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Abstract

Background: Drug-induced liver injury (DILI) is a critical issue in drug development because DILI causes failures in
clinical trials and the withdrawal of approved drugs from the market. There have been many attempts to predict
the risk of DILI based on in vivo and in silico identification of hepatotoxic compounds. In the current study, we
propose the in silico prediction model predicting DILI using weighted molecular fingerprints.

Results: In this study, we used 881 bits of molecular fingerprint and used as features describing presence or absence of
each substructure of compounds. Then, the Bayesian probability of each substructure was calculated and labeled (positive
or negative for DILI), and a weighted fingerprint was determined from the ratio of DILI-positive to DILI-negative
probability values. Using weighted fingerprint features, the prediction models were trained and evaluated with the
Random Forest (RF) and Support Vector Machine (SVM) algorithms. The constructed models yielded accuracies of 73.8%
and 72.6%, AUCs of 0.791 and 0.768 in cross-validation. In independent tests, models achieved accuracies of 60.1% and
61.1% for RF and SVM, respectively. The results validated that weighted features helped increase overall performance of
prediction models. The constructed models were further applied to the prediction of natural compounds in herbs to
identify DILI potential, and 13,996 unique herbal compounds were predicted as DILI-positive with the SVM model.

Conclusions: The prediction models with weighted features increased the performance compared to non-weighted
models. Moreover, we predicted the DILI potential of herbs with the best performed model, and the prediction results
suggest that many herbal compounds could have potential to be DILI. We can thus infer that taking natural products
without detailed references about the relevant pathways may be dangerous. Considering the frequency of use of
compounds in natural herbs and their increased application in drug development, DILI labeling would be very important.
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Background
As the leading cause of development failure in clinical
trials and withdrawal of drugs from the market, drug-
induced liver injury (DILI) is one of the most important
factor in drug development [1]. The severe adverse effects
of DILI, which include acute liver failure and jaundice,
must be considered in drug development. The toxicity of
these drugs is attributable to their conversion in the liver

to highly reactive metabolites that cause organ damage
[2–4]. However, determining DILI potential is a very
challenging task, primarily because animal studies do
not efficiently predict DILI potential in human. For
example, in a phase II clinical trial, acute liver toxicity in-
duced by fialuridine led to the deaths of five subjects, in
contrast to its safe use in animal studies [5]. In a study of
221 pharmaceutical products, the rate of concordance of
hepatotoxicity in humans and animals was low, approxi-
mately 55%, whereas the rate of concordance was much
higher in other target organs, including the hematological

* Correspondence: hjnam@gist.ac.kr
School of Electrical Engineering and Computer Science, Gwangju Institute of
Science and Technology (GIST), Buk-gu, Gwangju 61005, Republic of Korea

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Bioinformatics 2017, 18(Suppl 7):227
DOI 10.1186/s12859-017-1638-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1638-4&domain=pdf
mailto:hjnam@gist.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(91%), gastrointestinal (85%), and the cardiovascular (80%)
systems [6]. In addition, clinical features or laboratory tests
for predicting DILI potential have not been identified [7, 8].
Moreover, the statistical power of clinical trials is insuffi-
cient. Severe idiosyncratic hepatotoxicity occurs at very low
frequency, and patient samples in clinical trials number
only in the thousands. Due to this low statistical power,
even well-controlled clinical trials can fail to predict DILI.
To overcome these problems, many researchers have

