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Abstract

Background: We present a software workflow capable of building large scale, highly detailed and realistic
volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons.
The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline
is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise
watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models
of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis
relying on the physics engine in Blender.

Results: Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are
reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric
slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly
realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates
tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address
their demands and also to extend the workflow based on their feedback.

Conclusion: A systematic workflow is presented to create large scale synthetic tissue models of the neocortical
circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several
tens of cubic micrometers to a few cubic millimeters.

AMS Subject Classification: Modelling and Simulation

Keywords: Modeling and simulation, Polygonal and volumetric models, Neocortical brain models, In silico
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Background
During the end of the last century, the neuroscience
community has witnessed the birth of a revolutionary
paradigm of scientific research: ‘in silico neuroscience’.
This simulation-based approach has been established
based on several aspects, fundamentally: the collection of
sparse, yet comprehensive, experimental data to synthe-
size and build structural models of the brain in addition
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to the derivation of rigorous mathematical models that
could interpret its function at different scales [1, 2]. The
integration between those structural and functional mod-
els is a principal key for reverse engineering and exploring
the brain and gaining remarkable insights about its behav-
ior [3]. This approach has turned out to be a common
practice first in domains where mathematical modeling is
more evident, such as physics and engineering. In neu-
roscience, the term in silico appeared for the first time
in the early 1990’s when the community started to focus
on computational modeling of the nervous system from
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the biophysical and circuit levels and up to the systems
level [1]. Nevertheless, simulation-based research in neu-
roscience has not become widespread until more recently,
when simulating complex biological systems has been
afforded. This scientific revolution was a normal conse-
quence of diversified factors including a huge quantum
leap in computing technologies, a better understanding
of the underlying principles of the brain and also the
availability of experimental methods to collect the vast
amounts of data that are necessary to fit the models [4, 5].
Understanding the complex functional and structural

aspects of the mammalian brain relying solely on ‘wet’
lab experiments has been proven to be extremely limit-
ing and time consuming. This is due to the fragmenta-
tion of the neuroscience knowledge; there are multiple
brain regions, different types of animals models, distinct
research scopes, and various approaches for addressing
the same questions [6]. The search space for unknown
data is so broad, that it is debatable whether traditional
experiments can provide enough data to answer all the
questions in a reasonable time, unless a more systematic
way is followed.
Integrating the in silico approach into the research loop

complements the traditional in vivo and in vitro methods.
Thanks to unifying brain models, in silico experiments
allow the neuroscientists to efficiently test hypothesis, val-
idate models and build in-depth knowledge as an outcome
of the analysis of the resulting data from computer sim-
ulations [7–9]. Furthermore, these studies can also help
to identify which pieces of unknown experimental data
will provide the most information. The capacity of mak-
ing new questions from in silico experiments establishes
a strong link between theory and experimentation that
would be very hard to do otherwise.
This systematic method can conveniently accelerate

neuroscientific research pace and infer important predic-
tions even for some experiments that are infeasible in the
wet lab; for example due to the limited capability of the
technology to probe a sample andmeasure variables or the
physical impossibility of a manipulation such as silencing
a specific cell type on a tissue sample or specimen. It also
reduces the striking costs and efforts of the experimental
procedures that are performed in the wet lab.
The reliability of the outcomes of an in silico experiment

is subject to the presence of precise multi-scale models of
brain tissue that could fit the conditions and the require-
ments of the experiment. In particular, the models that are
relevant to this work are those which are biologically accu-
rate at the level of organizational and electrophysiological
properties of cells and their membranes.
Markram et al. presented a first-draft digital model of

a piece—or slice—of the somatosensory cortex of a two-
weeks old rat [9, 10]. This model unifies a large amount
of data from wet lab experiments and can reproduce a

series of in vitro and in vivo results reported in the liter-
ature without any parameter tuning. However, the model
is merely limited to simulating electrophysiological exper-
iments. The fundamental objective of our work is focused
on integrating further structural volumetric data into this
model and extending its capabilities for performing in sil-
ico optical studies that can simulate light interaction with
brain tissue.
We present a systematic approach for building real-

istic large scale volumetric models of the neocortical
circuity from the morphological representations of the
neurons; in which the model can account for light
interaction with the different structures of the tis-
sue. The models are created in three steps: mesh-
ing, voxelization, and data annotation (or tagging). To
demonstrate the importance of the presented work,
the resulting volumetric models are employed to sim-
ulate an optical experiment of imaging a cortical tis-
sue sample with the brightfield microscope. This will
allow us ultimately to establish comparisons between
model and experimental results from different imaging
techniques.

