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Abstract

Background: RNA binding proteins play important roles in post-transcriptional RNA processing and transcriptional
regulation. Distinguishing the RNA-binding residues in proteins is crucial for understanding how protein and RNA
recognize each other and function together as a complex.

Results: We propose PredRBR, an effectively computational approach to predict RNA-binding residues. PredRBR is
built with gradient tree boosting and an optimal feature set selected from a large number of sequence and structure
characteristics and two categories of structural neighborhood properties. In cross-validation experiments on the
RBP170 data set show that PredRBR achieves an overall accuracy of 0.84, a sensitivity of 0.85, MCC of 0.55 and AUC of
0.92, which are significantly better than that of other widely used machine learning algorithms such as Support Vector
Machine, Random Forest, and Adaboost. We further calculate the feature importance of different feature categories
and find that structural neighborhood characteristics are critical in the recognization of RNA binding residues. Also,
PredRBR yields significantly better prediction accuracy on an independent test set (RBP101) in comparison with other
state-of-the-art methods.

Conclusions: The superior performance over existing RNA-binding residue prediction methods indicates the
importance of the gradient tree boosting algorithm combined with the optimal selected features.
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Background
Proteins binding with RNA through specific residues have
a profound effect on many biological processes such as
protein synthesis [1], post-transcriptional modifications,
and regulation of gene expression [2–4]. Determining
these protein-RNA binding residues can help to eluci-
date the underlying mechanisms, to control biological
processes, or to design RNA-based drug. Some experi-
mental techniques such as X-ray crystallography, NMR
Spectroscopy and cross-linking approaches, have applied
to investigate protein-RNA interface properties. How-
ever, large-scale experiments are expensive and difficult to
carry out. Developing computational methods to predict
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RNA-binding sites precisely is becoming increasingly
important.
In recent years, sequence and structural properties of

protein-RNA binding residues have been widely analyzed
and investigated [5]. A series of machine learning meth-
ods [6] such as Naive Bayes, support vector machine
(SVM), and random forest (RF), combined with amino
acid sequence or protein three-dimensional structural
characteristics [4, 7], have been proposed to identify
RNA-binding residues. Jeong et al. [8] build a neural net-
work classifier to predict RNA-binding residues based on
protein sequence and structural information. Wang and
Brown [9] develop BindN, an efficient online approach
that uses amino acid sequence and SVM to predict poten-
tial RNA-binding sites. Terribilini et al. [10, 11] pro-
pose a Naive Bayes classifier named RNABindR that
can predict RNA-binding amino acids from 3D protein
structures or protein sequences of unknown structure

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1879-2&domain=pdf
mailto: leideng@csu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Tang et al. BMC Bioinformatics 2017, 18(Suppl 13):465 Page 48 of 58

are most likely to interact with RNA. Liu et al. [12]
implement a RF classifier to detect the RNA binding
residues in proteins by integrating interaction propen-
sity with other sequence and structural features. Other
RNA-binding site prediction methods include PRINTR
[13], RNABindRPlus [14], RBScore [15], NBench [16] and
SNBRFinder [17].
Although existing studies [7, 9–24] have made remark-

able progress to explore the interfaces of protein-RNA
interactions, there is still great room for improvement.
First, precise biological properties for precisely recog-
nizing RNA-binding sites are not fully uncovered; no
single feature can effectively identify protein-RNA inter-
action residues. Second, the number of non-binding sites
is much higher than that of RNA-binding residues, which
yields the so-called imbalance problem. Also, the imbal-
anced data tends to cause over-fitting and poor prediction
results. Thus, developing effective approaches to address
these issues at both data and algorithmic levels, such as
feature extraction and selection, re-sampling techniques
and one-class learning, is a pressing need.
In this work, we propose a novel RNA-binding residue

prediction method named PredRBR, which takes advan-
tage of Friedman’s gradient tree boosting (GTB) [25–27]
and optimal selected features. PredRBR uses the GTB
algorithm to iteratively build multiple classification trees
based on the 44 optimal features selected from a series of
sequence and structural features, especially two categories
of structural neighborhood properties. The promising

results of cross-validation and independent test demon-
strate the effectiveness of PredRBR.

