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Abstract

Background: Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons,
and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of
human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop
computational methods to predict human splicing branchpoints.

Results: Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as
the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a
variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix
profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning
methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation
analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes
which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction.
One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based
ensemble method.

Conclusions: In the computational experiments, two ensemble learning methods outperform benchmark branchpoint
prediction methods, and can produce high-accuracy results on the benchmark dataset.

Keywords: Genetic algorithm, Multi-label learning, Human splicing branchpoint, Logistic regression

Background
Alternative splicing is a regulated event in a single gene
coding for proteins. Alternative splicing processes pre-
messenger RNAs by removing introns and joining exons
[1–3]. Consequently, the alternatively spliced mRNAs
are translated as multiple proteins, and exert different
functions. The studies show that the alternative splicing
may be associated with genetic diseases [4, 5].
For an intron, the alternative splicing is activated by sig-

nals from 3′ end of the intron (3SS), 5′ end of an intron
(5SS) and branchpoints (BPs). BP site selection is the pri-
mary step of the alternative splicing, and causes inclusion

of the downstream exon in the mRNA. Branchpoints
provide critical information for alternative splicing,
and the investigation of branchpoints can help to
understand the mechanism of the pre-messenger
RNA transcript and the consequent biological events.
Researchers discovered branchpoints by wet experi-
ments, but many branchpoints are still unknown and
need to be identified. Wet experiments are usually
time-consuming, and researchers developed computa-
tional methods to guide wet experiments.
In recent years, researchers studied splicing branchpoints

and analyzed their characteristics [6, 7]. First, the locations
of most BPs are close to 3SS of introns; second, most BPs
are adenines; third, dinucleotide “AG” is likely to be de-
pleted between BPs and 3SS. Because researchers have

* Correspondence: zhangwen@whu.edu.cn
1School of Computer, Wuhan University, Wuhan 430072, China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. BMC Bioinformatics 2017, 18(Suppl 13):464
DOI 10.1186/s12859-017-1875-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1875-6&domain=pdf
mailto:zhangwen@whu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


knowledge about branchpoints, the development of com-
putational methods becomes possible. Gooding et al. [8]
trained the position weighted matrices by using human
branchpoints, and then utilized the matrix to predict puta-
tive BPs. Schwartz et al. [9] defined patterns: NNYTRAY,
NNCTYAC, NNRTAAC and NNCTAAA, and then
scanned 200 nt upstream of 3SS to obtain heptamers which
conform to any of these patterns. Heptamers were scored
by using the hamming distance to the pattern TACTAAC.
Plass et al. [6] obtained nonamers by scanning 100 nt up-
stream of the 3SS, and then scored nonamers by using en-
tropy between nonamers and the motif “TACTAACAC”.
Corvelo et al. [10] compiled positive instances and negative
instances by scanning 500 nt upstream of 3SS, and then
built BP predictors by using support vector machine.
Although several computational methods have been pro-

posed for the branchpoint prediction, there is still room to
improve the prediction performances. One point is that an
intron may have more than one branchpoints, and the pre-
diction models should take multiple branchpoint into ac-
count. The other point is how to make use of characteristics
of introns. First of all, we formulate the original problem as a
multi-label learning task, which can deal with multiple BPs
in introns. Second, we investigate a variety of intron
sequence-based features, including sparse profile, dinucleo-
tide profile, position weight matrix profile, Markov motif
profile, and polypyrimidine tract profile. Third, we consider
several multi-label learning methods: partial least squares re-
gression [11], canonical correlation analysis [12] and regular-
ized canonical correlation analysis [13] for modelling. Fourth,
we design ensemble learning schemes which integrate differ-
ent features and different classifiers to build BP prediction
models. Base predictors and ensemble rules are critical com-
ponents in the design of ensemble systems. In our previous
work [14], we determined a feature subset, and built individ-
ual feature-based models by using the feature subset and
three multi-label learning methods; the average scores from
different models were adopted for predictions. However, di-
versity of base predictors is limited, and the average scoring

strategy is arbitrary. Therefore, we redesign the strategies to
build prediction models by combining diverse features and
different multi-label learning methods. Here, we generate dif-
ferent feature subsets and combine different multi-label
learning methods to build diverse base predictors; we con-
sider two ensemble rules: the weighted average rule based on
genetic algorithm optimization and the nonlinear rule based
on the logistic regression. Finally, we develop two ensemble
models for the branchpoint prediction. One is the genetic
algorithm-based weighted average ensemble method; the
other is the logistic regression-based ensemble method. In
the computational experiments, two ensemble learning
methods have high-accuracy performances on the bench-
mark dataset, and produce better results than other state-
of-the-art BP prediction methods. Moreover, our studies
can reveal the importance of features in the BP prediction,
and provide the guide to the wet experiments.

