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Abstract

Background: Protein carbonylation, an irreversible and non-enzymatic post-translational modification (PTM), is
often used as a marker of oxidative stress. When reactive oxygen species (ROS) oxidized the amino acid side chains,
carbonyl (CO) groups are produced especially on Lysine (K), Arginine (R), Threonine (T), and Proline (P). Nevertheless,
due to the lack of information about the carbonylated substrate specificity, we were encouraged to develop a
systematic method for a comprehensive investigation of protein carbonylation sites.

Results: After the removal of redundant data from multipe carbonylation-related articles, totally 226 carbonylated
proteins in human are regarded as training dataset, which consisted of 307, 126, 128, and 129 carbonylation sites
for K, R, T and P residues, respectively. To identify the useful features in predicting carbonylation sites, the linear
amino acid sequence was adopted not only to build up the predictive model from training dataset, but also to
compare the effectiveness of prediction with other types of features including amino acid composition (AAC),
amino acid pair composition (AAPC), position-specific scoring matrix (PSSM), positional weighted matrix (PWM),
solvent-accessible surface area (ASA), and physicochemical properties. The investigation of position-specific amino
acid composition revealed that the positively charged amino acids (K and R) are remarkably enriched surrounding
the carbonylated sites, which may play a functional role in discriminating between carbonylation and non-carbonylation
sites. A variety of predictive models were built using various features and three different machine learning
methods. Based on the evaluation by five-fold cross-validation, the models trained with PWM feature could
provide better sensitivity in the positive training dataset, while the models trained with AAindex feature achieved
higher specificity in the negative training dataset. Additionally, the model trained using hybrid features, including
PWM, AAC and AAindex, obtained best MCC values of 0.432, 0.472, 0.443 and 0.467 on K, R, T and P residues,
respectively.
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Conclusion: When comparing to an existing prediction tool, the selected models trained with hybrid features
provided a promising accuracy on an independent testing dataset. In short, this work not only characterized the
carbonylated substrate preference, but also demonstrated that the proposed method could provide a feasible
means for accelerating preliminary discovery of protein carbonylation.
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Background
Post-translational modifications (PTMs) are involving the
attachment of chemical groups on a specific residue of
proteins, which play significant roles in regulating many
cellular processes such as differentiation of cell, protein
degradation, processes of signaling and regulatory, regula-
tion of gene expression, and protein-protein interactions
[1, 2]. Enzymes catalyzed the attachment and removal of
chemical groups for proteins. For example, protein phos-
phorylation is catalyzed by kinases in a signaling cascade
and can be removed the phosphate by a phosphatase [3].
In other word, most PTMs are enzymatically controlled
and regulated in cellular processes. Interestingly, there are
PTMs that occur in a non-regulated manner which often
caused by the structural features of proteins, the environ-
ments, and by the generation of free radicals surrounding
the proteins. These kinds of PTMs are known as non-
enzymatic protein modifications. There are some types of
PTMs that are non-enzymatically occurred including
oxidation, racemization, dityrosine, chloronitrotyrosine,
isomerization, deamidation, nitration, carbonylation, car-
bamylation, and glycation (or glycoxidation) [4, 5]. Reduc-
tion of sequential electron of molecular oxygen establishes
reactive oxygen species (ROS). It had been examined that
reactive oxygen species had non-particularly and indistin-
guishably react with biomolecules as well as lipids, DNA,
proteins, and small molecules [6]. ROS can modify and
damage these biomolecules through oxidation resulting
in oxidative stress [6, 7] and lead to the loss of proteins
function (enzymatic activity) [8]. However, the gener-
ation of oxidative damage on cells mostly happen on
proteins for they are often catalysts rather than stoi-
chiometric mediators [9].
Small amount of ROS are important in signaling path-

ways and in the resistance toward violating pathogens
[7]. Oxidative stress occurs when the amount of ROS
are highly produced and surpass the cell’s ability to de-
toxify them [7, 10]. Oxidative stress can cause various
kinds of PTMs including hydroxylation, nitration, sulf-
hydrylation, carbonylation, and glutathionylation [8].
Carbonylation is an irreversible protein modification and
has been used as the biological marker of oxidative
stress because of its relative stability, early formation,
and the availability of analytical strategies to quantify it
compared to another oxidative stress induced protein

modifications [8, 9]. Protein carbonylation typically in-
volve three manners (Additional file 1: Figure S1): the
first one is by direct oxidation with ROS on amino acid
side chains of Lysine (K), Arginine (R), Threonine (T),
and Proline (P) resulting in carbonyl derivatives of 2-
pyrrolidone from proline, glutamic semialdehyde from
arginine and proline, α-aminoadipic semialdehyde from
lysine, and 2-amino-3-ketobutyric acid from threonine;
the second one is through Michael addition reaction of
α,β-unsaturated aldehydes derived from lipid peroxida-
tion; the last one is by addition of reactive carbonyl de-
rivatives (ketoamines, ketoaldehydes, deoxyosones) as
the production of the reaction of reducing sugars or their
oxidation products with the amino group of lysine residue
(glycation and glycoxidation reactions) which yield the ad-
vance glycation end products (AGEs) [7, 9, 11]. In protein
carbonylation, various mechanisms altered the side
groups of K, R, T and Pro residues including metal-
catalyzed oxidation (MCO) [12]. As a consequence of
oxidative modifications, protein carbonylation has been
associated with several age-related or metabolic dis-
eases such as Alzheimer, Parkinson, Diabetes, Chronic
lung disease, etc. [5, 7, 8].
Several experimental assays such as spectrophoto-