Methods
Datasets
We use RBP170 (previously named as RBP199) [13] as the
training data set. The proteins in RBP199 were obtained
from the protein-RNA complexes in Protein Data Bank
(PDB) [28] as of May 2010. PISCES [29] was used to
remove proteins with < 30% sequence identity or struc-
tures with resolution worse than 3.5Å. Proteins with
residues < 40 or RNA-binding residues < 3 or the binding
RNA with nucleotides < 5 were further excluded. Since
there are 9 complexes (3HUW, 3I1M, 3I1N, 3KIQ, 2IPY,
2J01, 2QBE, 2Z2Q, 3F1E) in PDB obsoleted, a total of 170
protein sequences are generated.
Another independent dataset (BPP101) is collected

from PDB with deposition date from June 2010 to May
2014. Similar to RBP170, only non-redundant and high-
quality RNA-binding proteins are selected (sequence
identity < 30% and resolution better than 3.5 Å). We also
use CD-HIT [30, 31] to remove proteins with sequence
similarity >40% to all proteins in RBP170. Finally, 101
protein sequences are obtained from 90 RNA-binding
complexes.
The two datasets are summarized in Fig. 1. A residue is

defined as an RNA-binding site if there exists at least one
atom in the protein with a distance cutoff < 5.0Å from
an atom of the binding RNA [7, 9–11, 14–24]. RBP170

Fig. 1 Summary of data set generation
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contains 6,754 (14.47%) RNA-binding sites and 39,933
(85.53%) non-binding sites. Figure 2 shows the distribu-
tion of RNA binding and non-binding residues across the
20 amino acids. BPP101 has 2886 RNA binding residues
and 2,9691 Non-binding residues.

Features extraction
A total of 63 sequence and structural site features (SiteFs)
are calculated as follows:
Physicochemical properties (10 features): The ten

physicochemical properties are obtained from the AAin-
dex database [32], including number of atoms, number of
electrostatic charge, number of potential hydrogen bonds,
molecular mass (Mmass), hydrophobicity, hydrophilicity,
polarity, polarizability, propensities and average accessible
surface area [33].
Side-chain environment (pKa, 2 features): The side-

chain environment pKa scores are extracted from Nelson
and Cox [34] representing the side-chain environmental
features of a protein.
Position-specific scoring matrices(PSSMs, 20 fea-

tures): PSSM profiles are quite effective in RNA-binding
site prediction in previous studies [35–37]. We calculate
PSSMs using PSI-BLAST [38] searching against the NCBI
NR database, with iterations = 3 and e-value = 0.001.
Evolutionary conservation score (C-score, 1 feature):

We use Rata4Site [39] to calculate the C-score for each
residue based on the sequence alignments.
Solvent accessible area (ASA, 2 features): ASA prop-

erties are computed using DSSP [40], and the maximum
solvent accessibility are calculated based on Rost and
Sander [41].
Secondary Structure (SS, 3 features): The secondary

structure is also calculated using DSSP. The secondary
structure can be divided into three categories: helix, sheet
and coil. We encode the secondary structure as a 3-d
vector. In the results of DSSP, types G, H and I are helix (1,

0, 0); types B and E are sheet (0, 1, 0); types T, S and blank
are recognized as coil (0, 0, 1).
Interaction propensity (IP, 4 features): Interaction

propensity is first introduced by Liu [12]. The interac-
tion propensity between the residue triplet t and the
nucleotide n is defined as follows:

IP(t, n) =
∑

(P,R)

f(P,R)(t, n) log2
f(P,R)(t, n)

fP(t)fR(n)
, (1)

where

f(P,R)(t, n) = N(P,R)(t, n)∑
t,n N(P,R)(t, n)

(2)

fP(t) = NP(t)∑
P NP(t)

(3)

fR(n) = NR(t)∑
R NR(n)

(4)

In the above formulas, f(P,R)(t, n), fP(t) and fR(n) repre-
sent the frequency of amino acid triplet t that binds to
nucleotide n in the protein-RNA pair (P,R), the frequency
of triplet t in protein P and the frequency of nucleotide
n in RNA R, respectively. N(P,R)(t, n) is the number of
the amino acid triplet t interacting with nucleotide n in
protein-RNA pair (P,R);

∑
t,n N(P,R)(t, n) is the total num-

ber of residue triplets that bind to any nucleotides in the
protein-RNA pair (P,R); NP(t) is the number of triplet
t in protein P;

∑
P NP(t) is the total number of amino

acid triplets; NR(n) is the number of nucleotide n in RNA
R and

∑
R NR(n) is the total number of nucleotides in

the dataset. A total of 32,000 IPs are calculated for the
4 nucleotides and 203 (8,000) residue triplets. For each
residue, four features(IPA, IPU , IPG, IPC) are used to rep-
resent the interaction propensity (IP) of the residue triplet
corresponding to different nucleotides (A, U, G and C).