Challenges and related studies
Structural modeling of neocortical circuits can be
approached based on morphological, polygonal or vol-
umetric models of the individual neurons composing
the circuits. Each modeling approach has specific set of
applications accompanied with certain level of complex-
ity and limitations. Morphological models can be used to
validate the skeletal representation of the neurons [11],
their connectivity patterns [12] and their organization
in the circuit [13], but they cannot be used, for exam-
ple, for detailed visualization of electro-physiological sim-
ulations. Visualizing such spatiotemporal data requires
highly detailed models that can provide multi-resolution,
continuous and plausible representations of the neurons,
such as polygonal mesh models [14, 15]. These polygo-
nal models can accurately represent the cell membrane of
the neurons, but they cannot characterize the light prop-
agation in the tissue; they do not account for the intrinsic
optical properties of the brain. Therefore, such models
cannot be used to simulate optical experiments on a cir-
cuit level, for instance, microscopic [16] or optogenetic
experiments [17].
Simulating those experiments is constrained to the pres-

ence of detailed and multi-scale volumetric models of
the brain that are capable of addressing light interac-
tion with the tissue including absorption and scattering.
There are also other in silico experiments, such as volt-
age sensitive dye imaging [18] and calcium imaging [19],
that require more complicated models to simulate flu-
orescence. These volumetric models must be annotated
with the actual spectral characteristics of the fluorescent
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structures embedded in the tissue to reflect an accurate
response upon excitation at specific input wavelength.
In principle, volumetric models of the neurons can be

obtained in a single step from their morphological skele-
tons using line voxelization [20]. However, the accuracy of
the resulting volumes, in particular at the cell body and the
branching points of the neurons, will be extremely limited.
Moreover, addressing the scalability to precisely voxelize
large scale neuronal circuits (micro-circuits, slice circuits
or even meso-circuit) is not a trivial problem.
A correct approach of solving this problem entails cre-

ating tessellated polygonal meshes from the neuronal
morphologies followed by building the volumes from
the generated meshes using solid voxelization [21, 22].
Although convenient, this approach is not applicable in
many cases because solid voxelization algorithms are con-
ditioned by default to two-manifold or watertight polyg-
onal meshes [23]. Due to the complex structure of the
morphological skeletons of the neurons and their recon-
struction artifacts, the creation of watertight meshes from
those morphologies is not an easy task. Polygonal mod-
eling of neurons has been investigated in several studies
for simulation, visualization and analysis purposes, but
unfortunately they were not mainly concerned with the
watertightness of the created polygonal meshes. This can
be demonstrated in the work presented by Wilson et al. in
Genesis [24], Glaser et al. [25] in Neurolucida and Glee-
son et al. in neuroConstruct [26]. These software pack-
ages have been designed solely for creating limited-quality
and low level-of-detail meshes that can only fulfill their
objectives. For instance, those created by Neurolucida
were simplified to discrete cylinders that are disconnected
between the different branches of the dendritic arbors as
a result of the variations in their radii. This issue was
resolved in neuroConstruct relying on tapered tubes to
account for the difference in the radii along the branches,
however, the authors have used uniform spheres to join
the different branches at their bifurcation points. These
meshes were watertight by definition, but they do not
provide a smooth surface that can accurately reflect the
structure of a neuron. Creating smooth and continuous
polygonal models of the neurons has been discussed in
two studies by Lasserre et al. [14] and Brito et al. [27],
but their meshes cannot be guaranteed to be watertight
when the neuronal morphologies are badly reconstructed.
Therefore, a novel meshing method that can handle the
watertightness issues is strictly needed.
Building volumetric models of cortical tissue has been

addressed in recent studies for the purpose of simulating
microscopic experiments. Abdellah et al. have presented
two computational methods for modeling fluorescence
imaging with low- [16, 28] and highly-scattering tissue
models [29]. The extent of their volumetric models was
limited to tiny blocks of the cortical circuitry in the order