sought to evaluate the toxicity of compounds in vitro
and/or in vivo. However, considering the number of
compounds, this approach is time-consuming and costly,
and thus there has been much effort to develop prediction
models to determine if a compound could cause liver tox-
icity. Computational modeling approaches have been
adopted by pharmaceutical companies to help evaluate
the efficacy, toxicity, and metabolism of pharmaceutical
ingredients [9]. In the early stages of the development
of prediction models, the predictive power of the con-
structed models was not satisfactory, and models often
relied on experimental data for better performance. Some
researchers used molecular signatures, such as for alanine
transaminase (ALT), aspartate aminotransferase (AST),
and alkaline phosphatase (ALP), all of which are com-
monly assessed in the diagnostic evaluation of hepatocel-
lular damage [10]. In more recent years, machine-learning
algorithms for prediction models have also been developed
to obtain better predictions [11, 12]. However, experimen-
tal data are limited utility in constructing prediction
models. Therefore, several researchers have focused on
computational predictions using compound properties
and structural characteristics. Greene et al. developed
structure-activity relationships for potentially hepatotoxic
compounds [13]. Compounds were categorized into four
classes associated with hepatotoxicity: no evidence, weak
evidence, animal hepatotoxicity and human hepatotox-
icity. The resultant hepatotoxicity alerts yielded a concord-
ance of 56%, a specificity of 73%, and a sensitivity of 46%.
Ekins et al. built a classification model based on the Bayes-
ian modeling method with molecular descriptors and fin-
gerprint descriptors [14]. The evaluation of the classifier
demonstrated a concordance of 60% for internal validation
and 64% for external validation. Rodgers et al. also devel-
oped a quantitative structure-activity relationship (QSAR)
model using liver adverse effects of drugs (AEDs) as a
dataset. They used information on enzyme markers of
hepatotoxicity, but these markers can fluctuate due to
other factors throughout the day [15]. Moreover, Huang et
al. developed a prediction model based on QSAR using a
variety of descriptors including fingerprints. Their model
performed well with an accuracy of 79.1% in internal val-
idation. They further predicted the potential hepatotox-
icity of Traditional Chinese Medicines [16]. Zhang et al.
also developed an in silico prediction model for DILI. They

used three different fingerprints and five machine-learning
algorithms and obtained a concordance of 66% using the
Support Vector Machine algorithm and FP4 fingerprint, in
addition to identifying important substructure patterns
related to liver toxicity [17]. Despite these extensive efforts
to predict DILI, there are no standard QSAR models for
DILI, in contrast to the availability of QSAR models for
mutagens. Moreover, less is known about the substructures
that are significantly associated with DILI [18–20].
Thus, in this study, we focused on improving DILI pre-

diction models using Bayesian weighted substructures and
identifying frequently appearing substructures that might
be key for DILI (Fig. 1). First, datasets from the Liver Tox-
icity Knowledge Base (LTKB) and the DrugBank database
were obtained and pre-processed [21]. We then extracted
substructure feature information from 312 compounds.
The weighted features were obtained from the calculation
of the Bayesian probability for each substructure repre-
sented in a compound fingerprint. The prediction models
were trained by two algorithms and evaluated with an in-
dependent test set of unseen 398 compounds. Finally, the
constructed models were used to predict the hepatotoxic
potential of herb-related compounds from herb databases.
Moreover, several frequent substructures related to DILI-
positive compounds were reported as alerts.

Methods
Data preparation
The Liver Toxicity Knowledge Base Benchmark Dataset
(LTKB-BD) and the DrugBank database were used as
training datasets. LTKB-BD is a benchmark dataset pro-
vided by the National Center for Toxicological Research
(NCTR), U.S. FDA [21, 22]. This dataset contains a list
of drugs with DILI potential in humans in accordance
with FDA-approved prescription drug labels. Drugs in
the dataset are categorized into one of three groups based
on their description and severity: most-DILI-concern, less-
DILI-concern, and no-DILI-concern. Drugs with a black
box warning of hepatotoxicity or that were withdrawn
from the market were classified into the most-DILI-
concern category. The drugs in that class were labeled due
to their fatal hepatotoxicity, including liver necrosis, jaun-
dice, and acute liver failure. The less-DILI-concern drugs
included those with moderate DILI warnings, and drugs
without any DILI indication were classified as no-DILI-
concern drugs. In this study, we began by labeling 222
DILI-concern drugs and 65 no-DILI-concern drugs from
the LTKB-BD as positive and negative, respectively. We
then retrieved simplified molecular-input line-entry
system (SMILES) information using ChemSpider python
API by name matching [23, 24]. The SMILES information
was further used to obtain molecular fingerprints for
use as features in model training and construction.
We selected only one-matched compounds for higher
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confidence because ChemSpider API offers a partial
matching service. Finally, we obtained 180 positive
and 53 negative compounds.
Moreover, we retrieved additional negative data from