metric, enzyme-linked immunosorbent, slot blotting
have been employed to experimentally identify car-
bonylation sites [9]. Additionally, mass spectrometry-
based proteomics [13, 14] have been used for site-
specific identification of carbonylated peptides. Due to
the labile nature of the ROS bond and the low abun-
dance of endogenously carbonylated proteins in vivo,
however, the unambiguous identification of carbony-
lated proteins and modified sites remains challenging
by commonly used proteomic technology. From the
view point of substrate site specificity, thus, it is important
to develop a systematic method for the comprehensive in-
vestigation efficient of protein carbonylation sites. As
listed in Additional file 2: Table S1, Maisonneuve et al. de-
veloped a computational analysis tool named CSPD
evaluated using jackknife testing, to detect the car-
bonylation sites of Escherichia coli proteome [15].
Another prediction tool named CarsPred was
developed to predict the carbonylation sites on hu-
man proteins using WSVM with 10-fold cross-
validation [16].
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With the limited information about protein carbonyla-
tion, this work provides a full characterization of
carbonylated substrate sites based on various features,
including linear amino acid sequences and physicochem-
ical properties. In this investigation, totally seven types
of features, such as amino acid sequence (AA), amino
acid composition (AAC), amino acid pair composition
(AAPC), positional weighted matrix (PWM), position
specific scoring matrix (PSSM), accessible surface area
(ASA), and the physicochemical properties of proteins,
were examined. To test the predictive power of those ex-
amined features in identifying carbonylation sites, three
classifiers, namely support vector machine (SVM), deci-
sion tree (DT) and random forest (RF), were employed
to build up the predictive models using each type of fea-
ture. Additionally, the combination of hybrid features
was also considered for improving the predictive per-
formance, based on the evaluation of five-fold cross-
validation. Finally, an independent testing dataset, which
is truly blind to the process of model construction, was
obtained from research articles and was applied to fur-
ther evaluate the effectiveness of the chosen model on
the testing data from multiple species.

Methods
Data collection and preprocessing
A majority of the experimental data used in this study
was obtained from literatures, which comprised site-
specific information on experimentally confirmed car-
bonylated peptides in humans. The analytical flowchart
of this work is depicted in Fig. 1. Without the public
database available for protein carbonylation, the dataset
used in this investigation was obtained from five litera-
tures [17–21], which is similar with the training data-
set used in CarsPred [16]. Detailed statistics of these
five data resources are provided in Additional file 3:
Table S2. After the removal of redundant data, totally
226 non-redundant carbonylated proteins in human
are regarded as training dataset, which comprised 307,
126, 128, and 129 carbonylation sites for K, R, T and P
residues, respectively. To construct the positive train-
ing dataset (carbonylated sites), the window length of
2n + 1 was employed to extract sequence fragments
centering at the experimentally verified carbonylation
sites as well as containing n upstream and n down-
stream flanking amino acids. Carbonylated sites in the
KRTP-enriched region was set to 4 residues long and
considered in KRTP-enriched region if it contained 3
local enrichment of K, R, T, or P [15]. On the other
hand, given 226 experimentally verified ubiquitinated
proteins, the sequence fragments containing window
length of 2n + 1 amino acids and centering at K, R, T
and P residues without the annotation of carbonylation
were regarded as the negative training dataset (non-

carbonylation sites). Based on the overall prediction
performance of a previous work [16] and our prelim-
inary evaluation by using various window lengths, the
window size of 21 (n = 10) provides an effective and
stable accuracy in the identification of carbonylation
sites on four residues. By using a window size of 21,
consequently, the negative training dataset contained
2577, 912, 1211 and 1317 sequences on K, R, T and
P residues, respectively.
In order to elude the overestimation of predictive

performance in this work, CD-HIT [22] program was
applied to remove homologous sequences from the
training dataset. Due to the limited annotation of pro-
tein carbonylation sites, based on the analysis of se-
quence fragments, it would be possible that some
negative data are identical with positive data in the
training dataset, potentially resulting in false positive or
false negative predictions. Hence, CD-HIT was further
applied by running cd-hit-2d across positive and nega-
tive training dataset with 100% sequence identity, to
solve this problem. After having filtered out homolo-
gous fragments with 50% sequence identity (by running
cd-hit and psi-cd-hit), Table 1 shows that the final
training dataset consisted of 206, 101, 96, and 94
positive sequences on K, R, T, and P, respectively.
Additionally, the final training dataset is composed of
1166, 504, 488, and 412 and 5176 negative sequences
on K, R, T, and P, respectively.
In the binary classification of carbonylation sites,

the constructed model might be overfitted to the
training dataset and thus perform highsometimes
With an attempt to evaluate the real performance of
the constructed models, we further generate an inde-
pendent testing dataset, which was definitely blind to
the training dataset. The dataset for independent
testing was manually extracted from seven literatures
[15, 17, 18, 23–26], which comprised 117, 90, 62,
and 104 carbonylation sites, respectively, on K, R, T
and P residues from multiple species. The positive
and negative testing data were constructed using the
same approach as was applied to the training dataset.
Besides, the program cd-hit-2d, using sequence iden-
tity cutoff at 100%, was applied again to remove the
data redundancy between independent testing dataset
and training dataset. This resulted in the final inde-
pendent testing dataset consisting of 78, 67, 53 and
82 positive sequences on K, R, T and P, respectively
(Table 1). In addition, the negative dataset for inde-
pendent testing is composed of 301, 276, 124 and
304 sequences on K, R, T, and P, respectively. More-
over, the testing dataset was also used to evaluate
the predictive power of other prediction tools, which
were compared with the presented method in terms
of predictive performance.
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Features investigation
In this study, numerous sequence-based features, includ-
ing amino acid sequence, amino acid composition
(AAC), amino acid pair composition (AAPC), positional
weighted matrix (PWM), position-specific scoring matrix
(PSSM), solvent-accessible surface area (ASA) and physi-
cochemical properties (AAindex), were assessed to con-
duct the best prediction model. After the extraction of
sequence fragments with a window size of 21-mer amino
acids, each sequence fragment was encoded based on the
investigated features. For a binary classification, the labels
+1 and -1 were corresponded to the positive and negative
training data, respectively.