of tens to hundreds of cubic micrometers. Their pipeline
has been used to extract a mesh block from the corti-
cal column model by clipping each mesh whose soma is
located within the spatial extent of this block and then
convert those clipped meshes to a volume with solid
voxelization. Before the clipping operation, the water-
tightness of each mesh in the block is verified. If the test
fails, the mesh is reported and ignored during the vox-
elization stage. Consequently, this approach could limit
the accuracy of any in silico experiment that utilizes their
volumetric models. The algorithms, workflows and imple-
mentations discussed in the following sections are intro-
duced to overcome these limitations and reduce a gap that
is still largely unfulfilled.

Contributions
1. Presenting an efficient meshing algorithm for

creating piecewise watertight polygonal models
of neocortical neurons from their morphologies.

2. Design and implementation of a scalable and
distributed pipeline for creating polygonal mesh
models of all the neurons in a given neocortical
micro-circuit based on Blender [30].

3. Design and implementation of a high performance
solid voxelization software capable of building high
resolution volumetric models of the cortical circuitry
of few cubic millimeters extent.

4. Demonstrating the results with physically-based
visualization of the volumetric models to simulate
brightfield microscopic experiments.

5. Evaluating the results in collaboration with a group
of domain experts and neuroscientists.

Methods
Our approach for building scalable volumetric models of
neuronal circuits from the experimentally reconstructed
morphological skeletons is illustrated by Fig. 1 and sum-
marized in the following points:

1. Preprocessing the individual neuronal morphologies
that compose the circuit to repair any artifacts that
would impact the meshing process.

2. Creating smooth and watertight mesh models of the
neurons from their morphologies.

3. Building local volumetric models of the neurons
from their mesh models.

4. Integrating all the local volumes of the individual
neurons into a single global volume dataset.

5. Annotating, or ‘tagging’ the global volumetric model
of the circuit according to the criteria specified by the
in silico study. For example, in clarified fluorescence
experiments [31], the neurons will be tagged with the
spectral characteristics of the different fluorescent
dyes that are injected intracellularly. In optogenetic
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Fig. 1 An illustration of our proposed workflow for creating volumetric models of the neurons from their morphological skeletons. a A graphical
representation of a typical morphological skeleton of a neuron. To eliminate any visual distractions, the workflow will be illustrated using a single
arbor sampled only at the branching points (b-f). The blue circles in b and c represent the positions of morphological samples of the neurons and
the radii of their respective cross-sections. d The morphology structure is created by connecting the samples, segments, and branches together.
e The primary branches that represent a continuation along the arbor (in the same color) are identified according to the radii of samples of the
children branches at the bifurcation points. f The connected branches identified in (e) are converted into multiple mesh objects where each object
is smooth and watertight. g The mesh objects are converted to intersecting volumetric shells with surface voxelization in the same volume. h Solid
voxelization. The volume created in (g) is flood-filled to cover the extra-cellular space of the neurons. i The final volumetric model of a neuron is
created by inverting the flood-filled volume to reflect a smooth, continuous and plausible representation of the neuron

experiments, the volume will be tagged with the
intrinsic optical properties of the cortical tissue [32]
to account for precise light attenuation and accurate
neuronal stimulation [33].

Repairing morphological artifacts
The neuronal morphologies are reconstructed from
imaging stacks obtained from different microscopes.
These morphologies can be digitized either with semi-
automated [34] or fully automated [35] tracing methods
[25, 36]. The digitization data can be stored in multiple
file formats such as SWC and the Neurolucida proprietary
formats [37, 38]. For convenience, the digitized data are
loaded, converted and stored as a tree data structure. The
skeletal tree of a neuron is defined by the following com-
ponents: a cell body (or soma), sample points, segments,
sections, and branches. The soma, which is the root of
the tree, is usually described by a point, a radius and a
two-dimensional contour of its projection onto a plane or
a three-dimensional one extracted from a series of paral-
lel cross sections. Each sample represents a point in the
morphology having a certain position and the radius of
the corresponding cross section at this point. Two con-
secutive samples define a connected segment, whereas a
section is identified by a series of non-bifurcating seg-
ments and a branch is defined by a linear concatenation of
sections. Figure 1-a illustrates these concepts.
Due to certain reconstruction errors, morphologies can

have acute artifacts that limit their usability for meshing.

