein function prediction
	COSNet
	Parallel COSNet
	GPU Implementation
	Parallel Greedy Graph Coloring
	Parallel COSNet
	CPU multithreading and data representation

	Results
	Real data
	Artificial data

	Discussion
	Real data
	Artificial data

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

