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Abstract

Background: For fighting cancer, earlier detection is crucial. Circulating auto-antibodies produced by the patient’s
own immune system after exposure to cancer proteins are promising bio-markers for the early detection of cancer.
Since an antibody recognizes not the whole antigen but 4–7 critical amino acids within the antigenic determinant
(epitope), the whole proteome can be represented by a random peptide phage display library. This opens the
possibility to develop an early cancer detection test based on a set of peptide sequences identified by comparing
cancer patients’ and healthy donors’ global peptide profiles of antibody specificities.

Results: Due to the enormously large number of peptide sequences contained in global peptide profiles generated
by next generation sequencing, the large number of cancer and control sera is required to identify cancer-specific
peptides with high degree of statistical significance. To decrease the number of peptides in profiles generated by
nextgen sequencing without losing cancer-specific sequences we used for generation of profiles the phage library
enriched by panning on the pool of cancer sera. To further decrease the complexity of profiles we used
computational methods for transforming a list of peptides constituting the mimotope profiles to the list motifs
formed by similar peptide sequences.

Conclusion: We have shown that the amino-acid order is meaningful in mimotope motifs since they contain
significantly more peptides than motifs among peptides where amino-acids are randomly permuted. Also the single
sample motifs significantly differ from motifs in peptides drawn from multiple samples. Finally, multiple
cancer-specific motifs have been identified.

Keywords: Random peptide phage display library, Early cancer detection, Immune response, Peptide motifs,
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Background
Circulating autoantibodies produced by the patient’s own
immune system after exposure to cancer proteins are
promising biomarkers for the early detection of cancer. It
has been demonstrated, that panels of antibody reactivi-
ties can be used for detecting cancer with high sensitivity
and specificity [1].
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The whole proteome can be represented by random
peptide phage display libraries (RPPDL). For any anti-
body the peptide motif representing the best binder can
be selected from the RPPDL. The next generation (next-
gen) sequencing technology makes possible to identify all
the epitopes recognized by all antibodies contained in the
human serum using one run of the sequencing machine.

Recent studies tested whether immunosignatures corre-
spond to clinical classifications of disease using samples
from people with brain tumors [2]. The immunosigna-
turing platform distinguished not only brain cancer from
controls, but also pathologically important features about
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the tumor including type and grade. These results clearly
demonstrate that random peptide arrays can be applied
to profiling serum antibody repertoires for detection of
cancer.

In [3] the authors studied serum samples from patients
with severe peanut allergy using phage display. The phages
were selected based on their interaction with patient
serum and characterised by highthroughput sequencing.
The epitopes of a prominent peanut allergen, Ara h 1, in
sera from patients could be identified.

The profiles generated by next-gen sequencing follow-
ing several iterative round of affinity selection and ampli-
fication in bacteria can consist of millions of peptide
sequences. A significant fraction of these sequences is
not related to the repertoires of antibody specificities, but
produced by nonspecific binding and preferential ampli-
fication in bacteria. The presence of high amounts of
these unspecific, quickly growing "parasitic" sequences
can complicate the analysis of serum antibody specifici-
ties. Considering that the affinity selected sequences can
be clustered into the groups of similar sequences with
shared consensus motifs, while the parasitic sequences are
usually represented by single copies, we propose a novel
motif identification method (CMIM) based on CAST
clustering [4].

We have shown that the amino-acid order is meaningful
in mimotope motifs found by CMIM – the CMIM motifs
identified in observed samples contain significantly more
peptides then motifs among the same peptides but with
amino-acids randomly permuted. Also the single sample
motifs are shown to be significantly different from motifs
in peptides drawn from multiple samples.

CMIM was applied to case-control data and identified
numerous cancer-specific motifs. Although no motif is
statistically significant after adjusting to multiple testing,
we have shown that the number of found motifs is much
larger than expected and may therefore contain useful
cancer markers.

Methods
Generating mimotope profiles of serum antibody
repertoire
The experiment for generating mimotope profiles of
serum antibody repertoire is outlined in the flowchart
in Fig. 1. The first step of the experiment was library
enrichment, the second step was directly generating of
mimotope profiles and next-gen sequencing.