Fig. 2 Number of RNA-binding and non-binding residues across the 20 amino acids in the RBP170 dataset
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Disorder score (6 features): The disorder score is pred
icted using themethod proposed byObradovic et al. [42, 43].
Atom contacts and residue contacts (2 features): We

calculate the atom contacts (NCa) of an amino acid by
aggregating all-atom contacts (Ca) between the amino
acid and any other residue in the protein, then dividing the
number of atoms in the amino acid, as described in our
previous work [44, 45]. Similarly, we compute the residue
contacts (NCr) by summing all the contacts of the amino
acid and then dividing the number of atoms in the amino
acid.
Pair potentials (PP, 1 feature): Contact potential (CP)

between residue i and j is defined as follows:

CPi,j =
{
Pi,j if |i − j| ≥ 4 and di,j ≤ 7Å,
0 otherwise,

(5)

where Pi,j is the contact potential of pair (i, j) collected
from the work of Keskin et al. [46]; di,j is the distance
between residue i and j. Note that the neighbors of a target
residue are defined as a sphere of a certain radius of 7.0Å
[47] based on the side chain center of mass. The overall
contact potential of residue i (PPi) is calculated as follows:

PPi =
∣∣∣∣∣

N∑

n=1
CPi,j

∣∣∣∣∣ where |i − j| ≥ 4 (6)

Topographical index (1 feature): The topographical
score describes the structural environment of a amino
acid. We compute the rate between structurally neigh-
bor amino acids and the average number of residues for a
specific amino acid type [44, 45, 48].
Local structural entropy (LSE, 2 features): The local

structural entropy [49] of a residue is calculated based
on the protein sequence. The potential of a amino
acid within a secondary structure (β-bridges, extended
β-sheets, 310-helices, α-helices, π-helices, bends, turns
and other types) is estimated. More secondary structures
the residue appeared in, the higher LSE score will be
assigned. We compute the LSE score of a specific residue
by averaging four successive sequence windows along the
protein sequence. We also define a new attribute named
�LSE to measure the difference of LSE value between the
wild-type protein and its mutants.
Four-body statistical pseudo-potential (FBS2P, 1 fea-

ture): The FBS2P score is based on the Delaunay tes-
sellation of proteins [50], which can be calculated as a
log-likelihood ratio:

Rα
ijmn = log

[
f α
ijmn

pα
ijmn

]
, (7)

where i, j, m and n are identities of the four amino acids
(20 possibilities) in a Delaunay tetrahedron of the protein.

Each point represents a residue. f α
ijmn is the observed fre-

quency of the residue composition (ijmn) in a tetrahedron
of type α over a set of protein structures, while pα

ijmn is the
expected random frequency.
Side chain energy score (SCE-score, 6 features): The

SCE-score is a linear combination of multiple energetic
terms, including surface area of atom binding, overlap vol-
ume, hydrogen bonding energy, electrostatic interaction
energy, buried hydrophobic SAS area and buried SAS area
between the target residue and the rest of the protein,
respectively [50].
Voronoi contacts (2 features): The Voronoi contact

is calculated based on the Voronoi neighbors in protein
structure, as described in Ref. [51].
Structural Neighborhood Features (SNF-EDs &

SNF-VDs): In this work, two types of structural neigh-
borhood features (Euclidean and Voronoi) are used. This
two structural neighborhood groups named as SNF-EDs
and SNF-VDs are defined based on Euclidean distance and
Voronoi division [44] respectively. The SNF-EDs is a set
of residues located within a sphere of 10Å in Euclidean
distances from the central residue. The feature i for a
neighbor n (the n-th residue) with regard to the target
residue r (the r-th residue) is defined as follows:

Fi(r, n) =

⎧
⎪⎨

⎪⎩

the value of feature i for residue r if |r − n| ≥ 1
and dr,n ≤ 10Å,

0 otherwise,
(8)

where dr,n is the minimum Euclidean distance between
any heavy atoms of residue r and that of residue n. The
SNF-EDs of target residue r is defined as:

ENi(r) =
m∑

n=1
Fi(r, n), (9)

wherem is the total number of Euclidean neighbors.
We also use Voronoi division to define neighbor

residues. For each protein 3D structure, the 3D space
is partitioned into Voronoi polyhedra around individual
atoms. A pair of residues are defined to be Voronoi neigh-
bors when there exits a Voronoi facet in common for the
two residues. The Qhull package [52] is used to compute
Voronoi division.
Give the target residue r and its neighbors n {n =

1, ...,m}, for each site feature i, a Voronoi neighborhood
property is defined as:

VDi =
m∑

n=1
Pi(n), (10)

where Pi(n) is the value of the residue feature i for neigh-
bor n.