the DrugBank database to balance the data size. From
the DrugBank database, we extracted FDA-approved
drugs, with a focus on drugs approved for more than
10 years. The database provides a ‘started-market-date’
and an ‘ended-market-date’, and thus we set the limits to
‘2006’ for the started-market-date and to ‘none’ for the
ended-market-date. We again queried ChemSpider API
to obtain the SMILES information for these drugs, and
we removed the drugs overlapping with the LTKB data-
set by comparing the SMILES information. Finally, we
identified 79 negative compounds from the DrugBank
database. In total, 180 positive compounds and 132
negative compounds were used as the training dataset as
listed in Table 1.

Molecular fingerprints
Molecular fingerprints are a representation of the struc-
ture of a compound. Fingerprints are widely used in
chemical informatics because they consist of bitstrings,
which facilitate molecule comparisons. Each bit of a fin-
gerprint represents a specific substructure of a molecule,
and the annotation of the substructure depends on the
type of fingerprint. In the current study, we used Pub-
Chem fingerprints (ftp://ftp.ncbi.nlm.nih.gov/pubchem/
specifications/pubchem_fingerprints.pdf ), which have a
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Fig. 1 Overview of prediction model construction

Table 1 The number of compounds used in training and the
independent test

Datasets DILI-positive DILI-negative Total

Training LTKB 180 53 312

DrugBank - 79

Independent test Green & Xu 224 174 398
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length of 881 bits. Each bit represents the presence of an
element, the count of a ring system, the atom pairs, the
atom’s nearest neighbors, and the SMARTS patterns.
The PubChem fingerprint was chosen for substructure
reporting in the present study because it describes the
structure of a molecule in detail with a long bit-vector.
To retrieve fingerprint information, we used the PaDEL-
Descriptor, which is software used to calculate molecular
descriptors including 1D, 2D, and 3D descriptors and 12
types of fingerprints for the PubChem fingerprint [25].
The software can be downloaded online and supports a
graphical interface.

Bayesian theory for feature weight calculation
A molecular fingerprint is a binary vector and thus is
composed of zeros and ones. The fingerprint indicates
the presence of a substructure in a molecule. In this study,
we focused on substructure information in DILI-positive
compounds, and therefore, we used Bayesian theory to
identify frequent substructures in DILI-positive compounds
that might cause hepatotoxicity. First, we calculated the
probability that a compound was DILI-positive/negative
given that a structure was present/absent (Formula 1),
where P and N each represents positive and negative label,
and S indicates a substructure.

P PjSð Þ ¼ P P; Sð Þ
P Sð Þ ¼ P SjPð ÞP Pð Þ

P SjPð ÞP Pð Þ þ P SjNð ÞP Nð Þ ð1Þ

However, if we calculate the Bayesian probability as in
the equation above, a substructure will have a probability
value of zero if it is absent from both positive and nega-
tive compounds. A zero probability does not indicate
that a substructure is always absent in either case. If we
increase the size of the dataset, those bits might appear.
Therefore, to avoid zero probabilities, we used Laplace
smoothing, which is a technique that pretends we ob-
served every outcome k extra times (Formula 2).

PLAP;k xð Þ ¼ c xð Þ þ k
N þ k Xj j ; PLAP;k xjyð Þ ¼ c x; yð Þ þ k

c yð Þ þ k Xj j
ð2Þ

We then calculated the log odds ratio for each sub-
structure (Formula 3).