Library enrichment
Pooled serum from eight stage 0 breast cancer patients
were used for enrichment of the library. The enrichment
was performed as follows. Twenty μl of pooled serum
and 10 μl of the Ph.D.7 random peptide library (NEB)
were diluted in 200 μl of the Tris Buffered Saline (TBST)

buffer containing 0.1% Tween 20 and 1% BSA and incu-
bated overnight at room temperature. The phages bound
to antibodies were isolated by adding 20 μl of protein G
agarose beads (Santa Cruz) to the phage –antibody mix-
ture and incubating for 1 hour. To eliminate the unbound
phage the mixture with beads was transferred to the well
of 96-well MultiScreen-Mesh Filter plate (Millipore) con-
taining 20 μm pore size nylon mesh at the bottom. The
unbound phage was removed by applying vacuum to the
outside of the nylon mesh using micropipette tip. The
beads were washed 4 times by adding to the well 100 μl of
TBST buffer and removing the liquid by applying vacuum
to the outside of the nylon mesh using micropipette tip.
The phage bound to the antibodies was eluted by adding
to the beads of 100 μl of 100 mM Tris-glycine buffer pH
2.2 followed by neutralization using 20 μl 1 M Tris buffer
pH 9.1. The eluted phages were amplified in bacteria by
infecting 3 ml of an early log-phase culture . The ampli-
fied phages were isolated by precipitating phage with 1/6
volume of 20% PEG, 05.M NaCl precipitation buffer. The
cycle of incubation-bound phage isolation-amplification
was repeated two more times and the isolated after the
3rd amplification library was used for analyzing antibody
repertoires.

Generating peptide profiles
Twenty μl of serum and 10 μl of the enriched library were
diluted in 200 μl of the Tris Buffered Saline (TBST) buffer
containing 0.1% Tween 20 and 1% BSA and incubated
overnight at room temperature. The phages bound to anti-
bodies were isolated using low pH buffer as described
above for the enrichment of the library and the phage
DNA was isolated using phenol-chloroform extraction
and ethanol precipitation. The 21 nt long DNA fragments
coding for random peptides were PCR-amplified using
primers containing a sequence for annealing to the Illu-
mina flow cell, the sequence complementary to the Illu-
mina sequencing primer and the 4 nt barcode sequence
for multiplexing. The PCR-amplified DNA library was
purified on agarose gemultiplexed and sequenced by 50
cycle HiSeq 2500 platform.

The sequences were de-multiplexed to determine its
source sample. The 21- base nucleotides were extracted
between base position 29 and 49 and translated to 7-
amino-acid peptide using the first frame. Any peptide
containing stop codon was discarded.

CAST-based motif identification method
A motif was defined as a group of peptides having com-
mon sequence pattern. If we consider a motif as a cluster
formed by peptides with the center represented by a con-
sensus sequence then construction of a motif corresponds
to a difficult clustering problem with many closely located
centers. The radius of a cluster may exceed the distance
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Fig. 1 A scheme for generating mimotope profiles of serum antibody repertoire. The first step of the experiment is library enrichment, the second
step is directly generating of mimotope profiles and next-gen sequencing

from one cluster to another one. To solve the problem we
modified CAST clustering algorithm (Clustering Affin-
ity Search Technique) [4]. We did not know in advance
how many motifs should be found in each sample. Other
words, we did not know the number of clusters. For this
reason we used CAST. It does not assume a given num-
ber of clusters and an initial spatial structure of them, but
determines cluster number and structure based on the
data.

The input of CAST consists of a similarity matrix to
store the distances of all of the peptides and an similarity
threshold. We defined the similarity of two sequences of
equal length as the number of positions where the corre-
sponding symbols are equal. We also consider the shifts of
sequences relative to each other where it is necessary. For
example, if we have two peptide sequences MLPHWAS

and LPHWASK we need to shift them on one position rel-
ative to each other to get common overlap LPHWAS. In
this example the similarity will be equal 6. Since the min-
imal length of a peptide sequence that can mimic the epi-
tope recognized by antibody is usually in the range from 4
to 7 amino acids, we assigned similarity threshold equal 4.
So any two peptides in a motif should have approximately
4 common amino acids (diameter of a motif ). As well as
no more than three shifts between peptides to the right or
left sides were allowed.

The Algorithm 1 describes the CAST-based motif iden-
tification method (CMIM).