Tang et al. BMC Bioinformatics 2017, 18(Suppl 13):465 Page 51 of 58

Finally, a large number of 63 × 3 = 189 site, Euclidean
and Voronoi characteristics [53] are obtained for RNA-
binding site prediction.

Gradient tree boosting algorithm
The Gradient Tree Boosting (GTB) [25–27] is an
effective ensemble method for regression and clas-
sification issues. Here we apply GTB to predict
RNA binding residues. For the input feature vectors
χi (χi={x1, x2, . . . , xn}, i=1, 2, . . . ,N) with labels yi
(yiε{−1,+1}, i=1, 2, . . . ,N , where “-1” denotes non-
binding resides and “+1” represents RNA-binding sites.
The details of the GTB algorithm is shown in Algorithm 1.

Algorithm 1 The Gradient Tree Boosting Algorithm
Input:

Data set: D = {(χ1, y1), (χ2, y2), ..., (χN , yN )}, χiεχ ,
χ ⊆ R, yiε{−1,+1}; loss function : L(y,�(χ)); itera-
tions = M;

Output:
1: Initialize �0(χ) = arg minc

∑N
i L(yi, c);

2: form = 1 to M do
3: Compute the negative gradient as the working

response

ri = −
[

∂L(yi,�(χi))
∂�(χi)

]

�(χ)=�m−1(χ)

, i = {1, ...,M}
4: Fit a classification model to ri by Logistic func-

tion using the input χi and get the estimate αm of
βh(χ ;α)

5: Get the estimate βm by minimizing
L(yi,�m−1(χi) + βh(χi;αm))

6: Update �m(χ) = �m−1(χ) + βmh(χ ;αm)

7: end for
8: return �̃(χ) = �M(χ)

In this algorithm, the number of iterations is initial-
ized as M; L(y,�(x)) is the log loss function; y represents
the label and �(χ) is a decision function; N is the num-
ber of residues in RBP170. The GTB algorithm iteratively
repeats steps 2-7 to build m different classification trees
h(χ ,α1), h(χ ,α2), ..., h(χ ,αm) from a set of training data.
βm is the weight and αm is the parameter vector of the
mth tree h(χ ,αm). At the end, we can obtain the function
�M(χ) and build a GTB model �̃(χ). Note that the GTB
algorithm is implemented using scikit-learn [54].

The PredRBR framework
The flow chart of PredRBR is shown in Fig. 3. Awide range
of sequence and structural site features (63 SiteFs), and
two groups of neighborhood attributes (63 SNF-EDs and
63 SNF-VDs) are computed. We use the Maximum Rel-
evance Minimum Redundancy and Incremental Feature

Selection (mRMR-IFS) [55] approach to select a small sub-
set of optimal features that make the greatest contribution
to the classification.

maximum Relevance Minimum Redundancy (mRMR)
mRMRmeans that a feature may be selected preferentially
has the maximal correlation with the target attribute and
minimal redundancy with the characteristics already cho-
sen. mRMR is measured with mutual information (MI),
and the definition is as follows:

I(x, y) −
∫∫

p(x, y)log
p(x, y)
p(x)p(y)

dxdy, (11)

where x and y are two random attributes; p(x, y) is the
joint probabilistic density; p(x) and p(y) are the marginal
probabilistic densities. The detailed description of mRMR
can be found in Ref. [55]. An ordered list of features are
obtained by applying mRMR to the benchmark RBP170
with 189 features.

Incremental Feature Selection (IFS) Based on the
ordered feature list generated by mRMR, we use IFS to
decide the optimal feature set. A total number of n feature
sets are generated based on the mRMR results as follows:

Fi = {f1, f2, . . . , fi} (1 � i � n), (12)

where fi is the i − th sorted feature; Fi is the i − th fea-
ture set; n is the number of features. We use the GTB
algorithm to build classifiers based on each feature sub-
set Fi and evaluate the performance with 10-fold cross-
validation. We select the feature subset with the highest
overall performance (AUC+MCC) as the optimal feature
set.