Amino acid sequence (AA)
The orthogonal binary coding mechanism is one of the
most popular coding methods for transforming amino
acid sequence into a numeric vector, called 20-
dimensional binary coding [27]. Each amino acid was
represented by a vector with 20 letters. For example, ala-
nine (A) would be encoded as “10000000000000000000”
while cysteine (C) would be “01000000000000000000”
and so on. This coding scheme could unify the distance
among twenty types of amino acids. For each sequence
fragment, the length of feature vectors with a window size
of 2n + 1 was set to (2n + 1) × 20 to represent the flanking
amino acids surrounding the carbonylation or non-

Fig. 1 Analytical flowchart of the identification of protein carbonylation sites
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carbonylation sites. Therefore, there were a total of k vec-
tors {xi, i = 1, 2 …, k} corresponding to the number of k se-
quence fragments in the training and testing datasets.

Amino acid composition (AAC)
Amino acid composition is a common feature for generat-
ing predictive model, involving the composition of the fre-
quency of each amino acid residue inside the protein
sequence. For a protein sequence n, let fx represents the
occurrence frequencies of its 20 native amino acids. Thus,
the composition of amino acids Px is calculated by [28].

Px nð Þ ¼ f x nð ÞX20

i¼1
f i nð Þ

i; x ¼ 1; 2; …; 20 ð1Þ

Then the composition of protein n is then defined as

P nð Þ ¼ p1 nð Þ; p2 nð Þ;…; p20 nð Þ½ � ð2Þ

Amino Acid Pair Composition (AAPC)
Another composition of amino acids introduced by Park
[29] is amino acid pair composition (AAPC): each se-
quence fragment in the training dataset is represented
by a vector {xi, i = 1,…,n}, where vector xi has 400 ele-
ments for the amino acid dipeptide composition. For the
coding of amino acid dipeptide composition, the 400 ele-
ments specify the numbers of occurrences of 400 amino
acid dipeptides normalized with the total number of di-
peptides in a sequence fragment. In further exploring
potential features for protein classification, various
methods aimed at selecting relevant sequence features
given a large set of features have been used [30]. In this
work, the importance of amino acid pairs in identifying
splicing factors is further investigated by means of meas-
uring the statistical significance of each dipeptide in the
data set. For each amino acid pair, the number of posi-
tive and negative sequences containing the target dipep-
tide is calculated separately. The statistical significance
of each dipeptide is then obtained by examining a

sample against a background set based on the hypergeo-
metric equation (P-value) [31]:

P tð Þ ¼
XT
t

CT
t ⋅C

K−T
k−t

CK
k

ð3Þ

where K is the background set represented by the num-
ber of all protein sequences and T is the sample set rep-
resented by the number of positive sequences; k is the
number of all proteins having the target amino acid pair
and t is the number of positive sequences having the
target amino acid pair. P-value is calculated for each
dipeptide based on the hypergeometric equation. A
smaller p-value corresponds to a greater statistical sig-
nificance. Furthermore, the positive and negative prob-
abilities of each amino acid pair are computed by means
of dividing the number of positive sequences or negative
sequences having the target amino acid pair by the total
number of positive sequences or negative sequences, re-
spectively. The probability difference between the posi-
tive and negative datasets is then obtained. In this work,
amino acid pairs having a p-value less than 0.05 and a
probability difference greater than 0 is considered as
statistically informative for the identification of carbonyl-
ation sites.

Positional weighted matrix (PWM)
With reference to the coding scheme in SulfoSite [32],
the positional weighted matrix (PWM) of amino acids
was determined using the positive training data. The
coding scheme of PWM has been intensively adopted in
various PTM prediction methods [27, 33–42]. The
PWM described the frequency of occurrence of amino
acids surrounding the carbonylation sites, and was uti-
lized to encode the sequence fragments. Each residue
in the training dataset was represented by a matrix of
m × w elements, where the window size of 21 was des-
ignated by w and the 21 elements including the 20
types of amino acids as well as the terminal signal was
denoted by m.

Position-specific scoring matrix (PSSM)
Two proteins may share similar structures with different
amino acid compositions so that several amino acid resi-
dues of a protein might be mutated without changing its
structure and function [43]. In this work, evolutionary
information of amino acids around the carbonylation
sites is obtained using position-specific scoring matrix
(PSSM). The PSSM profiles of each carbonylated protein
were obtained by using PSI-BLAST [44] search against
the non-redundant database of protein sequences com-
piled by NCBI [45]. Due to the fact that the data consists
of protein sequences with variable length, a weighted
scoring matrix is determined by summing up the

Table 1 Data statistics of positive and negative sequences
(with window size 21) in training and testing datasets

Dataset Residues Number of
proteins

Number of
positive
sequences

Number of
negative
sequences

Training
dataset

K 155 206 1166

R 90 101 504

T 81 96 488

P 77 94 412

Independent
testing dataset

K 67 78 301

R 65 67 276

T 50 53 124

P 71 82 304
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position-specific scores of the same amino acids occur-
ring in a protein sequence to get a uniform number of
features. Additional file 4: Figure S2 displays the flow-
chart for generating a 400-dimensional (20 × 20 residue
pairs) vector of each training sequence based on the
PSSM profile, which is a matrix of m × 20 elements
where m represents the protein sequence length and 20
represents the position specific scores for each type of
amino acid. Then, the PSSM profile is transformed to a
20 × 20 matrix by summing up each row of same amino
acid in the PSSM profile. Finally, every element of 400-
dimensional PSSM vector is divided by the length of the
sequence and then is normalized by 1

1þe−x for scaling the
values between 0 and 1.

Accessible surface area (ASA)
The solvent-accessible surface area (ASA), determining
the accessibility of an amino acid side-chain on the sur-
face of a protein that can be accessed by solvent, was
also considered as an feature for identifying carbonyla-
tion sites. With the limited tertiary structures of carbo-
nylated proteins in the Protein Data Bank (PDB) [46],
the RVP-Net [47, 48] program was employed to com-
pute the ASA value from the protein sequence. RVP-Net
could compute the real ASAs of amino acids by using a
neutral network approach with the consideration of
amino acid composition in neighborhood. The possible
mean absolute error, which was defined as the absolute
difference between the predicted and experimental
values of relative ASA per residue [48], was 18.0–19.5%,
for each measurement. The value of ASA represented
the percentage of the solvent-accessible area of each
amino acid on the protein. Full-length carbonylated pro-
tein sequences were submitted into the RVP-Net for
computing the ASA values of all of the residues. Then,
the ASA values of amino acids surrounding the carbony-
laed and non-carbonylated sites were extracted and nor-
malized based on a scale from zero to one.