Methods
Dataset
In recent years, Mercer et al. [15] used the technique that
combine exoribonuclease digestion and targeted RNA-
sequencing [16] to enrich for sequences that traverse the
lariat junction, and then identified human branchpoints ef-
ficiently. Therefore, they obtained 59,359 high-confidence
human branchpoints in more than 10,000 genes, and com-
piled a detailed map of splicing branchpoints in the human
genome. The data facilitate the development of human
branchpoint prediction models.
Here, we process Mercer’s data [15]. Specifically, we

remove redundant records in which same introns are
originally from different genes, and obtain 64,155 unique
intron-branchpoint records. In the records, a branch-
point may be responsible for several introns, and an in-
tron may have multiple BPs.
Despite introns have long lengths, studies [15] revealed

that branchpoints are close to 3SS of introns. The distri-
bution of BP sites in Mercer’s dataset is demonstrated in
Fig. 1. According to the distribution, most BPs are

Fig. 1 Distribution of branchpoints near to 3′ of introns
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located between 50 and 11 nt upstream of 3SS, and 99%
intron-branchpoint records (63,371/64,155) fall in this
region. Therefore, we pay attention to the branchpoints
between 50 and 11 nt upstream of 3SS of introns, and
build models to predict BPs located in the region. For
this reason, we only use intron sequences and their BPs in
specified regions, and compile a benchmark dataset which
has 63,371 intron-branchpoint records. The benchmark
dataset covers 42,374 introns and 56,176 BP sites.

Intron sequence-derived features
First of all, we define the regions between 55 nt upstream
and 3SS of introns as “information region”, and define the re-
gions between 50 and 11 nt upstream of 3SS as “target re-
gion”. Clearly, the information region of an intron includes
the target region (50 nt~11 nt upstream) and flanking nucle-
otides. BPs in an intron sequence are characterized by the in-
formation region and target region. We extract several
features from the information regions of introns, and attempt
to predict BPs by using these features. Therefore, we intro-
duce following features.
It was observed [15] that BPs have preference for “A”

nucleotides. Since nucleotide types provide great signals
for recognizing BPs, we adopt the sparse profile to rep-
resent the nucleotide preference. Four types of nucleo-
tides (A, C, G and T) can be respectively represented by
4-bit vectors 1000, 0100 0010 and 0001. We replace nu-
cleotides in the sequence with 4-bit vectors, and then
represent the information region of an intron as a
220-dimensional (55 × 4) feature vector.
The dinucleotide “AG” is usually depleted between a BP

and 3SS of an intron [15], and thus dinucleotide types can
bring information for the BP identification. Four nucleotide
types can form 16 dinucleotide types, and 16 dinucleotide
types can be encoded as 4-bit vectors (AA:0000, AC:0001,
CA:0010, AG:0011, GA:0100, AT:0101, TA:0110, CC:0111,
CG:1000, GC:1001, CT:1010, TC:1011, GG:1100, GT:1101,
TG:1110, TT:1111) respectively. By replacing continuous
dinucleotides in a sequence with the corresponding bit vec-
tors, we can represent the information region of an intron
as a 216-dimensional (54 × 4) binary vector named di-
nucleotide profile.
The motifs are discovered to be useful for the human

branchpoint recognition [8, 15]. A position weight
matrix (PWM), also known as a position-specific weight
matrix (PSWM) or position-specific scoring matrix
(PSSM), is a commonly used to represent the motifs of
biological sequence. Since motifs are very useful for the
biological element identification, we consider to use
motif information represented by PWM. First, informa-
tion regions of training introns are scanned to generate
nonamers which have BPs at 6th position, and we calcu-
late a 20 × 9 PWM matrix based on these nonamers.
Then, we scan each nucleotide (excluding the first five