In this step, each morphological skeleton is investigated
and repaired if it contains any of the following artifacts:

1. Disconnected branches from the soma (relatively
distant); where the first sample of a first-order
section is located far away from the soma.

2. Overlapping between the connections of first-order
sections at the soma.

3. Intersecting branches with the soma; where multiple
samples of the branch are located inside the soma
extent.

These issues can severely deform the reconstructed
three-dimensional profile of the soma, affect the smooth-
ness of first-order branches of the mesh and potentially
distort the continuity of the volumetric model of the
neuron. The disconnected branches were fixed by reposi-
tioning the far away samples closer to the soma. The new
locations of these samples were set based on the most dis-
tant sample that is given by the two-dimensional profile of
the soma. For example, if the first order sample is located
at 20 micrometers from the center of the soma, while the
farthest profile point is located at 10 micrometers, then
the position of this sample is updated to be located within
10 micrometers from the center along the same direction
of the original sample.
The algorithm for creating a mesh for the soma is based

on a deformation of an initial mesh into a physically plau-
sible shape. Two branches influencing the same vertices
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of the initial mesh give rise to severe artifacts. Therefore,
if two first-order branches or more overlap, the branch
with largest diameter is marked to be a primary branch,
while the others are ignored for this process. Finally, the
samples that belong to first-order branches and are con-
tained within the soma extent are removed entirely from
the skeleton.

Meshing: frommorphological samples to polygons
In general, creating an accurate volumetric representation
of a surface object requires a polygonal mesh model with
certain geometrical aspects; the mesh has to be water-
tight, i.e. non intersecting, two-manifold [39]. Unfortu-
nately, creating a single smooth, continuous and water-
tight polygonal mesh representation of the cell surface
from a morphological skeleton is more difficult than
it seems. Reconstructing a mesh model to approximate
the soma surface is relatively simple, however, the main
issues arise when (1) connecting first-order branches
to the soma and (2) joining the branches to each oth-
ers. Apart from the intrinsic difficulties, morphological
reconstructions from wet lab experiments are not traced
with membrane meshing in mind. Therefore, they may
contain features and artifacts that can badly influence
the branching process even if the artifacts are com-
pletely repaired. In certain cases, some branches can
have extremely short sections with respect to their diam-
eters or unexpected trifurcations that can distort the
final mesh.
The existing approaches for building geometric rep-

resentations of a neuron are not capable of creating a
smooth, continuous and watertight surface of the cell
membrane integrated into a single mesh object. In neuro-
Construct, the neuron is modeled with discrete cylinders,
each of them represents a single morphological segment
[26]. By definition, the cylinders are watertight surfaces,
however, this technique underestimates the actual geo-
metric shape of the branches. It introduces gaps or dis-
continuities between the segments that are not colinear.
In contrast, the method presented by Lasserre et al. can
be used to create high fidelity and continuous polygo-
nal meshes of the neurons, but the resulting objects from
the meshing process are not guaranteed to be water-
tight. Their algorithm resamples the entire morphological
skeleton uniformly, and thus, the resampling step cannot
handle bifurcations that are closer than the radii of the
branching sections. Moreover, the somata are not recon-
structed on a physically-plausible basis to reflect their
actual shapes. This issue has been resolved by the method
discussed by Brito et al. [40]. They can also build water-
tight meshes for the branches, but their approach can be
valid only if the morphological skeleton is artifact-free.
The watertightness of the resulting meshes is not guar-
anteed if the length of the sections are relatively smaller

than their radii or when two first-order branches are
overlapping.
We present a novel approach to address the previous

limitations and build highly realistic and smooth polyg-
onal mesh models that are watertight ‘piece-wise’. The
resulting mesh consists of multiple ‘separate’ and ’overlap-
ping’ objects, where each individual object is continuous
and watertight. In terms of voxelization, this piecewise
watertight mesh is perfectly equivalent to a single con-
nected watertight mesh that is almost impossible to reach
in reality. The overlapping between the different objects
guarantees the continuity of the volumetric model of the
neuron, Fig. 1-g and 1-i. The final result of the voxeliza-
tion will be correct as long as the union of all the pieces
provides a faithful representation of each component of
the neuron. The mesh is split into three components: (1) a
single object for the soma, (2) multiple objects for the neu-
rites (or the arbors) and (3) (optionally) multiple objects
for the spines if that information is available.