Physicochemical properties
In order to explore physicochemical properties around the
carbonylation sites, totally 544 amino acid indices were
obtained from the AAindex [49] (Version 9.1), which spe-
cify the physicochemical properties of twenty amino acids.
After the removal of amino acid indices containing the
value “NA”, the remaining 531 physicochemical properties
were examined to determine their ability to distinguish
carbonylation sites from non-carbonylation sites. Given a
specific physicochemical property in AAindex, a set of 20
numerical values was specified according to the evaluated
physicochemical indices of the 20 amino acids. The se-
quence fragments were transformed from AAs surround-
ing carbonylated sites into values associated with their

physicochemical properties. In order to identify the signifi-
cant physicochemical properties, the F-score method [37,
40–43, 50, 51] was applied to compute a statistical value
for each position surrounding carbonylation sites, based
on the window length of 21. The F-score of the ith physi-
cochemical feature is defined as:

F−score ið Þ ¼ xi þð Þ−xi
� �2 þ xi −ð Þ−xi

� �2

1
nþ−1

Xnþ

k¼1

x þð Þ
k;i −xi

þð Þ
� �2

þ 1
n−−1

Xn−

k¼1

x −ð Þ
k;i −xi

−ð Þ
� �2

ð4Þ

where xi , xi þð Þ and xi −ð Þ denote the average value of the
ith feature in the whole, positive, and negative data sets,
respectively; n+ denotes the number of positive data set
and n− denotes the number of negative data set; xk,i

(+) de-
notes the ith feature of the kth positive instance, and xk,i

(−)

denotes the ith feature of the kth negative instance [52].
The performances of predictive models trained using the
physicochemical properties individually were evaluated,
and the properties were subsequently ranked in descend-
ing order based on the predictive accuracy.

Combination of hybrid features
With an attempt to identify useful features for the predic-
tion of protein carbonylation sites, the predictive power of
each feature is evaluated based on cross-validation. Add-
itionally, a hybrid approach is investigated in this work by
combining different sets of feature vectors with the goal of
improving predictive performance on the calssification
between carbonylated and non-carbonylated sites. Prior to
classification, the data needed to be scaled in the range of
[-1, 1] to enhance the effectiveness of prediction [53]. For
the construction of predictive models, hybrid features
were generated by combining two or more single features.
In order to obtain the highest predictive accuracy, the
single features were selected based on the mRMR (mini-
mum-redundancy maximum-relevance) [54] algorithm,
which sorts the features according to their relevance to
the target and the redundancy among the investigated
features. The training feature with a smaller index impli-
cates that it has a better trade-off between the maximum
relevance and minimum redundancy [16]. The scoring
function is defined as follows:

scorej ¼ I f j; c
� �

−
1
m

Xm
i¼1

I f i; ; f j
� �

ð5Þ

where fj ⊂ Sn, fi ⊂ Sm, Sm = S − Sn, and Sm, Sn, and S are
the feature sets, as well as the m and n are the feature
numbers. The mutual information I(x,y) is determined as
follows:
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I x; yð Þ ¼ ∬p x; yð Þ log p x; yð Þ
p xð Þp yð Þ dxdy; ð6Þ

where p(x,y), p(x), and p(y) are the probabilistic density
functions. In this investigation, a total of seven kinds of
features, such as AA, AAC, AAPC, PWM, PSSM, ASA
and AAindex, were ranked by mRMR criterion. Further-
more, the sequential forward selection (SFS), one of the
typically used heuristic methods for feature selection,
was adopted to determine the final combination of
hybrid feature sets, based on the mRMR-ranking results.
It involves the following steps:

1. Use SVM, J48, or random forest as the classifier, and the
five-fold cross-validation for predictive power estimate.

2. Select the first feature that has the best cross-
validation performance among all features.

3. Select the feature, among all unselected features,
combined with selected features that provide a better
predictive performance.

4. Repeat the previous process until you have selected
enough number of features, or until predictive
performance is not improved anymore.

Construction of predictive models
Support Vector Machine (SVM)
One of the advanced machine learning method is Support
Vector Machine (SVM) [55], which was intensively

applied on pattern recognition and data classification. The
positive and negative training datasets were used for
building a predictive model with the identified support
vectors. This binary classification utilizes a kernel function
to transform the input samples into a higher dimensional
space and attempts to find a hyper-plane to discriminate
the two classes with maximal margin and minimal error.
In our study, a public SVM library (LIBSVM) [56] was
implemented to build models that could discriminate
between carbonylation and non-carbonylation sites. In
this work, the radial basis function (RBF) K(S1, Sj) =
exp(−γ ∥ Si − Sj ∥

2) was selected as the kernel function.
Two factors were included to enhance the performance:
the RBF kernel was determined by the gamma param-
eter, while the softness of the hyper-plane was modu-
lated by the cost parameter. The range of the
probability value set from 0 to 1 with LIBSVM library.

J48 decision tree (DT)
Decision tree (DT) is a tree-like model in which each in-
ternal node represents a “test” on an attribute, each
branch represents the outcome of the test, and each leaf
node represents a class label (positive or negative data)
[57]. The path from root to a leaf node represents a de-
scriptive rule containing conditional probabilities and
possible consequences. J48 is an implementation of
C4.5 decision tree algorithm using Java in WEKA data
mining package. It is an improvement of ID3 algorithm

Fig. 2 Comparison of amino acid composition between carbonylated and non-carbnylated sites on K, R, T and P residues
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which generates a decision tree with better effective-
ness and efficiency. The constructed decision tree is
then used as the model of the classification process
and further employed to each tuple in the training
dataset for yielding the predictive results [58]. In the
construction of decision tree, the missing values are ig-
nored by J48 program. For numeric attributes, the pri-
mary idea is to separate the numeric data into ranges
based on the distribution of that attribute values in the
training dataset [59].