and last five) along the information region of an intron,
we score the corresponding 9mer which has the nucleo-
tide at 6th position by using PWM, and we finally obtain
a 45-dimensional real-value vector named PSSM profile.
The Markov motif provides motif information in a dif-

ferent way [10, 15]. PWM takes nucleotides independ-
ently, while the Markov model can consider the
dependency between nucleotides by using the Markov
model. We calculate the Markov motif in several steps.
First, we scan nonamers in information regions of train-
ing introns, and nonamers are categorized as positive
nonamers (branchpoint at 6th position) or negative non-
amers (non-branchpoint at 6th position). We calculate

probabilities Pi sið Þf g9i¼1 , Pi si; jsi−1ð Þf g9i¼2 si = {A,C,G,T}
based on positive nonamers. For an intron, each nucleo-
tide (exclude the first five and last five, 45 in total) in the
information region are scored, by calculating the positive
score Ppositive(s) with P sð Þ ¼ P1 s1ð ÞQ

i∈ 2;3;⋯;9f g Pi si; jsi−1ð Þ .
Similarly, we compute probabilities based on negative
nonamers, and then calculate the negative score Pnega-
tive(s) for each nucleotide. The Markov motif score of a
nucleotide is log(Ppostive/Pnegative). Finally, we can obtain
a 45-dimensional Markov profile for an intron.
The polypyrimidine tract profile (PPT) contains three

scores. The first one is the pyrimidine content between
putative BP and the 3SS. The second is the distance to
the closest downstream polypyrimidine tract. The third
is the score of the closest polypyrimidine tract. For an
intron, we calculate three scores for each nucleotide ran-
ging from 55 to 10 nt upstream, and thus we can obtain
a 135-dimensional PPT profile. Polypyrimidine tract pro-
file is detailedly described in [10, 17].
In total, we have five intron sequence-derived features.

Therefore, we discuss how to build prediction models by
using these features.

Multi-label learning methods
We describe the characteristics of introns by using fea-
ture vectors. Here, we have to consider how to describe
the locations of BPs in intron sequences. Specifically, we
represent BP sites in the target regions of the introns by
k-dimensional binary target vectors, in which the value
of a dimension is 1 if the corresponding site is a BP and
otherwise the value is 0.
Given n introns, their feature vectors and target vectors

are reformulated as the input matrix Xn×m and output
matrix Yn× k, respectively. We aim to predict the locations of
BPs for inputs introns, and predictions are multiple labels for
50 nt~11 nt upstream of 3SS, and the work is naturally taken
as a multi-label learning task. The multi-label learning is dif-
ferent from the ordinary classification [18–20] which has one
label, and it construct a model which simultaneously deals
with multiple labels. For the BP prediction, the multi-label
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learning is to build the function f :Xi→Yi, where Xi= [Xi1,
Xi2,⋯,Xim] and Yi= [Yi1,Yi2,⋯,Yik] are the feature vector
and the target vector of ith intron, i= 1, 2,⋯, n. The flow-
chart of multi-label learning is demonstrated by Fig. 2.
Considering the background, we have tens of thousands of
instances (42,374 introns) and dozens of labels (40 labels)
which represent 40 BP sites in the target regions of introns.
There are two types of multi-label learning algorithms

[21–23]. One type is transformation methods, which
transform the multi-label problem into a set of binary
classification problems; the other is adaption methods
which directly perform the multi-label classification.
Transformation methods ignore correlation between la-
bels, and adaption methods consider label correlation
but need lots of times for training. An intron can have
multiple BPs, and their locations may be correlated, and
thus adaption methods are more suitable for our task.
However, our problem has 40 labels, and most adaption
methods can’t deal with so many labels because of the
highly computational complexity. For the efficiency and
effectiveness, we consider three matrix-based methods:
partial least squares regression (PLS), canonical correl-
ation analysis (CCA) and regularized canonical correl-
ation analysis (LS-CCA) as the multi-label learning
engines to handle the task, for these methods can deal
with large-scale data in the reasonable time. We briefly
introduce three methods in the following sections.