Deal with the imbalance problem In the benchmark
RBP170, the amount of non-binding sites is about 6
times that of RNA binding sites. To deal with the imbal-
ance problem, we use a random under-sampling strategy
to generate the new balanced datasets. In the training
set, negative samples (non-binding sites) are randomly
selected and combined with the positive samples create a
1:1 balance dataset.

Evaluation measures
To evaluate the performance of PredRBR, some widely
used measurements are also adopted, including sensitiv-
ity (SN/Recall), specificity (SP), precision (Pre), accuracy
(ACC), F-measure and Matthews Correlation Coefficient
(MCC) score. These metrics are defined as follows:

SN(Recall) = TP
TP + FN

(13)

SP = TN
TN + FP

(14)
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Fig. 3 Flowchart of PredRBR. A total of 189 sequence and structure-based features including two categories of Euclidean and Voronoi neighborhood
features are obtained. Then we use the mRMR-IFS approach to select an optimal set of 177 properties. Finally, we use the Gradient Tree Boosting
algorithm and the balanced under-sampling techniques to build the RNA-binding site prediction models

Precision = TP
TP + FP

(15)

ACC = TP + TN
TP + TN + FP + FN

(16)

F − measure = 2 × Recall × Precision
Recall + Precision

(17)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(18)

In these equations, the TP, TN, FP, FN refer to the
numbers of true positive, true negative, false positive and
false negative residues in the prediction, correspondingly.
In addition, the ROC graph is formed by plotting the
false positive rate (i.e. 1 - specificity) against the true
positive rate, which equals sensitivity. Furthermore, the

area under the receiver operating characteristic (ROC)
[56] curve (AUC) is also utilized for evaluating prediction
performance.

Results and discussion
In this section, we first tested the prediction perfor-
mance of the PredRBRmodel with different combinations
of features, including PSSMs, site features (SiteFs) and
structural neighborhood features (SNF-EDs & SNF-VDs),
and compared the performance of SiteFs and structural
neighborhood features. Then, the mRMR-IFS method is
used to select the optimal feature set from all obtained
properties. We also implemented many machine learn-
ing algorithms using the selected features and compared
the prediction performance of gradient tree boosting clas-
sifier with these methods using 10-fold cross-validation.
Finally, we compared the PredRBR model with existed
previous approaches on the same independent test set,
and an example of the predicted interface residues with
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Table 1 The cross-validation results of different feature combinations and the optimal selected feature set using mRMR-IFS on the
RBP170 dataset

Features ACC SN SP Precision F-measure MCC AUC

PSSM 0.72± 0.01 0.69± 0.02 0.73± 0.01 0.30± 0.01 0.42± 0.02 0.31± 0.02 0.79± 0.01

SiteFs 0.77± 0.01 0.74± 0.02 0.77± 0.01 0.36± 0.01 0.48± 0.01 0.40± 0.02 0.84± 0.01

SNF-VDs 0.75± 0.01 0.80± 0.01 0.74± 0.01 0.35± 0.02 0.48± 0.02 0.40± 0.02 0.85± 0.01

SNF-EDs 0.78± 0.01 0.79± 0.02 0.78± 0.01 0.38± 0.02 0.51± 0.01 0.44± 0.02 0.87± 0.01

SNF-EDs+SNF-VDs 0.82± 0.01 0.81± 0.02 0.82± 0.01 0.44± 0.02 0.57± 0.02 0.51± 0.02 0.89± 0.01

SiteFs+SNF-EDs+SNF-VDs 0.82± 0.01 0.83± 0.01 0.83± 0.01 0.46± 0.02 0.58± 0.01 0.53± 0.01 0.91± 0.01

mRMR-IFS (Top177) 0.84± 0.01 0.85± 0.02 0.84± 0.01 0.47± 0.02 0.60± 0.02 0.55± 0.02 0.92± 0.01

RNA in the protein 3R2C:A is provided to illustrate the
proposed method.