Random forest (RF)
Random forest (RF) is a classifier proposed by Breiman
L. [60], who delivers the ensemble of multiple classifiers
based on randomly feature selection. Owing to its ability
to supply an empirical approach to trail variable interac-
tions, random forest is then considered as an appropri-
ate classifier to handle large-scale dataset, especially for
imbalanced dataset [61]. Random forest has been tested
and used in many studies with a good result and be able
to improve prediction accuracy as well as decrease the
time consumption [61, 62]. In this study, a library of

random forest program, integrated in WEKA data min-
ing package, was adopted to construct the predictive
model based on various features.

Performance measurement
To examine the ability of the investigated features in
identifying carbonylation sites, five-fold cross-validation
was carried out for each feature to evaluate the predict-
ive performance. The training dataset was divided into
five subgroups with approximately equal size. The ratio
of the testing set to the training set was 1:4 and the
cross-validation process was repeated five times. The five
validation results were then combined to generate a sin-
gle estimation. Obviously, one of the benefits of k-fold
cross-validation is the improvement on the reliability of
evaluation because all of the original data, including the
training and testing data sets, were considered and each
subset should be tested only once. In this investigation,
four measures such as sensitivity (Sn), specificity (Sp),
accuracy (Acc), and Matthews Correlation Coefficient
(MCC) were used:

Fig. 3 Entropy and frequency plots of position-specific amino acid composition of four carbonylated residues
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Sn ¼ TP
TP þ FN

ð7Þ

Sp ¼ TN
TN þ FP

ð8Þ

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

ð9Þ

MCC ¼ TP � TNð Þ − FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TN þ FPð Þ � TP þ FPð Þ � TN þ FNð Þp

ð10Þ
where TP, TN, FP and FN represented the number of
true positives, true negatives, false positives and false
negatives, respectively. The MCC reflects both the sensi-
tivity (true positive rate) and specificity (true negative
rate) of a predictive model. Sometimes, accuracy is not
useful when the two classes are of very different sizes;
hence, the MCC is usually regarded as a balanced meas-
ure even if the two classes are of very different sizes
[35]. Finally, after selecting the best model with the
highest MCC value, the independent testing dataset was
used to test its real predictive power.

Results and discussion
Composition of amino acids around carbonylation sites
Based on the investigation of amino acid composition,
the frequency of 20 amino acids around the carbony-
lated sites revealed the potential substrate environment

for protein carbonylation. Figure 2 indicates that, at car-
bonylated lysines, K residue occur at a highest frequency
surrounding the substrate sites, while C (Cysteine) and
W (Tryptophan) residues have a relatively lower
frequency of occurrence. For carbonylated arginines, R
residue has a higher frequency in positive data compared
to that in negative data. In addition, L (Leucine) and K
residues are also relatively abundant around carbony-
lated arginines.
For carbonylated threonines, K, R and T residues are

more abundant when comparing to non-carbonylated
threonines. Lysine is also the most abundant amino acid
around carbonylated prolines, while S (Serine) and T
residues have a relatively lower frequency of occurrence.
WebLogo [63] is usually used to generate the position-

specific amino acid composition for the substrate sites of
PTM, based on the training dataset. As presented in
Fig. 3, both entropy and frequency plots of twenty amino
acids at a specific position around carbonylation sites
are generated base on the non-homologous positive
training data. The entropy plots indicated that K and R
residues (colored in blue) are slightly abundant around
carbonylation sites. However, it is not trivial to identify
the difference of amino acid composition between carbo-
nylated and non-carbonylated sites position by position.
To concentrate on notable differences between positive
and negative sequences, TwoSampleLogo [64] was ap-
plied to calculate statistically significant enrichment and
depletion in position-specific amino acid composition

Fig. 4 TwoSampleLogo of four carbonlated residues. a Two-Sample Logo of Lysine (K). b Two-Sample Logo of Arginine (R). c Two-Sample Logo
of Thereonine (T). d Two-Sample Logo of Proline (P)
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around carbonylation sites. Comparing between 206
positive and 1166 negative sequences (Fig. 4a), it was
realized that three aforementioned amino acids (K, R
and L) reach significant enrichment in the flanking re-
gion of carbonylation sites on lysine. In particular, the
positively charged K and R residues had a significant en-
richment at upstream region (from positions -10 to -1)
with p-value < 0.01. Figure 4b implicated that the posi-
tively charged R residue is statistically enriched at up-
stream region (from positions -7 to -1) of carbonylated
arginine residues. In contrast, at positions -1 that was
close to carbonylated sites, a lack of negatively charged
residues (D and E) was observed. Figure 4c showed that
K, R and T residues are slightly enriched around the car-
bonylated threonine residues. Figure 4d also indicated that
the positively charged K and R residues had a signifi-
cant enrichment at both upstream (from positions -7
to -1) and downstream (from positions +1 to +10) re-
gions with p-value < 0.01. The TwoSampleLogo results
are consistent with the frequency of twenty amino
acids around the carbonylated sites (as presented in

Fig. 2). Additionally, it is clear that carbonylation sites
are inclined to occur in KRTP-enriched regions which
is conformable in Maisonneuve [15] and Rao’s [65]
studies. This investigation also indicated that the posi-
tions of amino acids relative to one another in the se-
quence play a vital role in discriminating between
carbonylated and non-carbonylated sites.
In this study, the composition of amino acid pairs

around carbonylation sites was further analyzed by
means of selecting statistically significant dipeptides
among the 400 amino acid pairs. The probability differ-
ence of 400 amino acid pairs between carbonylated and
non-carbonylated sites were separately calculated on K,
R, T and P residues. In the 20 × 20 matrix, amino acid
pairs marked in red indicates an over-representation in
carbonylation sites while amino acid pairs marked in
green indicates an under-representation. As presented in
Fig. 5, the dipeptides associated with K residue, such as
KA, KE, KL, KK, EK and LK, are over-represented
around carbonylated lysine residues. For the carbonyla-
tion sites on arginine, the dipeptides involved in R