Partial least squares regression
Partial least squares regression (PLS) is used to find the
relations between two matrices [11]. Input matrix Xn ×m

and output matrix Yn × k are respectively projected to
un × 1 and vn × 1 by pm × 1 and qk × 1. u = Xp and v = Yq,
and the optimization objective is given by,

max uTv
� �

Subject to : pk k2 ¼ 1; qk k2 ¼ 1

By using the Lagrange multiplier, we can solve the
optimization problem, and know that p and q are re-
spectively the eigenvector of largest eigenvalues of
XTYYTX and YTXXTY, and then calculate u and v.
X and Y are reconstructed from u and v by X = ucT + E

and Y = vtT + F; Y is reconstructed from u by Y = urT +

G. By using the least squared technique, we can obtain c

¼ XTu
uk k22

, t ¼ YT v
vk k22

and r ¼ YTu
uk k22

.

The residue E and F can be used as the new X and Y.
We repeat τ times of above procedures to produce
pif gτi¼1 , qif gτi¼1 , uif gτi¼1 , vif gτi¼1 , cif gτi¼1 , tif gτi¼1 and
rif gτi¼1. Y ¼ u1rT1 þ u2rT2 þ⋯þ uτrTτ þ G.
Let U = [u1, u2,⋯uτ], P = [p1, p2,⋯pτ], R = [r1, r2,⋯rτ].

The prediction model is Y =URT = XPRT. For the new
input Xnew, the output Ypredict = XnewPR

T.

Canonical correlation analysis
Canonical correlation analysis (CCA) is to compute the
linear relationship between two multi-dimensional variables
[12]. Input matrix Xn ×m and output matrix Yn × k are
respectively projected to un × 1 and vn× 1 by u =XP and v =
Yq, and the objective function is written as,

max uTv
� �

Subject to : uk k2 ¼ 1and vk k2 ¼ 1

By using the Lagrange multiplier, we can know that
p and q are respectively the eigenvectors of
(XTX)−1XTY(YTY)−1YTX and (YTY)−1YTX(XTX)−1XTY.
p1 and q1 are eigenvalues of largest eigenvalues, u1 =
Xp1 and v1 = Yq1 are first pair of canonical variables.

Fig. 2 Multi-label learning for the branchpoint prediction
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Considering eigenvalues in descending order, we can ob-
tain canonical variable pairs pi; ; qif gτi¼1, τ =min {m, k}.
Let P = [p1, p2,⋯, pτ], Q = [q1, q2,⋯, qτ].The prediction

model is Y = XPQ−1. For the new input Xnew, the predic-
tion Ypredict = XnewPQ

−1.

Regularized canonical correlation analysis
The canonical correlation analysis can be extended by
introducing the regularization term, which control the
complexity of the model. Therefore, Sun [13] proposed
the regularized canonical correlation analysis (LS-CCA),
and the optimization objective is,

L w; λð Þ ¼
Xk
j¼1

Xn
i¼1

Xi Wj
� �T−Y ij

� �2
þ λ Wj

�� ��2
2

 !

Where Xi is the ith row of input matrix X, and λ > 0 is
the parameter. The optimization problem can be rewrit-
ten as sub-problems,

arg min
Wj

Xn
i¼1

XiWj−Y ij
� �2 þ λ Wj

�� ��2
2

For every Wj, 1 ≤ j ≤ k, we can readily solve the prob-
lem by using the least angle regression algorithm. Let W
= [W1,W2,⋯,Wk]

T. The prediction model is Y = XW.
For the new input Xnew, the prediction Ypredict = XnewW.

Ensemble learning schemes for the branchpoint
prediction
In machine learning, the primary goal of designing a predic-
tion system is to achieve the high-accuracy performances.
For a real problem, the instances are represented as features
vectors, and then we construct prediction models based on
feature vectors by using machine learning techniques. Several
questions arise in the process of modeling. First, there are
various features that describe characteristics of the instances,
and how to make use of useful features is critical. The usual
way of combining various features in bioinformatics is to
concatenate or merge different feature vectors together, and
we name the technique “direct feature combination”. Second,

when you have several options for machine learning
methods (classifiers), how to choose suitable methods is
challenging. Researchers usually evaluate and compare
classifiers to choose a suitable one, and then construct
prediction models.
In recent years, the ensemble learning attracts great inter-

ests from bioinformatics community [24–31]. In this paper,
we design the ensemble learning methods to combine vari-
ous intron sequence-derived features and classifiers so as to
build high-accuracy models for the BP prediction. Ensemble
learning systems have two critical components, including
base predictors and combination rules.
Base predictors are the primary component for the en-