Evaluation of different feature combinations
In previous approaches, many combinations of features
have been widely applied to get improved predictions
of protein-RNA interaction residues, including physic-
ochemical features, side-chain environment, sequence
conservation score, position-specific scoring matrices
(PSSMs), relative accessible surface area (RASA), sec-
ondary structure (SS), interaction propensity and so on.
Based on these researches [7, 9–11, 14–24], we com-
bined a variety of features of the amino acids to represent
the specific interaction attributes of protein residues with
RNA nucleotides. In this work, some of the site character-
istics, such as relative accessible surface area, secondary
structure and interaction propensity, can be calculated
only after the protein structure information is available.
Thus, we categorize these site features into structure-
based characteristics, and others are sequence features.
To investigate the performances of different features com-
binations, including the mRMR-IFS selected features,
we build a series of sub-models based on the those
features and compared the prediction performances of
these model using 10-fold cross-validation on the RBP170

dataset. The detailed results are depicted in Table 1. The
performance of each model is measured by seven metrics:
accuracy (ACC), sensitivity (SN), specificity (SP), Preci-
sion, F-measure, MCC and area under curve (AUC). Note
that the site features (SiteFs) is the 63D basic sequence and
structure properties, including none of structural neigh-
borhood features, and the PSSM column in Table 1 is a
subset of the site features.
As shown in Table 1, the performance of prediction

based on PSSM is not so good, at least not reach our
research aims. In contrast, the method with site fea-
tures (SiteFs) achieves a relatively good performance with
a AUC value of 0.84, there is at least 5% increase in
overall accuracy, sensitivity, specificity, MCC, F-measure
and AUC score compared with PSSM. The Euclidean
neighborhood features (SNF-EDs) outperforms PSSM and
SiteFs, with at least a 3% improvement on AUC score,
which suggests that SNF-EDs is an important feature
type for predicting protein-RNA binding residues. When
combining all of the structural neighborhood features
(SNF-EDs+SNF-VDs), the improvement on performance
is impressive, at least 4% increase in ACC and 5% increase
in AUC score compared with site features (SiteFs). The
optimal 177 features (Top177) are selected from the full
combined features (SiteFs+SNF-EDs+SNF-VDs ) with an

Fig. 4 The performance (AUC and MCC) of the top N features using the mRMR-IFS approach
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Fig. 5 The numbers of different feature categories existing in the top N ordered features

effective feature selection method (mRMR-IFS [55]) and
achieve the best performance.

Contribution of feature selection
Selecting the most informative features is essential for
the prediction performance enhancement, and may con-
sequently improve our understanding of the molecular
mechanism of RNA-binding sites. A total of 189 site,
Euclidean and Voronoi features are initially calculated.
We use mRMR-IFS [55], a filter-based approach to rank
the features and select the top k attributes. The classifier
with the top 177 features achieves the highest perfor-
mance (MCC =0 .55 and AUC = 0.92) in cross-validation
on RBP170 (Fig. 4). We select the 177 optimal features
to build the final RNA-binding site prediction model. As
shown in Table 1, the performance of the top 177 features
selected using mRMR-IFS is significantly better than that
of other feature combinations.
We also analyze the numbers of sits (SiteFs), Euclidean

(SNF-EDs) and Voronoi (SNF-VDs) features that occurred
in the top N characteristics sorted by using the mRMR
method, respectively. Figure 5 shows the numbers of the
three categories of features exited in the topN (range from
10 to 100) selected properties. We observed that struc-
tural neighborhood characteristics (SNF-EDs and SNF-
VDs) [44] occupy the majority of the top N list, implying
that structural neighborhood characteristics paly a critical
role in boosting the performance of RNA-binding residue
prediction.

Performance comparison with other machine learning
methods
We further compare the effectiveness of PredRBR
with existing state-of-the-art machine learning methods,
including Support Vector Machine (SVM) [57], Random
Forest (RF) [58] and Adaboost [59]. Table 2 shows the
prediction results of these classifiers. It is worth indicat-
ing that all examined methods employ the same feature
set on the training dataset (RBP170) with 10-fold cross-
validation. With a specificity of 0.84, PredRBR obtains
a sensitivity of 0.85, a precision of 0.47, a F-measure
of 0.60 and a MCC value of 0.55. The best one among
these compared machine learning methods is Random
Forest with its sensitivity of 0.81 and specificity of 0.83
as well as F-measure of 0.57. Comparing with Random
Forest, PredRBR obtains at least 2% increase in sensi-
tivity, 7% increase in MCC value and 5% increase in
F-measure. PredRBR also achieves higher AUC score than
that of other comparison machine learning approaches.
The AUC score of PredRBR is 0.92, while those of the
three machine learning methods are in the range of
0.87∼0.90. The results imply that our proposed GTB-
based PredRBR model plays crucial role in performance
boosting.