Fig. 5 The frequency differences of 20 × 20 amino acid pairs between carbonylated sites and non-carbonylated sites of lysine, arginine, threonine and
proline. The amino acid pair with red box indicates an over-representation in carbonylated sites (positive data) comparing to non-carbonylated sites
(negative data); on the other hand, green box means an under-representation
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residue, including RR, RL, RK, RV, LR, and KR pairs, are
observed to be over-represented around substrate sites.
Additionally, it can also be observed that the K residues
paired with other amino acids are over-represented
around carbonylated sites on T and P residues. The P-
value and the probability difference of each amino acid
dipeptide is calculated as discussed previously. After
ranking the dipeptides according to P-value, each amino
acid pair having a P-value < 0.05 and a probability differ-
ence > 0.02 is considered as a statistically significant pair
for the identification of protein carbonylation sites.

Investigation of structural and physicochemical properties
around carbonylation sites
It has been reported that a side-chain of amino acid that
undergoes post-translational modification prefers to be
accessible on the surface of a protein [66]. Although the
tertiary structures of carbonylated proteins are limited,
based on the prediction of ASA values by the RVP-Net
tool, ASA was examined as an attribute for the identifi-
cation of carbonylation sites. To explore how amino
acids flanking the carbonylated and non-carbonylated
sites might differ in their interaction with solvents, a
comparison was performed using the average proportion
of ASA based on the 21-mer window (-10 ~ +10). As
shown in Fig. 6, amino acids surrounding the carbonyla-
tion sites exhibit higher ASA values compared to those

around non-carbonylation sites. A strong evidence for
hydrophilic preference at the carbonylated substrate sites
was found because the average percentage of ASA values
of the flanking residues was higher than non-
carbonylated residues, especially for carbonylated K, R
and P residues. Hence, hydrophilic amino acids flanking
carbonylation sites might play functional roles for sub-
strate sites specificity.
To further analyze the physicochemical property of car-

bonylation sites and adjacent amino acids, a total of 531
physicochemical properties were individually explored
[67]. Figure 7 shows the top 10 physicochemical proper-
ties around the carbonylation sites on lysines, ranked by
the average value of F-score measurement in 21-mer
window (-10 ~ +10). The top ten physicochemical prop-
erties include Hydrophilicity value (HOPT810101),
Average accessible surface area (JANJ780101), Hydrop-
athy index (KYTJ820101), Side chain interaction par-
ameter (KRIW790101), Positive charge (FAUJ880111),
Fraction of site occupied by water (KRIW790102), Hydro-
phobicity index (WOLR790101), Net charge (KLEP840101),
Partition energy (GUYH850101), and Side chain hydrop-
athy (ROSM880102). This investigation reveals that the ten
physicochemical properties contain higher F-score values at
positions -8, -7, -6, -2 and +5, which have statistically
significant difference between carbonylated and non-
carbonylated K residues.

Fig. 6 Comparison of the solvent-accessible surface area between carbonylated and non-carbonylated sites on K, R, T and P residues

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):66 Page 135 of 175



Cross-validation performance of the models trained
with various features
To examine what features can be adopted to con-
struct the model that offers the best predictive per-
formance (with balanced sensitivity and specificity) in
the identification of carbonylated lysine, arginine,
threonine and proline, three different classifiers, such
as support vector machine (SVM), J48 decision tree,
and random forest, were trained with various features
and evaluated using five-fold cross-validation. In this
study, totally seven kinds of training features, includ-
ing amino acid sequence (AA), amino acid compos-
ition (AAC), amino acid pair composition (AAPC),
positional weighted matrix (PWM), position-specific
scoring matrix (PSSM), solvent-accessible surface area
(ASA) and physicochemical properties (AAindex),
were assessed based on a window size of 21-mer
amino acids. In the prediction of carbonylated K resi-
dues, Table 2 shows that the SVM classifier could
provide an overall better performance than DT and
RF classifiers. Of the SVM models trained with indi-
vidual features, that trained with PWM feature has
highest sensitivity (0.748), accuracy (0.720) and MCC
value (0.346), while that trained with physicochemi-
cal features (AAindex) gives a best specificity (0.720)
in classifying between 206 carbonylated and 1166
non-carbonylated K residues. For carbonylated R res-
idues, the SVM classifier also performs better than

DT and RF classifiers. As presented in Table 3, the
SVM model trained with PWM feature gives highest
sensitivity (0.713) and MCC value (0.336), as well as
the SVM model trained with AAindex feature pro-
vides the best specificity (0.726) and accuracy (0.721)
in discriminating between 101 carbonylated and 504
non-carbonylated R residues. Additionally, Table 4
also shows that the SVM model trained with PWM
feature yields best predictive performance in distin-
guishing 96 carbonylated and 488 non-carbonylated
T residues, with the sensitivity of 0.688, the accuracy
of 0.675 and MCC value of 0.274. However, the RF
model trained with AAindex feature provides best
specificity (0.676) in the prediction of carbonylated
T residues. In the classification between 94 carbony-
lated and 412 non-carbonylated P residues, the SVM
model trained with AAC feature could provide best
sensitivity (0.745), while the SVM model trained with
AAindex feature obtained highest specificity (0.752)
and accuracy (0.743). Interestingly, the RF model
trained with AAindex gives the best MCC value of
0.390, as shown in Table 5.

Cross-validation performance of the models trained with
hybrid features
In the investigation of predictive power of single fea-
tures, the models trained with PWM usually provided
better sensitivity than that trained with other features.