semble systems. Different base predictors can bring dif-
ferent information, and the diversity is of the most
importance. To guarantee the diversity of base predic-
tors, we make effects to make use of various features
and various classifiers. Given N features, we have 2N − 1
feature subsets, and merge the corresponding feature
vectors to generate 2N − 1 different kinds of features vec-
tors. We combine these features vectors and M multi-
label learning classifiers, and build K base predictors,
where K =M × (2N − 1). The construction of base pre-
dictor is illustrated by Fig. 3. In the branchpoint predic-
tion, we have four sequence-derived features and three
multi-label learning classifiers. Therefore, we can build a
total of 45 base predictors.
Ensemble rules are the other component for the ensemble

systems, which combine the outputs of base predictors.
Designing an effective combination rule is very important for
the ensemble learning system. The ensemble rule could be
roughly divided into two types: trainable and non-trainable
strategies. The trainable strategy integrates the outputs of
base predictors, by building the relationship between the out-
puts of base predictors and real labels; the non-trainable
strategy combines the scores of base classifiers as the final
prediction, and the average scores are usually adopted. Given
K base predictors: P1,P2, . . , PK, their prediction scores for a
new input are S1, S2,⋯, SK. Here, we respectively design the
ensemble rules from the angles of the linear ensemble and
non-linear ensemble.

Fig. 3 Constructing base predictors by combining feature subsets and multi-label learning methods
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The linear ensemble rule combines the prediction scores
S1, S2,⋯, SK from base predictors with weights w1,w2,…,
wK. The prediction of the ensemble system is the weighted

average of all prediction scores, given by
PK

k¼1
wi�Sk
K . In the

ensemble rule, the weights are free parameters and should
be optimized. Weights are real positive values, and their
sum should be equal to 1. Since we have dozens of base
predictors, optimizing dozens of real weights is really a
tough work. Here, the optimal weights are determined by
the genetic algorithm. The genetic algorithm (GA) is a
search approach based on the idea of biological evolution.
In our design for weight optimization, we encode the can-
didate weights as chromosomes, and utilize GA
optimization to search for the chromosome that maxi-
mizes the AUPR score on the data. The search start with a
randomly initialized population, and the population up-
dates with three operators: selection, crossover and muta-
tion, and AUPR scores are used as the fitness scores.
Finally, the optimal weights can be obtained.
The non-linear ensemble rule builds the nonlinear

function f : ( S1, S1,…, SK)→ {0, 1, which describes the re-
lationship between the outputs of base predictors S1, S2,
⋯, SK and real labels. The prediction by the ensemble
learning system is given by f : ( S1, S1,…, SK). We have
different functions for the nonlinear rules. Here, we use
the logistic regression function f S1; S2;…; ; SKð Þ ¼ 1

1þe−Z ,
where z = θ1S1 + θ2S2 +⋯θKSK + θ0. The gradient descent
technique can be used to determine the parameters
θ0, θ1,…, θK.
By using two ensemble rules, we design two ensemble

learning systems for the branchpoint prediction. The first
one is the genetic algorithm-based weighted average en-
semble method, named “GAEM”; the other is the logistic
regression-based ensemble method, named “LREM”.

Results and discussion
Evaluation metrics
In this paper, we evaluate methods on the benchmark
dataset, by using 5-fold cross-validation (5-CV). In the 5-
fold cross-validation, all introns are randomly split into
five equal-sized subsets. In each fold, four subsets are
combined as the training set, and the remaining subset is
used as the testing set. The prediction model is trained on
the introns in the training set, and then is applied to in-
trons in the testing set. The training procedure and testing
procedure are repeated, until each subset has been used
for testing.
To test the performances of prediction models, we

adopt several evaluation metrics, i.e. F-measure (F), pre-
cision, recall, accuracy (ACC), the area under the
precision-recall curve (AUPR) and area under ROC
curve (AUC). These metrics are defined as follows.

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

Recall ¼ TP
TP þ FN

Precision ¼ TP
TP þ FP

F ¼ 2� Precision � Recall
Precision þ recall

Where TP, TN, FP and FN are the number of true pos-
itives, the number of true negatives, the number of false
positives and the number of false negatives. Since non-
BP sites are much more than BP sites, we take AUPR
which considers both recall and precision as the most
important metric. The cutoff which leads to the best F-
measure is used to calculate accuracy (ACC), precision,
recall and F-measure (F).