Log2
P PjSð Þ
P N jSð Þ

� �
ð3Þ

If the ratio value of a substructure is high, it means
that the substructure appeared more frequently in DILI-
positive compounds. We then set the threshold to give
weight using the log odds ratio values. The values of the
selected substructures that were greater than the thresh-
old were weighted by multiplying and amplifying the

original odds ratio by n in Fig. 2. By contrast, the sub-
structures with odds ratio below the threshold received
a weight value of one. Here, we only gave weight to high
log odds ratios because we wanted to predict DILI-positive
compounds, which are toxic and therefore more critical to
predict than negative compounds. The calculated weight
vector was then multiplied element-by-element to the ori-
ginal fingerprint. The overall process of weight calculation
is illustrated in Fig. 2.
The Random Forest (RF) and the Support Vector

Machine (SVM) algorithms were used to construct the
classification and prediction model. The RF algorithm
is an ensemble learning algorithm that operates by
constructing a large number of decision trees and collect-
ing them. When it devises a prediction, it runs a new input
for every decision tree and votes on how it is to be classi-
fied. The main advantage of the RF algorithm is that it
avoids overfitting problems, which occur frequently when
dealing with a small dataset. The implementation of the
algorithm is found in MATLAB Statistics and Machine
Learning Toolbox (MATLAB and Statistics Toolbox Re-
lease 201#, The MathWorks, Inc., Natick, Massachusetts,
United States). The TreeBagger function was used for
the RF algorithm. SVMs are among the most popular
supervised machine-learning algorithms for pattern
recognition and are also used for classification. SVM
constructs a hyperplane that is used for classification
using specified training examples, each including a cat-
egory label. The constructed model can then be used to
predict the DILI potential of a new drug. The imple-
mentation of the SVM we used is A Library for Support
Vector Machines (LIBSVM) [26]. When training a
model, we used similarity matrices calculated using the
Tanimoto coefficient, a similarity metric that uses the
ratio of the intersecting set to the union set because
the constructed space would be very high-dimensional
with 881 features. The use of similarity matrices re-
duces the dimensions to the data size.
When training the models, we performed 10-fold

cross-validation, which divides the training dataset into
ten subsamples. Nine subsamples are used for training,
and one subsample is used for testing. We constructed
each model with different thresholds and multiplication
numbers, and we compared the performances to select
the best model for prediction.

Independent test
The data from previous studies were used for further
evaluation. We collected the independent test set from
two studies: Greene et al. and Xu et al. [13, 27]. Greene’s
dataset was categorized into four groups: HH (evidence
of human hepatotoxicity); NE (no evidence of hepato-
toxicity in any species); WE (weak evidence of human
hepatotoxicity); and AH (evidence for animal hepatotoxicity
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Fig. 2 The process of feature weight calculation. First, the Bayesian probabilities for each substructure were calculated. Then, substructures
selected based on a log odds ratio threshold were weighted, while others remained binary. When calculating the weight vector, the feature
values (x) of selected substructures were amplified by a user parameter n. The constructed weight vector was then multiplied with the original
feature matrix
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but not tested in humans). To use strict data, we used the
compounds in the HH and NE categories as positive and
negative, respectively. After combining the two data-
sets, we pre-processed the resultant dataset in the same
manner as the training set. The SMILES information
was retrieved from ChemSpider and was used to elim-
inate duplicates from the training set and eliminate
label contradictions between the two sets. In total, we
obtained 398 compounds, including 224 positive and
174 negative.

Prediction of natural products
The constructed classification model was then applied to
predict the potential hepatotoxicity of natural products.
We collected herbal compound information from the
TCMID, TCM-ID, and KAMPO databases [28–30], all
of which contain information about the efficacy of herbs
and their constituent compounds. The natural product
dataset was also standardized by ChemSpider, and a fin-
gerprint was obtained. Fingerprints were not able to be
retrieved for a few compounds, primarily very complex,
large molecules with a mass greater than 1000 Da. These
compounds were excluded, resulting in a final total of
17,826 compounds.