Fig. 7 Top 10 physicochemical properties of carbonylated sites on lysine ranked by the average value of F-score measurement in 21-mer window
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On the other hand, the models trained with the
selected physicochemical properties, top ten AAindices
ranked by F-score measurement, could provide best
specificity in discriminating carbonylation and non-
carbonylation sites. In order to obtain better predictive
power, moreover, the models trained with the combin-
ation of hybrid features were also evaluated by five-fold
cross-validation. The combination of hybrid features
was generated by combining two or more single
features based on the mRMR-SFS feature-selection
method, which incorporates the features sorted by
mRMR scores. As presented in Additional file 5: Figure
S3, a two-layered predictive model was generated from
hybrid features based on mRMR-SFS feature selection.
Using SVM as the classifier in Additional file 5: Figure
S3), each selected feature was inputted to first-layered
SVM for obtaining a feature-specific probability to form
an input vector for generating second-layered SVM. In
this investigation, the process of feature selection was
terminated until predictive performance is not im-
proved anymore. Finally, the models trained with the
hybrid features and containing the best cross-validation

performance were further evaluated using independent
testing datasets.
For carbonylated K residues, Table 6 shows that the SVM

model trained with the combination of PWM, AAC and
AAindex features could improve the cross-validation per-
formance with a sensitivity of 0.796, a specificity of 0.767,
an accuracy of 0.711, and the MCC value of 0.432, when
comparing to the SVM model trained with single PWM
feature. In five-fold cross-validation of carbonylated R resi-
dues, the SVM model trained with the combination of
PWM, AAindex and AAPC features provided the best
MCC value (0.472), with the sensitivity of 0.782, the specifi-
city of 0.798 and the accuracy of 0.795. In the prediction of
carbonylation sites on T residues, the SVM model trained
with the combination of PWM and AAindex features could
reach the sensitivity of 0.750, the specificity of 0.795, the
accuracy of 0.788 and the MCC value of 0.443. Addition-
ally, the RF model trained with the combination of PWM,
AAC and AAindex features could perform best in five-fold
cross-validation of carbonylated P residues, which has the
sensitivity of 0.787, the specificity of 0.777, the accuracy of
0.779 and the MCC value of 0.467.

Table 3 Five-fold cross-validation results of the models trained
with various features for classifying between 101 carbonylated
and 504 non-carbonylated arginine residues

Classifier Training features Sensitivity Specificity Accuracy MCC

SVM AA 0.614 0.603 0.605 0.163

AAC 0.653 0.683 0.678 0.259

AAPC 0.663 0.687 0.683 0.270

PWM 0.713 0.718 0.717 0.336

PSSM 0.624 0.685 0.674 0.239

ASA 0.594 0.599 0.598 0.145

AAindex 0.693 0.726 0.721 0.329

J48 DT AA 0.554 0.603 0.595 0.119

AAC 0.594 0.683 0.668 0.214

AAPC 0.614 0.687 0.674 0.233

PWM 0.614 0.675 0.664 0.222

PSSM 0.554 0.665 0.646 0.169

ASA 0.535 0.599 0.588 0.101

AAindex 0.646 0.690 0.683 0.259

RF AA 0.614 0.605 0.607 0.165

AAC 0.634 0.683 0.674 0.244

AAPC 0.653 0.683 0.678 0.259

PWM 0.713 0.716 0.716 0.334

PSSM 0.624 0.685 0.674 0.239

ASA 0.594 0.599 0.598 0.145

AAindex 0.693 0.724 0.719 0.327

The numbers marked with italicized font are the highest values in
four measurements

Table 2 Five-fold cross-validation results of the models trained
with various features for classifying between 206 carbonylated
and 1166 non-carbonylated lysine residues

Classifier Training features Sensitivity Specificity Accuracy MCC

SVM AA 0.680 0.643 0.649 0.235

AAC 0.728 0.686 0.692 0.305

AAPC 0.699 0.696 0.697 0.294

PWM 0.748 0.715 0.720 0.346

PSSM 0.704 0.686 0.689 0.288

ASA 0.592 0.571 0.574 0.117

AAindex 0.709 0.720 0.719 0.323

J48 DT AA 0.534 0.557 0.554 0.066

AAC 0.655 0.678 0.674 0.246

AAPC 0.670 0.683 0.681 0.261

PWM 0.689 0.674 0.676 0.267

PSSM 0.621 0.660 0.655 0.207

ASA 0.515 0.563 0.555 0.055

AAindex 0.660 0.682 0.679 0.253

RF AA 0.660 0.635 0.638 0.214

AAC 0.704 0.686 0.689 0.288

AAPC 0.709 0.703 0.704 0.307

PWM 0.718 0.707 0.708 0.317

PSSM 0.699 0.686 0.688 0.285

ASA 0.583 0.583 0.583 0.119

AAindex 0.709 0.717 0.716 0.319

The numbers marked with italicized font are the highest values in
four measurements
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Performance evaluation by independent testing datasets
In classifying between carbonylation and non-carbonylation
sites, there is a possibility to overestimate the constructed
model due to an overfitting of the training dataset. Thus to
evaluate the real performance of the selected models with
best cross-validation results, an independent testing dataset
was manually extracted from seven research articles, which
comprised experimentally verified carbonylation sites from
multiple species. As given in Table 7, in classification be-
tween 78 carbonylated and 301 non-carbonylated K resi-
dues, the SVM model generated using the combination of
PWM, AAC and AAindex features provides 0.641, 0.664,
0.659 and 0.252 for sensitivity, specificity, accuracy and
MCC value, respectively. The SVM model trained with the
hybrid features (PWM, AAindex and AAPC) could give a
higher specificity (0.725) in discriminating between 67 car-
bonylated and 276 non-carbonylated R residues, with the
sensitivity of 0.672, the accuracy of 0.714 and MCC value of
0.329. However, the SVM model trained using PWM and
AAindex features provides a significantly higher sensitivity
(0.755) in carbonylated T residues of the independent test-
ing dataset, while the specificity is slightly low with the
value of 0.605. The RF model trained with the the hybrid

features (PWM, AAC and AAindex) also achieves a
remarkably higher sensitivity (0.755) in carbonylated P resi-
dues of the independent testing dataset. In comparison with
an existing prediction tool, the CarSPred could provide the
best sensitivity (0.811) in carbonylated T residues of the
independent testing dataset. Overall, our method performs
better than CarSPred based on the independent testing
performance.