Soma meshing In advanced morphological reconstruc-
tions, the soma is precisely described by a three-
dimensional profile that is obtained at multiple depths
of field [41]. In this case, the soma mesh object can be
accurately created relying on the Possion surface recon-
struction algorithm that converts sufficiently-dense point
clouds to triangular meshes [42]. However, the majority
of the existing morphologies represent the soma by a cen-
troid, mean radius and in some cases a two-dimensional
profile, and thus building a realistic soma object is rela-
tively challenging [36].
Lasserre et al. presented a kernel-based approach for

recovering the shape of the soma from a spherical polyg-
onal kernel with 36 faces [14]. The first-order branches of
the neurons are connected to their closest free kernel face,
and then the kernel is scaled up until the faces reach their
respective branches. The resulting somata are considered
a better approximation than a sphere, but they cannot
reflect their actual shapes. Brito et al. have discussed a
more plausible approach for reconstructing the shape of
the soma based onmass spring system andHook’s law [40,
43, 44]. Their method simulates the growth of the soma by
pulling forces that emanate the first-order sections. How-
ever, their implementation has not been open sourced to
reuse it.
We present a similar algorithm for reconstructing a

realistic three-dimensional contour of the soma imple-
mented with the physics library from Blender [30, 45]. The
algorithm simulates the growth of the soma by deform-
ing the surface of a soft body sphere that is based on
a mass spring model. The soma is initially modeled by
an isotropic simplicial polyhedron that approximates a
sphere, called icosphere [46]. The icosphere is advanta-
geous over a UV-mapped sphere because (1) the vertices
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are evenly distributed and (2) the geodesic polyhedron
structure distributes the internal forces throughout the
entire structure. As a trade-off between compute time and
quality, the subdivision level of the icosphere is set to four.
The radius of the icosphere is computed with respect to
the minimal distance between the soma centroid and the
initial points of all the first-order branches.
Each vertex of the initial icosphere is a control point

and each edge represents a spring. For each first-order
section, the initial cross-section is spherically projected to
the icosphere and the vertices within this projection are
selected to create a hook modifier, which is an ensemble
of control points than remains rigid during the simula-
tion. Before the hook is created, all the faces from the
selected vertices are merged to create a single face that
is reshaped into a circle with the same radius as the
projected radius of the cross-section. During the simula-
tion, each hook is moved towards its corresponding target
section causing a pulling force. At the same time, the con-
necting polygons are progressively scaled to match the
size of the final cross-section at destination point. This
simulation is illustrated in Fig. 2. If two or more first-order
sections or their projections overlap, only the section
with the largest diameter is considered. The other will be
extended later to the soma centroid during the neurite
generation.

Neurite meshing To mesh a neurite, we first divide the
morphology in a set of branches (concatenated non bifur-
cating sections) that span the entire morphological tree,
Fig. 1-e. The algorithm starts the first branch from the
first-order section of the neurite. At the first bifurcation
the section with the largest cross-section at the starting
sample is chosen as the continuing section for the on-
going branch, the rest are placed in a stack. The algorithm
proceeds to the next bifurcation and repeats until a termi-
nal section is reached. Once the branch is completed, the

first section in the stack is popped and a new branch is cre-
ated from there. The algorithm finishes when all sections
have been processed.
Each branch is meshed separately using a poly-line and

a circle bevel which is adjusted to the branch radius at
each control point, Fig. 1-f. The initial branch of each neu-
rite is connected to the centroid of the soma with a conic
section. For most branches this connection will not be
visible, but it is necessary for those ones that were overlap-
ping a thicker branch and did not participate in the soma
generation. The whole algorithm requires only local infor-
mation at each step so it runs very quickly and in linear
time in relation to the number of sections.