Results
Frequent substructures in hepatotoxic compounds
One of the main purposes of this research was to identify
important substructures in DILI-positive compounds. The
frequently appearing substructures can be inferred from the
weighted substructures. We first calculated the probabilities
of each substructure to be in positive and negative labeled
compounds respectively. Then with the log odds ratio
of positive to negative we selected substructures to be
weighted. We determined the weighted substructures
by high log odds ratio values, since we focused on
substructures which are frequent in DILI-positive

compounds. With a log odds ratio threshold of 2.5, we
identified 24 substructures.The following substructures
with other various threshold values are described in
Additional file 1: Table S1–S3.

Model performance
We compared the model without weighted features to
the model with weighted features to assess whether giving
weights to the frequently appearing substructures affected
performance. As shown in Fig. 3, models with weighted
features performed better in both algorithms. Although
the RF model previously performed poorly, with the
weighted feature, the AUC, AUPR, and accuracy increased
significantly to 0.79, 0.82, and 74%, respectively. Likewise,
the SVM performance also increased, although models
without features were already classified quite well. The
AUC, AUPR, and accuracy values were 0.77, 0.83, and
73%, respectively. All models with different thresholds and
multiplication numbers were compared. The RF model
performed best with a threshold of 1.5 and a multiplica-
tion number of 15, and the SVM model performed best
with a threshold of 2 and multiplication number of 15. A
performance comparison using different thresholds can be
found in Additional file 2: Figure S1–S2.
Furthermore, we compared the performance of the

constructed models in an independent test to evaluate
the performance with unseen data set. Figure 4 shows
the increased performance with the weighted features.
Although the sensitivities were high in the non-weighted
models, the specificities were very poor. Using the
weighted feature, the specificity of both models in-
creased to greater than 0.4, and the overall accuracy
values increased slightly.
We implemented a model from Zhang’s study for fur-

ther performance comparison. They developed prediction
models with various fingerprints and machine-learning al-
gorithms. We constructed an SVM model with the dataset
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Fig. 3 Performance of the models in cross-validation. Performance in both RF and SVM increased with weighted features
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provided by Zhang et al. using FP4 fingerprints and
applied our proposed feature weight calculation method.
Our method increased the accuracy from 75% to 87%
(Fig. 5). Although the sensitivity decreased slightly, the
specificity increased dramatically from 0.379 to 0.755, in-
dicating that our method performs well in predicting both
negative and positive compounds. As a more precise com-
parison, we randomly selected 59 positive and 29 negative
compounds from the LTKB dataset a hundred times, and
our method resulted in a higher average accuracy of
86.4%. This result indicates that our method exhibits su-
perior classification and prediction of DILI compounds
under the same conditions.

Prediction of hepatotoxic compounds in natural products
The hepatotoxic potential of the herb-related compounds
was predicted using the constructed models. Since the pa-
rameters and algorithms in each model vary, the results
differed slightly, but the models predicted that more than
60% of compounds in natural products have hepatotoxic
potential. RF predicted 11,944 compounds as hepatotoxic,
whereas SVM predicted 13,996 compounds as DILI-
positive. Although the two prediction models yielded dif-
ferent outcomes, the predicted positive compounds greatly
overlapped, as shown in Fig. 6.

Discussion
In the current study, we calculated the weighted feature
using Bayesian theory and constructed DILI prediction
models using the updated feature with two algorithms:
RF and SVM. When calculating the weight vector, we fo-
cused on giving weight to those features that appeared
more frequently in DILI-positive compounds than in
DILI-negative compounds because it is more important
to identify hepatotoxic compounds that might cause
critical adverse reactions when developed into drugs.
Therefore, we set a cutoff to select the substructures to
be weighted by their log odds ratio values. The thresh-
old ranged from 0.5 to 2.5 and resulted in different per-
formances. With an excessively low threshold, the
number of weighted substructures was too large, causing
the overall values of the weight vector to increase without
differentiating specific substructures and, consequently,
poor model performance. By contrast, the use of an
excessively high threshold would weight too few sub-
structures, resulting in a decrease of performance. The
parameter multiplied with the selected substructure
also affected the performance, but the effect was not
significant. This result indicates that amplification of
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values is important but that the degree of amplifica-
tion does not significantly affect model performance.
Both constructed models resulted in good perform-