Evaluation of intron sequence-derived features and
multi-label learning methods
In BP prediction, we consider five intron sequence-based
features and three multi-label learning methods. Here, we
evaluate the classification abilities or usefulness of various
features and different methods. We respectively use differ-
ent methods to build individual feature-based models, and
performances of models are indicators for the usefulness
of features and methods. We adopt the default parameters
for PLS (τ = 40), CCA (τ = 40) and LS-CCA (λ = 0.01). The
individual feature-based models are evaluated under same
experimental conditions.
Figure 4 visualizes AUC scores and AUPR scores of dif-

ferent models, and thus we can compare different features
and different methods. By using a same feature, different
multi-label learning methods can produce similar perfor-
mances; Markov motif profile, PWM and the dinucleotide
profile have comparable performances when by using a
same multi-label learning method, and the feature PPT
produces the poorest performances.
The evaluation scores of prediction models are dem-

onstrated in Table 1. The sparse profile produces the
greatest AUPR score of 0.487. Markov motif profile,
PWM and the dinucleotide profile yield the satisfying re-
sults, and PPT produces the poorest results in terms of
all metrics. In general, LS-CCA leads to the better AURP
score than PLS and CCA. Three methods produce simi-
lar results, but different methods may have advantages
on different evaluation metrics.
Features describe different characteristics of branchpoints,

and all features except PPT can lead to the high-accuracy
prediction models. It is natural to combine these features to
achieve better performances. However, different features
share the redundant information, which may be the main
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concern in the feature combination. Here, we use a simple
approach to test the negative impact of feature redundant in-
formation on the feature combinations. By using PLS as the
baseline method, we combine features one by one according
to the descending order of AUPR scores of individual
feature-based models in Table 1. Based on different feature
combinations, we merge corresponding feature vectors to
build prediction models. As shown in Table 2, combining all
features leads to the improved AUPR score of 0.494. For the
feature combination models, we can also observe the im-
provements of the AUC scores and F-measure scores. In the
combinations, SP can make the greatest contribution, and
Markov can lead to the dramatic performance increase. But,
the use of all features cannot necessarily lead to the best per-
formances, and results show that the combination of SP,
Markov, DN and PWM leads to best results.
Moreover, we build binary classification models by

using the same features (SP, Markov, DN and PWM),
and compare binary classification models and multi-

label classification models. We scan each nucleotide in
the target region of an intron and obtain a nonamer
which has the nucleotide at 6th position. We use the
nonamer as the positive instance if the 6th nucleotide is
a BP; otherwise, we use it as the negative instance. In
this way, we have hundreds of thousands of binary in-
stances for learning, and we adopt two popular and effi-
cient binary classifiers: logistic regression and random
forest to build prediction models. In the 5-fold cross val-
idation, we make sure that the same training introns and
testing introns are used for multi-label learning and bin-
ary classification learning in each split. The logistic re-
gression model produces the AUC score of 0.878 and
AUPR score of 0.324 when evaluated by 5-fold cross val-
idation; the random forest model produces the AUC
score of 0.842 and AUPR score of 0.329. The results
show that the multi-label models can lead to better per-
formances than the binary classification models, because
the multi-label learning takes into account the correl-
ation between putative BP sites.
Above studies demonstrate that features can provide

useful information for the branchpoint prediction, but
combining features effectively is difficult and need to be
further studied. Therefore, four features and three algo-
rithms are used to develop the final ensemble learning
models for the branchpoint prediction.