Voxelization: from polygonal to volumetric models
A straightforward approach to voxelize an entire neuronal
circuit of a few hundred or thousand neurons is to create a
polygonal mesh for each neuron in the circuit, merge all of
them in a single mesh and feed that mesh into an existent
robust solid voxelizer. However, this approach is infeasi-
ble due to the memory requirements needed to create the
single aggregate mesh model of all neurons. We propose a
novel and efficient CPU-based method for creating those
volumetric models without the necessity of building joint
models of neurons. We use a CPU implementation to not
restrict the maximum volume data size to the memory
of an acceleration device, e.g. a GPU [47–49]. To reduce
the memory requirements of our algorithm, we use binary
voxelization to store the volume (1 bit per voxel).
The volume is created in four steps: (1) computing the

dimensions of the volume, (2) parallel surface voxelization
for the piecewise meshes of all the neurons in the circuit,
(3) parallel and slice-by-slice-based solid voxelization of
the entire volume, and finally (4) annotating the volume.
The spatial extent of the circuit is obtained by trans-

forming the piecewise mesh of each neuron to global
coordinates, computing its axis-aligned bounding box,

a b c d e f

Fig. 2 Soma progressive reconstruction. The soma is modeled by a soft body sphere in (a). The initial and final locations of the primary branches are
illustrated by the green and red points respectively. The first-order sections are projected to the sphere to find out the vertices where the hooks will
be created. The faces from each hook are merged into a single face and shaped into a circle (b). The hooks are pulled and the circles are scaled to
match the size of the sections (c-e). The final soma is reconstructed in (f)



The Author(s) BMC Bioinformatics 2017, 18(Suppl 10):402 Page 45 of 79

and finally calculating the union bounding box of all the
meshes. The size of the volume is defined according to
the circuit extent and a desired resolution. The volumet-
ric shell of each component of the mesh is obtained with
surface voxelization, Fig. 1-g. This process rasterizes all
the pieces conforming a mesh to find their intersecting
faces with the volume. This step is easily parallelizable, as
each cell can be processed independently. We only need
to ensure that the set operations in the volume dataset are
thread-safe.
Afterwards, the extracellular space is tagged by flood-

filling the volume resulting from surface voxelization
[50]. To parallelize this process, we have used a two-
dimensional flood-filling algorithm that can be applied for
each slice in the volume, Fig. 1-h. and the final volume
is created by inverting the flood-filled one to discard the
intersecting voxels in the volume, Fig. 1-i.

Results and discussion
Implementation
The meshing algorithm is implemented in the latest ver-
sion of Blender (2.78) [30]. The pipeline is designed
to distribute the generation of all the meshes speci-
fied in a given circuit in parallel relying on a high
performance computing cluster with 36 computing nodes,
each shipped with 16 processors. The meshing applica-
tion is configured to control the maximum branching
orders of the axons and dendrites, control the quality
of the meshes at various tessellation levels and to inte-
grate the spines to the arbors if needed. This pipeline
has been employed to create highly-tessellated and piece-
wise watertight meshes of the neurons that were defined
in a recent digital slice based on the reconstructed cir-
cuit by Markram et al. [10]. This circuit (521 × 2081 ×
2864μ3) is composed of ∼210,000 neurons and spatially
organized as seven neocortical column stacked together.
Using 200 cores, all themeshes were created in eight hours

approximately. On average, a single neuronal morphol-
ogy is meshed in the order of hundreds of milliseconds
to a few seconds. The meshes were stored according
to the Stanford polygon file format (.ply) to reduce the
overhead of reading them later during the voxelization
process.
The voxelization algorithms (surface and solid) are

implemented in C++, and parallelized using the standard
OpenMP interface [51]. The quality of the resulting
volumetric models is verified by inspecting the two-
dimensional projections of the created volumes and com-
paring the results to an orthographic surface rendering
image of the same neurons created by Blender.

Physically-based reconstruction of the somata
To validate the generalization of the soma reconstruc-
tion algorithm, the meshing pipeline is applied to 55
exemplar neurons having different morphological types
as described in [9, 10]. The exemplars were carefully
selected to reflect the diversity of the shapes of neocor-
tical neurons. Figure 3 shows the eventual shapes of the
reconstructed somata of only 20 neurons. The progres-
sive reconstruction of all the 55 exemplars is provided as a
supplementary movie (https://www.youtube.com/watch?
v=XJ8uVBL8CA8) [52].