ance in cross-validation considering AUC and accuracy;
however, the accuracy of the independent test slightly
decreased compared to the results of cross-validation.
The low accuracy was due to low specificity, indicating
that the model tends to predict more compounds as
positive than it predicts as negative. This problem oc-
curred because we focused on predicting DILI-positive
compounds by weighing the related substructures and
used a sensitivity threshold of 0.8, which could be rela-
tively high. Because it is safer to predict negative com-
pounds as positive (classifying nontoxic compounds as
toxic) than to classify toxic compounds as nontoxic, we
did not lower the threshold but attempted to reduce the
gap between sensitivity and specificity using a weighted
feature. This approach helped increase the accuracy.
Although the increase in accuracy was not dramatic, the
model classified the independent test set more precisely,
positive to positive and negative to negative. The results
also demonstrated that the weighted substructures
affected the prediction of DILI-positive compounds.
In this study, we also determined frequently occurring

substructures in DILI-positive compounds. Although the
substructures with the highest probability are general, as
the threshold lowers, more details in the SMARTS pat-
terns can be observed. We obtained general structures

because of the characteristic of PubChem fingerprints,
which divide a structure into lower levels.
The prediction of the DILI potential of natural products

indicated that many compounds are related to drug-
induced hepatotoxicity (Fig. 6). If compounds found in the
intersection of the predicted results from the two algo-
rithms are considered highly hepatotoxic, 63% of natural
products from the herb databases have the potential to
cause liver toxicity. We reported five compounds of
11,195 as examples in Fig. 7, including the names, struc-
tures, and related herbs that contain each compound.

Conclusions
We introduced a DILI prediction model with weighted
features. The weighted features were calculated using
Bayesian probability giving information of frequency of
each substructure in DILI-positive and DILI-negative
compounds. As a result, the weighted features increased
the model performance in both cross-validation and
independent test with unseen dataset. Moreover, we
applied the constructed model to prediction of DILI
potential in herbs. The results show that large number of
predicted positive compounds indicates that even com-
pounds found in nature can be toxic and harmful to the
human body. This finding is important because some
people in Eastern countries rely on herbal medicine and
believe it is safer than taking general drugs. However,
natural products are not always beneficial to health. In
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Fig. 6 The proportion of predicted compounds in herbs. a RF predicted 67% of compounds as DILI-positive. b SVM predicted 79% of compounds
as DILI-positive. c The number of overlapping compounds predicted by the two algorithms
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addition, natural products have come to the forefront in
drug discovery and development. Therefore, herbs that
are used as home remedies or that are under development
must be carefully administered, considering their toxic
effects on the human body. In addition, we listed frequent
substructures in DILI-positive compounds to facilitate
drug screening in less time and at lower cost.
As an additional approach, we can improve the predic-

tion models using structural information other than
two-dimensional structural information. The frequent
substructures we reported here based on the fingerprint
annotation can be further developed to aid the identifi-
cation of toxicophores using neural networks.
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Additional file 1: Table S1. Description of frequent appearing
substructures in DILI-positive compounds (Log odds ratio: 2.5). Table S2.
Description of frequent appearing substructures in DILI-positive compounds
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in DILI-positive compounds (Log odds ratio: 2). (PDF 55 kb)
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and its related herbs. Each compound is related to following herbs - a
Agrimonia pilosa, Phytolacca americana b Sophora subprostrata, Sophora
flavescens c Actaea simplex d Prunus armeniaca e Onychium auratum,
Lindera umbellate, Didymocarpus pedicellata
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