On every iteration of the algorithm two peptides with
the highest similarity were chosen as the initial center
of a cluster. Next the process of adding and removing
of peptides from the cluster was performed while the
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Algorithm 1 CAST-based motif identification (CMIM)
Input: Set of peptides P, similarity matrix D, threshold
θ

Set of seed peptides S ← P
while S �= ∅ do

Cluster set M ← {s1, s2}, s1, s2
- the two most similar peptides in S

Set of petides outside the cluster R ← P \ M
affinity(p) ← D(p, s1) + D(p, s2), for all p ∈ P
while there is any change in M do

while ∃r ∈ R s.t. affinity(r)/|M| ≥ θ do
M ← M ∪ {r′}, r′ ∈ R - peptide with the

highest affinity
affinity(p) ← affinity(p)+D(p, r′), for all p ∈

P - update affinity of all peptides
end while
while ∃m ∈ M s.t. affinity(m)/(|M|−1) < θ do

M ← C \ {m′}, m′ ∈ M - peptide with the
lowest affinity

affinity(p) ← affinity(p) − D(p, m′), for all
p ∈ P - update affinity of all peptides

end while
end while
S ← S \ M
Add M to set of clusters M

end while
for any pair {M′, M′′} ∈ M do

if (|M′∩M′′|/|M′| > 0.5) or (|M′∩M′′|/|M′′| > 0.5)

then
Collapse M′ and M′′

end if
end for
for any M ∈ M do

align peptides in M
calculate entropy in every position i of aligned M
find consensus K for 7-mer window with the min

entropy
end for
Output: Set of motifs M, represented by clusters Mi
and consensus sequences Ki

similarity between every pair of petides in a final set
were not less than the threshold. During that step initially
assigned central peptides could be removed. A measure
of similarity between a peptide and all other peptides in
a cluster was called affinity. Obtained cluster was saved
removing its peptides from further consideration as ini-
tial centers. Then the procedure was repeated to find
remaining motifs. Unlike CAST our algorithm allows
intersection between clusters. As result some consensus
sequences of motifs could be too close to each other. So
the obtained clusters were collapsed if they had more

than 50% common peptides. The last step was to align all
peptides in the cluster and compute entropy in every posi-
tion. Seven positions with the smallest cumulative entropy
(the most conserved part) were chosen, and the consen-
sus amino acid sequence was found. The output of the
algorithm was a set of finding motifs in a serum sam-
ple, each represented by a cluster and its consensus 7-mer
sequence. To compute consensus sequence for a motif
we aligned peptide sequences in its cluster and calculated
entropy in every position of the cluster. Then we chose
seven positions window with the minimum total entropy
and identified consensus as the order of the most frequent
amino acids found at each chosen position.

Results and discussion
Data set
We analyzed the profiles generated for the 15 serum sam-
ples of the stage 0 and 1 breast cancer patients and for
the 15 serum samples of the healthy donors. For each
serum sample the experiment was performed separately
using the same enriched library on all samples. In average,
for the experimental condition selected, the total num-
ber of distinct peptide sequences generated in one sample
was 18450, and standard deviation σ was 6205. The aver-
age count value (expression) of a sample was 407335(σ =
252393).

After applying the motifs search separately to every
sample, we obtained in average 3000(1073) motifs per a
control sample and 3490(1315) motifs per a case sam-
ple. The average size of a motif in a case was 7.1(1.8)
peptides, in a control it was 6.8(1.3) peptides. Every sam-
ple contained significant amount of large motifs. Thus,
the average number of motifs consisting of 20 and more
peptides was 154(71) and 131(53) for cases and controls
respectively.

Motif validation
To validate found motifs we generated pseudo mimotope
profiles using two strategies. The first strategy was ran-
dom permutation of amino acids in a sample peptides.
As result, we received 30 samples consisting of random
7-mer peptides. We ran our motif search method on the
samples and obtained about 6639(1967) motifs with the
average size 4.2(0.7). Although, the largest motif among
all samples contained only 17 peptides. More than 95%
of motifs in all samples had size no more than 4 pep-
tides.The obtained motifs were significantly different from
those found in real serum samples. This result proves the
amino-acid order is meaningful in mimotope motifs found
by CMIM.