Performances of ensemble learning models
Given diverse intron sequence-derived features and several
multi-label learning methods, we generate different feature

Table 1 The performance of multi-label learning methods
based on different features

Method Feature Recall Precision ACC F AUC AUPR

PLS Markov 0.508 0.478 0.961 0.473 0.879 0.476

PWM 0.521 0.454 0.958 0.465 0.868 0.455

DN 0.534 0.437 0.957 0.461 0.877 0.461

SP 0.545 0.455 0.958 0.477 0.874 0.483

PPT 0.574 0.098 0.787 0.170 0.698 0.103

CCA Markov 0.529 0.461 0.959 0.472 0.880 0.476

PWM 0.521 0.453 0.958 0.465 0.868 0.455

DN 0.566 0.423 0.955 0.466 0.883 0.468

SP 0.533 0.466 0.960 0.477 0.878 0.485

PPT 0.488 0.118 0.844 0.182 0.703 0.114

LSCCA Markov 0.502 0.501 0.963 0.482 0.882 0.486

PWM 0.516 0.471 0.960 0.472 0.871 0.467

DN 0.546 0.442 0.957 0.469 0.883 0.453

SP 0.513 0.513 0.963 0.494 0.882 0.487

PPT 0.472 0.085 0.790 0.129 0.690 0.086

Table 2 Performances of different feature combination models

Feature Recall Precision ACC F AUC AUPR

SP 0.545 0.455 0.958 0.477 0.874 0.483

SP + Markov 0.528 0.479 0.961 0.482 0.887 0.492

SP + Markov + DN 0.530 0.484 0.961 0.486 0.889 0.498

SP + Markov + DN + PWM 0.505 0.507 0.963 0.487 0.889 0.500

All 0.532 0.478 0.961 0.484 0.884 0.494

Markov Markov motif profile, PWM position weight matrix profile, DN
dinucleotide profile, SP sparse profile, PPT polypyrimidine tract, combination
combining all features

Fig. 4 AUP scores and AUC scores of individual feature-based models. Markov: Markov motif profile, PWM: position weight matrix profile, DN:
dinucleotide profile, SP: sparse profile, PPT: polypyrimidine tract, combination: combining all features
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subsets and merge corresponding feature vectors, and then
adopt these methods to build base predictors. By using two
ensemble rules to integrate outputs of base predictors, we
develop two ensemble learning methods for the branch-
point prediction, namely the genetic algorithm-based
weighted average ensemble method (“GAEM”) and the lo-
gistic regression-based ensemble method (“LREM”).
The genetic algorithm (GA) is critical for implement-

ing GAEM. We set the initial population as 100 chromo-
somes. We implement GA optimization by using the
Matlab genetic algorithm toolbox. The elitist strategy is
used for the selection operator, and the default parame-
ters are adopted for the mutation probability and cross-
over probability. GA terminates when the change on
fitness scores is less than the default threshold or it
meets the max generation number 100. We use the
Matlab Statistics toolbox to implement the logistic re-
gression, and then build the LREM models.
The results of GAEM and LREM on the benchmark

dataset are given in Table 3. For comparison, perfor-
mances of best individual feature-based models (built by
LS-CCA) are also provided. GAEM and LREM produce
the AUPR scores of 0.532 and 0.512 respectively. Clearly,
ensemble learning models produce much better results
than individual feature-based prediction models, indicat-
ing that both GAEM and LREM can effectively combine
various features and different multi-label learning
methods to enhance performances. In addition, LREM
can produce better results than GAEM. The possible

reason is that linear relationship in GAEM cannot deal
with complicated data and nonlinear relationship in
LREM is more suitable for our task.
In GAEM, the combination of feature subsets and multi-

label learning methods are used to build base predictors,
and the optimized weights are indicators for the import-
ance of features and classification engines. There are 45
base predictors (15 feature subsets ×3 classifiers), and 45
weights are visualized in Fig. 5. We may draw several con-
clusions from the results. First, these optimal weights are
different for base predictors, for they have different discrim-
inative powers for the BP prediction. Second, the optimal
feature subsets do not consist entirely of the highly ranked
features. In Fig. 5, the 36th base predictors which are built
based on Markov, PWM and SP by using LSCCA has the
greatest weight.
Further, we design experiments to test the practical

use of the genetic algorithm-based weighted average
ensemble method (“GAEM”) and the logistic
regression-based ensemble method (“LREM”). In the
experiments, we randomly select 80% introns as the
training set, and build the GAEM model and LREM
model. Then, prediction models make predictions for
the remaining 20% introns (8447). Prediction models
predict the BP sites from 50 to 11 nt upstream of
3SS. Biologists give preference to most possible BP
sites, and take wet experiments for verification.
Therefore, we evaluate how many real BPs are identi-
fied. Here, we check top 3 predictions for each test-
ing intron, and analyze the identified BPs. The
statistics are shown in Fig. 6. LREM and GAEM can
respectively identify 8878 BPs and 8635 BPs out of
12,650 real ones. The correctly identified BPs by two
ensemble methods for different types of BPs are A:
8583, 8323/10054, C: 202, 208/1118, G: 28, 22/528, T:
65, 82/950. In general, LREM and GAEM can cor-
rectly find out 70.2% real BPs and 68.3% real BPs.
In addition, we evaluation the overall performances of