Piecewise watertight polygonal modeling of the neurons
Figure 4 shows an exemplar piecewise watertight polyg-
onal mesh of a pyramidal neuron generated from its
morphological skeleton. Figure 4-c shows closeups of
the meshes created for a group of other neurons having
different morphological types. The resulting meshes of all
the 55 exemplars are provided in high resolution in the
supplementary files. The different objects of each mesh
are rendered in different colors to highlight their integrity
without being a single mesh object. The watertightness of
the created meshes of the exemplar neurons was validated

Fig. 3 Physically-plausible reconstruction of the somata of diverse neocortical neurons labeled by their morphological type. The initial shape of the
soma is defined by a soft body sphere that is deformed by pulling the corresponding vertices of each primary branch. The algorithm uses the soft
body toolbox and the hook modifier in Blender [30]

https://www.youtube.com/watch?v=XJ8uVBL8CA8
https://www.youtube.com/watch?v=XJ8uVBL8CA8


The Author(s) BMC Bioinformatics 2017, 18(Suppl 10):402 Page 46 of 79

Fig. 4 Reconstruction of a piecewise watertight polygonal mesh model of a pyramidal neuron in (b) from its morphological skeleton in (a).
In (c), the applicability of the proposed meshing algorithm is demonstrated with multiple neurons having diverse morphological types to validate
its generality. The reconstruction results of the 55 exemplar neurons are provided in high resolution with the Additional file 1. The somata, basal
dendrites, apical dendrites and axons are colored in yellow, red, green and blue respectively

in MeshLab [53]. All the neurons have been reported to
have zero non-manifold edges and vertices.

Volumetric modeling of a neocortical circuit
The scalability of our voxelization workflow affords the
creation of high resolution volumetric models of multi-
level neocortical circuits (microcircuits, mesocircuits,
slices) that are composed from a single neuron and up
to an entire slice that contains ∼210,000 neurons. The
target volume is created upon request from the neuro-
scientist according to his desired in silico experiment.
Figure 5 illustrates the results of the main steps for cre-
ating an 8k volumetric model of a single spiny neuron
from its mesh model. The volumetric shell of each com-
ponent of the neuron is created with surface voxelization.
The filling of the intracellular space of the neuron is done
with solid voxelization to create a continuous and smooth
volumetric representation of the neuron.
Figure 6 shows the results of volumizing multiple neo-

cortical circuits with various scales that range from a
single neuron and up to a slice circuit. Note that we only
voxelize a fraction of neurons to be able to visualize the
volume, but in principle the volumes were created for
all the neurons composing the circuit. Referring to pre-
vious studies [28, 29], the scalability concerns addressed
in this work has allowed the computational neuroscien-
tists to extend the scale of their simulations from the
size of the box colored in orange in Fig. 6 to an entire
slice.

Physically-plausible simulation of brightfield microscopy
To highlight the significance of this work, we briefly
present a use case that utilizes the volumetric models
created with our pipeline; a physically-plausible simu-
lation of imaging neuronal tissue samples with bright-
field microscopy. In general, this visualization is used to
simulate the process of injecting the tissue with a specific
dye or stain with certain optical characteristics to address
the response of the tissue to this dye. Existing applica-
tions can use the models as well for performing other in
silico optical studies such as [28, 29]. In this use case, the
neurons are injected with Golig-based staining solution in
vitro. Then, the sample is scanned with inverted bright-
field microscope at multiple focal distances to visualize
the neuronal connectivity and the in-focus structures of
the neurons. We developed a computational model of the
brightfield microscope that can simulate its optical setup
and would allow us to perform this experiment in silico.
For this purpose, a circuit consisting of only five neurons
is volumized and annotated with the optical properties of
the Golgi stain. Moreover, the virtual light source used in
the simulation uses the spectral response of a Xenon lamp.
The results of this in silico experiment is shown in Fig. 7.
The microscopic simulation is implemented on top of the
physically-based rendering toolkit [54, 55].