The second strategy was random selection of peptides
from existing samples and generating random samples.
We collapse all original serum samples together assign-
ing count value to each peptide. The more abundant and



The Author(s) BMC Bioinformatics 2017, 18(Suppl 8):244 Page 37 of 49

popular a peptide was among samples the more probable
it would be selected to a new random sample. We gener-
ated 30 samples with 20k peptides each. We also applied
motif search method to the random samples. In average
we obtained 3890(34) motifs with the size of 5.71(0.04)
peptides. To compare the group of random samples with
the group of real serum samples we applied Kruskal–
Wallis test [5]. This non-parametric method determines
whether samples originate from the same distribution.
The result p-value was 7.5∗10−5 rejecting the null hypoth-
esis that the population medians of both groups were
equal. Thus, the single sample motifs are significantly
different from motifs in peptides drawn from multiple
samples.

Cancer-specific motifs
The cancer-specific motifs were defined as motifs sig-
nificantly prevalent in cases. We compared motifs based
on their consensus 7-mers. If two samples shared any
consensus sequence, we considered they shared the cor-
responding motif. A motif was associated with cancer if
probability of its appearance in cases against controls by
chance was less than 0.05. We calculated the probability
of all possible combinations of 15 cases and 15 controls
and chose the most discriminating. As result, we received
the following case-control significant combinations with
probability less 0.05: 4-0 (a motif should appeared in
4 cases and 0 controls), 5-0, 6-0,...,15-0,6-1,...,15-1,8-
2,...15-2,9-3,...15-3,10-4,...,15-4,11-5,...15-5,12-6,...,15-
6,13-7,...,15-7,14-8,...,15-8,...,15-11. We also found the
combinations with probability less than 0.04, 0.03, 0.02
and 0.01. There were 67 cancer specific motifs with
probability of case-control appearance less than 0.05,
27 motifs with probability less than 0.04, 24 motifs with
probability less than 0.03, 10 and 4 motifs with probability
less than 0.02 and 0.01 respectively.

To validate obtained motifs we applied permutation test.
We tested, at 5% significance level, whether the num-
ber of observed motifs can be obtained by chance. The
test proceeded as follows. Cases and controls were ran-
domly swapped, so some cases were considered as con-
trols while controls were considered as cases. Totally 10K
random permutations were performed. For every permu-
tation the number of motifs with significant case-control
appearance was count. The one-sided p-value of the test
was calculated as the proportion of permutations where
the number of significant motifs was greater or equal to
observed number (see Table 1). As far as all p-values were
greater than 0.05 we can not reject the hypothesis that the
number of observed motifs could be obtained by chance.
The number of expected and observed motifs as well as
False Discovery Rate (FDR) [6] adjustment are also shown
in Table 1. Notice that the number of observed motifs
with probability of case-control appearance less than 0.01

Table 1 Statistics for case-specific motifs

Probability Observed Expected FDR p-value of the
permutation test

<0.05 67 51.9 0.77 0.15

<0.04 27 20.5 0.76 0.21

<0.03 24 16.6 0.69 0.15

<0.02 10 8.1 0.81 0.32

<0.01 4 4.2 1.06 0.52

The number of observed motifs with expected number, FDR and p-value of the
permutation test

equals to 4 which is less than expected number 4.2. That
gives FDR greater than 1. Despite the fact that no motif
is statistically significant, we can see that their number is
still larger than expected.

Conclusions
In current work we identified cancer-specific motifs by
analyzing peptide profiles of serum samples from can-
cer patients and from healthy donors. These profiles
were generated using a phage DNA sequencing follow-
ing single selection without amplification on the serum
samples with the library enriched by the cycles of affin-
ity selection-amplification using a pool of serum samples
from additional cancer patients.

A novel motif identification method based on CAST
clustering (CMIM) was proposed. We found that for any
real serum sample the number of peptides per a motif
is significantly greater comparing with pseudo epitope
repertoire consisting of a randomly permuted peptides.
Also the single sample motifs are shown to be significantly
different from motifs in peptides drawn from multiple
samples.

Running on case-control data CMIM identified cancer-
specific motifs. Although no motif is statistically signifi-
cant after permutation test, the number of found motifs
is larger than expected and may therefore contain useful
cancer markers.
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