LREM and GAEM in the independent experiments. For
each intron, we check the top predictions, ranging from

Table 3 Performances of ensemble methods and best
individual feature-based models

Feature Recall Precision ACC F AUC AUPR

Markov 0.502 0.501 0.963 0.482 0.882 0.486

PWM 0.516 0.471 0.960 0.472 0.871 0.467

DN 0.546 0.442 0.957 0.469 0.883 0.453

SP 0.513 0.513 0.963 0.494 0.882 0.487

LREM 0.529 0.537 0.965 0.515 0.904 0.532

GAEM 0.482 0.541 0.965 0.493 0.891 0.512

Fig. 5 Weights in the GAEM model
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top 1 to top 40. We use the number of top predictions
as X-axis and ratio of correctly identified BPs as Y-axis,
and visualize the results in the Fig. 7. LREM and GAEM
can identify more than 50% real BPs when only checking
top 2 predictions for each intron, and they can find out
most BPs from top 10 predictions. Thus, the proposed
methods have the great recall scores in the independent
experiments, and can effectively predict BP sites.
Therefore, the ensemble learning models GAEM

and LREM can produce satisfying results for the
branchpoint prediction.

Comparison with other state-of-the-art methods
Although the BP prediction is an important work, only
one machine learning-based method [10] named
“SVMBPfinder” was proposed for the branchpoint pre-
diction. First, SVMBPfinder defines a “TNA” pattern
that has an “A” and a “T” two bases upstream. Then,
SVMBPfinder scans 500 nt upstream to obtain all nona-
mers which have “TNA” in the central position, and
takes conserved nonamers as the positive instances and
others as negative instances. At last, SVMBPfinder uses
Markov motif profile and PPT to encode nonamers, and
then adopt SVM to build prediction models.

The source code of SVMBPfinder is publicly available.
For fair comparison, we implement SVMBPfinder on
our benchmark dataset, and make comparison under
same conditions. SVMBPfinder only make predictions
for the nonamers with TNA pattern and recognize the
“A” BPs. However, according to our statistics on the
benchmark dataset, BPs in TNA nonamers only take
53% of all BPs (34,120/63,371). We know that
SVMBPfinder only identifies BPs from adenines, but ig-
nores other BPs. In contrast, our methods can make pre-
dictions for all nucleotides located in 50 nt~11 nt
upstream of introns. Here, we use two approaches to
compare our methods and SVMBPfinder. One evalu-
ation way (“local evaluation”) uses the predicted results
and real labels for all TNA nonamers to calculate evalu-
ation metric scores; in the other evaluation way (“global
evaluation”), the smallest value of predicted scores for
SVMBPfinder are assigned to non-TNA nonamers, and
predicted scores and real labels for all nucleotides are
adopted. Table 4 demonstrates that the ensemble
methods LREM and GAEM can outperform SVMBPfin-
der in the global evaluation and local evaluation. More
importantly, LREM and GAEM can predict TNA BPs as
well as other types of BPs. Therefore, the proposed

Fig. 6 Correctly predicted branchpoints for all BPs and different types of BPs

Fig. 7 Ratio of correctly identified BPs versus number of checked top predictions
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methods can produce high-accuracy performances, and
has more practical use.

Conclusion
Alternative splicing are biological processes that exert bio-
logical functions, and human splicing branchpoints help to
understand the mechanism of alternative splicing. This
paper is aimed to develop the computational method for
the human splicing branchpoint prediction, by transform-
ing the original work as a multi-label learning task. We in-
vestigate several intron sequence-derived features, and
consider several multi-label learning methods (classifiers).
Then, we propose two ensemble learning methods (LREM
and GAEM) which integrate different features and different
classifiers for the BP prediction. The experiments show two
ensemble learning methods outperform benchmark
methods, and produce high-accuracy results. The pro-
posed methods are promising for the human branchpoint
prediction.
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