Results of the independent evaluation
We validate the usability of the proposed PredRBR
model on the independent test dataset. The independent
test dataset (RBP101) has 101 non-homologous proteins

Table 2 Prediction performance of PredRBR and other machine learning methods on the RBP170 dataset

Method ACC SN SP Precision F-measure MCC AUC

PredRBR 0.84± 0.01 0.85± 0.02 0.84± 0.01 0.47± 0.02 0.60± 0.02 0.55± 0.02 0.92± 0.01

RF 0.82± 0.01 0.81± 0.01 0.83± 0.01 0.44± 0.02 0.57± 0.02 0.51± 0.02 0.90± 0.01

SVM 0.81± 0.01 0.81± 0.02 0.81± 0.02 0.42± 0.01 0.55± 0.01 0.49± 0.01 0.89± 0.01

Adaboost 0.79± 0.01 0.80± 0.01 0.79± 0.01 0.40± 0.01 0.53± 0.01 0.46± 0.01 0.87± 0.01
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Fig. 6 The ROC curves of PredRBR and other three machine learning
methods on the RBP101 dataset

including 2886 binding sites and 29704 non-binding sites.
Due to the imbalance between positive sample and neg-
ative sample, the receiver operating characteristic (ROC)
curve is regarded as proper measurement to evaluate the
overall performance. Higher curve of ROC represents bet-
ter prediction accuracy. Figure 6 shows the ROC curves
and AUC scores of PredRBR and other machine learn-
ing methods on the RBP101 dataset. PredRBR, SVM,
Adaboost and Random Forest achieve AUC values of 0.82,
0.80, 0.78 and 0.76, respectively. Comparing with the other
methods, the PredRBR model improves the AUC score by
2%∼6%.
We compare PredRBRwith several existing state-of-the-

art RNA-binding residue prediction approaches, includ-
ing BindN [9], PPRint [20], Liu-2010 [12], BindN+ [22],
RNABindR2.0 [23], RNABindRPlus [14] and SNBRFinder
[17] on the independent set (RBR101). In these meth-
ods, BindN [9], BindN+ [9] and PPRint [20] use SVM
to build the RNA-binding site classifier; RNABindRPlus

[14] utilizes a logistic regression method to integrate the
homology-based method HomPRIP and optimized SVM
model named SVMOpt; Liu-2010[12] is RF-basedmethod
with sequence and structural features especially the pro-
posed interaction propensity, and SNBRFinder [17] is a
hybrid method based on the sequence features.
As shown in Table 3, PredRBR achieves the best pre-

dictive performance with an accuracy of 0.83, a sen-
sitivity of 0.59, specificity of 0.85, precision of 0.28,
F-measure of 0.38 and MCC of 0.32. The results indicate
that 59% of the real RNA-binding residues are correctly
identified (sensitivity), and 85% of the non-RNA bind-
ing residues are precisely predicted (specificity). In the
control methods, SNBRFinder gains the best prediction
results (sensitivity=0.65, specificity=0.80, F-measure=0.36
and MCC=0.31). The performance our PredRBR method
goes beyond SNBRFinder regarding F-measure andMCC.
Particularly, the specificity of PredRBR is significantly
better than that of RNABindR (increased by 5%), which
suggests that PredRBR would be able to determine the
residues that do not exist in the RNA-binding surface
better and reduce the experiment cost. The ROC curves
of PredRBR and other existing methods are shown in
Fig. 7, which are drawn by varying the cutoffs of the
prediction scores to calculate the sensitivities and speci-
ficities of these methods. The AUC scores (areas under
ROC curves) of the eight methods, including PredRBR,
SNBRFinder, RNABindRPlus , RNABindR 2.0, BindN+,
PPRint, Liu-2010, BindN, are about 0.82, 0.80, 0.73, 0.72,
0.72, 0.68, 0.66 and 0.64, respectively. These improve-
ments on the prediction indicate that our proposed Pre-
dRBR method integrating the GTB algorithm and the
optimal selected 177 features particularly the structural
neighborhood properties can effctively predict RNA-
binding residues.