Workflow evaluation
The significance of the results was discussed in col-
laboration with a group of domain experts including
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Fig. 5 The process of building a volumetric model of a single pyramidal neuron from its polygonal mesh. The polygonal mesh model in (a) is
converted to a volumetric shell with surface voxelization in (b) and a filled volume with solid voxelization in (c). In (d), the spines are integrated to
the volume. The images in (e), (f), (g) and (h) are close ups for the renderings in (a), (b), (c) and (d) respectively. Notice the overlapping shells of the
different branches and the soma that result due to the surface voxelization step in (f). In (g), the volume created with solid voxelization reflects a
continuous, smooth and high fidelity representation of the entire neuron

neurobiologists and computational neuroscientists. We
requested their feedback mainly on the following aspects:
the plausibility of the volumes of the 55 exemplar neu-
rons, their opinions about the simulation of the brightfield
microscope and the scalability of the workflow. They
agreed that the neuronal models of the different exem-
plars, in particular the somata, are much more realistic
than the current models they use in their experiments.
They were also impressed with the rendering in Fig. 7
saying that it is really hard to discriminate from those
they have seen in the wet lab. They also suggested to use
this optical simulation tool to experiment and validate the
result of using other kinds of stains with different optical
properties. They were also extremely motivated to see the
results of other in silico experiments that simulate fluo-
rescence microscopes and in particular for imaging brain-
bows [56] where each neuron is annotated with different
fluorescent dye. Concerning the scalability, they expressed
their deep interest to integrate our workflow into their
pipeline to be capable of creating larger circuits. We have
also received several requests to extend the pipeline for
building volumetric models of other brain regions, for
example the hippocampus, and also for reconstructing

different types of structures such as neuroglial cells and
vasculature.

Conclusions
We presented a novel and systematic approach for build-
ing large scale volumetric models of the neocortical cir-
cuitry of a two-week old Juvenile rat. An efficient and
configurable pipeline is designed to convert the neuronal
morphologies into smooth and high fidelity volumes with-
out the necessity to create connected watertight polygo-
nal mesh models of the neurons. The morphologies are
repaired in a preprocessing step and then converted into
piecewise watertight polygonal meshmodels to build real-
istic volumetric models of the brain tissue with solid
voxelization. The pipeline has been employed to cre-
ate high resolution volumes for multiple neocortical cir-
cuits with a single neuron and up to a slice circuit that
contains ∼210,000 neurons. The entire pipeline is par-
allelized to afford the voxelization of huge circuits in
few hours, which was totally infeasible in the past. The
results were discussed collaboratively with a group of
experts to evaluate their plausibility. The significance
of the presented method is demonstrated with a direct



The Author(s) BMC Bioinformatics 2017, 18(Suppl 10):402 Page 48 of 79

a c d

e

b

250 m 

100 m 150 m 250 m 150 m 

Fig. 6 Volumetric reconstructions of multiple neocortical circuits with solid voxelization. The presented workflow is capable of creating large scale
volumetric models for circuits with different complexity. a Single cell volume. b A group of five pyramidal neurons. c 5% of the pyramidal neurons
that exist in layer five in the neocortical column. d 5% of all the neurons in a single column (containing ∼31,000 neurons). e A uniformly-sampled
selection of only 1% of the neurons in a digital slice composed of seven columns (containing ∼210,000 neurons) stacked together. The resolution of
the largest dimension of each volume is set to 8000 voxels. The area covered by the orange box in (e) represents the maximum volumetric extent
that could be simulated in similar previous studies [28, 29]
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150 m 

Fig. 7 In silico imaging of neuronal tissue with brightfield
microscope. The volumetric model (left) is annotated with the
optical characteristics of Golgi’s silver stain. The in silico image created
in (b) is used to study the visual response of different dyes used in the
in vitro experiment

application for simulating the imaging of cortical tissue
with brightfield microscopy.
We are currently working on improving the perfor-

mance of the voxelization workflow to allow the creation
of the volumes on distributed computing nodes. We are
also considering building a web-based interface for the
entire pipeline that can facilitate its usability in particular
for pure biologists who have limited programing experi-
ences. We will investigate the capability of extending the
workflow to generate volumes for hippocampal neurons,
neuroglial cells and vasculature to address the requests of
the neuroscientists.

Additional file

Additional file 1: High quality renderings of the generated 55 exemplar
meshes and their morphologies. (PDF 4188 kb)
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