Case study
The ternary NusB-NusE-BoxA RNA complex (PDB code
3R2C) initiates the complete antitermination complex
required by the processive transcription antitermination.
The complex NusB-NusE-BoxA reveals the significance of

Table 3 Independent test of our GTB-based PredRBR and other existing methods on the RBP101 dataset

Method ACC SN SP Precision F-measure MCC

PredRBR 0.83± 0.12 0.59± 0.13 0.85± 0.11 0.28± 0.16 0.38± 0.15 0.32± 0.17

SNBRFinder 0.78± 0.15 0.65± 0.22 0.80± 0.13 0.25± 0.21 0.36± 0.18 0.31± 0.20

RNABindRPlus 0.80± 0.10 0.49± 0.30 0.84± 0.13 0.26± 0.26 0.34± 0.24 0.26± 0.22

BindN+ 0.81± 0.09 0.42± 0.18 0.85± 0.05 0.22± 0.24 0.29± 0.18 0.21± 0.17

RNABindR 2.0 0.71± 0.09 0.59± 0.22 0.72± 0.14 0.17± 0.16 0.27± 0.16 0.20± 0.12

PPRint 0.82± 0.09 0.35± 0.19 0.86± 0.06 0.20± 0.27 0.25± 0.17 0.17± 0.15

Liu-2010 0.73± 0.07 0.51± 0.19 0.72± 0.10 0.15± 0.14 0.23± 0.15 0.15± 0.11

BindN 0.69± 0.07 0.49± 0.15 0.70± 0.05 0.14± 0.20 0.22± 0.15 0.12± 0.13
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Fig. 7 The ROC curves of PredRBR and other state-of-the-art
prediction approaches on the RBP101 dataset

key protein-protein and protein-RNA interactions. Here,
we use PredRBR to investigate the RNA binding residues
in NusB (3R2C:A). The overall accuracy of predicting
RNA binding residues by PredRBR is 0.88, which is a very
accurate when compared with the available experimental
data. Figure 8 shows the comparison between actual inter-
action residues and predicted RNA binding residues in the
protein 3R2C:A. Figure 8a presents the actual interaction
residues of protein 3R2C:A and the red spheres represent
real RNA binding residues. Figure 8b shows the binding
sites predicted by PredRBR. The results show that most
of the actual interaction residues are well identified by the
PredRBR model.

Conclusion
In this study, we have developed PredRBR, a high-
performance protein-RNA binding site prediction
method. The novelty of the proposed method lies
in the idea that we widely integrate a large number
of sequence, structural and energetic characteristics,
together with two categories of Euclidian and Voronoi
neighborhood features, produces more critical clues for
RNA-binding residue prediction. A total of 63 site-based,

Fig. 8 Comparison between experimentally determined RNA binding sites (a) and predicted RNA binding residues (b). a Actual RNA-binding
residues in protein 3R2C:A. Result of (b) is predicted binding residues by PredRBR and the numbers of predicted TP, FP, TN and FN in 3R2C:A are 30, 8,
92, and 8, respectively. The true positive, true negative, false positive and false negative residues are shown in red, yellow, black and blue, respectively
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63 Euclidian and 63 Voronoi neighborhood features
have been obtained. We use the mRMR-IFS approach
to select an optimal subset of 177 features to reduce the
computational time and improve the performance. Our
results also highlight the benefits of basing RNA-binding
residue prediction method on the GTB algorithm and
structural neighborhood characteristics (Euclidian and
Voronoi). Both cross-validation and independent test
show that PredRBR performs significantly better than
other existing state-of-the-art methods such as Liu-2010,
BindN+, RNABindRPlus, BindN, PPRint, SNBRFinder
and RNABindR2.0. Furthermore, we demonstrate the
effectiveness of our approach to an RNA binding complex
and obtained encouraging results.
A limitation of PredRBR is that it is a structure-

based approach, which use an encoding of sequence and
structure-derived features of a target residue and its struc-
tural neighborhood features to make predictions. RNA-
binding sites of proteins without known 3D structures
can’t be well predicted. However, the number of pro-
teins with known structures has increased rapidly in the
past few years especially due to the accurate theoreti-
cal models that can be produced when using the solved
representatives as templates for the models.
In the future, we will try to extract more effective fea-

tures and machine learning methods to further improve
the RNA-binding residue prediction. Also, we will develop
an open access web-server for the proposed PredRBR
method.
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