Conclusion
Given the experimentally confirmed carbonylation sites,
this study contributes a comprehensive characterization of
substrate sites based on the composition of amino acids.

Table 4 Five-fold cross-validation results of the models trained
with various features for classifying between 96 carbonylated
and 488 non-carbonylated threonine residues

Classifier Training features Sensitivity Specificity Accuracy MCC

SVM AA 0.625 0.615 0.616 0.180

AAC 0.667 0.656 0.658 0.244

AAPC 0.646 0.660 0.658 0.232

PWM 0.688 0.672 0.675 0.274

PSSM 0.656 0.656 0.656 0.236

ASA 0.573 0.590 0.587 0.122

AAindex 0.667 0.654 0.656 0.242

J48 DT AA 0.604 0.594 0.596 0.148

AAC 0.635 0.635 0.635 0.204

AAPC 0.635 0.641 0.640 0.209

PWM 0.625 0.637 0.635 0.198

PSSM 0.604 0.598 0.599 0.151

ASA 0.573 0.590 0.587 0.122

AAindex 0.646 0.641 0.642 0.217

RF AA 0.625 0.617 0.618 0.181

AAC 0.656 0.652 0.652 0.233

AAPC 0.646 0.652 0.651 0.225

PWM 0.677 0.668 0.670 0.262

PSSM 0.656 0.656 0.656 0.236

ASA 0.583 0.594 0.592 0.133

AAindex 0.656 0.676 0.673 0.254

The numbers makred with italicized font are the highest values in
four measurements

Table 5 Five-fold cross-validation results of the models trained
with various features for classifying between 94 carbonylated
and 412 non-carbonylated proline residues

Classifier Training features Sensitivity Specificity Accuracy MCC

SVM AA 0.638 0.655 0.652 0.233

AAC 0.713 0.716 0.715 0.347

AAPC 0.646 0.728 0.713 0.309

PWM 0.745 0.733 0.735 0.388

PSSM 0.670 0.709 0.702 0.307

ASA 0.585 0.607 0.603 0.151

AAindex 0.702 0.752 0.743 0.375

J48 DT AA 0.617 0.607 0.609 0.176

AAC 0.638 0.631 0.632 0.212

AAPC 0.638 0.636 0.636 0.216

PWM 0.660 0.680 0.676 0.271

PSSM 0.670 0.709 0.702 0.307

ASA 0.574 0.583 0.581 0.123

AAindex 0.649 0.709 0.698 0.290

RF AA 0.628 0.660 0.654 0.229

AAC 0.723 0.716 0.717 0.355

AAPC 0.646 0.728 0.713 0.309

PWM 0.734 0.733 0.733 0.380

PSSM 0.660 0.704 0.696 0.294

ASA 0.585 0.607 0.603 0.151

AAindex 0.734 0.743 0.741 0.390

The numbers makred with italicized font are the highest values in
four measurements

Table 6 Five-fold cross-validation results of the models trained
with the combination of hybrid features obtaining best predictive
performance in training datasets

Residue Classifier Hybrid features Sn Sp Acc MCC

K SVM PWM+ AAC + AAindex 0.796 0.767 0.771 0.432

R SVM PWM+ AAindex + AAPC 0.782 0.798 0.795 0.472

T SVM PWM+ AAindex 0.750 0.795 0.788 0.443

P RF PWM+ AAC + AAindex 0.787 0.777 0.779 0.467
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The observation of position-specific amino acids compos-
ition indicated that the regions surrounding the carbonyl-
ation sites harbor a notable abundance of positively
charged amino acids (K and R), especially for carbonylated
K, R and P residues. This investigation suggested that the
composition of amino acids may play a crucial role in dis-
criminating between carbonylation and non-carbonylation
sites. Additionally, the solvent accessibility and physico-
chemical properties were also examined in the
characterization of carbonylated environment. A higher
preference of solvent accessibility at the carbonylated
residues was found because the average percentage of
ASA values of the flanking residues was higher than non-
carbonylated residues. Based on the F-score measure-
ments on 531 physicochemical properties, top 10
AAindices were determined that have vital differences be-
tween carbonylation and non-carbonylation sites. Accord-
ing to the evaluation by five-fold cross-validation, among
the predictive models trained from various features, the
models trained with PWM feature had an overall higher
sensitivity, while the models trained with AAindex feature
achieved higher specificity. Furthermore, this investigation
demonstrated that the model trained with hybrid features
could provide better predictive performance than that
trained with single feature. The independent testing re-
sults also revealed the effectiveness of the models trained
with hybrid features in identifying protein carbonylation
sites. In conclusion, this work not only characterized the
substrate site preference, but also determined the best pre-
dictive model for the identification of carbonylation sites
on K, R, T and P residues.

Additional files

Additional file 1: Figure S1. Reaction process of protein carbonylation.
(DOCX 623 kb)

Additional file 2: Table S1. Summary list of two previously published
prediction tools of protein carbonylation sites. (DOCX 16 kb)

Additional file 3: Table S2. Data statistics of carbonylated sites
obtained from literatures. (DOCX 18 kb)

Additional file 4: Figure S2. Flowchart of generating 400-dimensional
PSSM vector by the PSSM profile. (DOCX 274 kb)

Additional file 5: Figure S3. Construction of two-layered predictive
model using hybrid features based on mRMR-SFS feature selection.
(DOCX 533 kb)

Acknowledgements
The authors sincerely appreciate the Ministry of Science and Technology
(MOST) of Taiwan (MOST 103-2221-E-155-020-MY3, MOST104-2221-E-155-
036-MY2 and MOST105-2622-E-155-007-CC) and Chang Gung Memorial Hos-
pital (CMRPG3C1373) in Taiwan for financially supporting this research.

Declarations
Publication charge for this work was funded by MOST grant under contract
number of MOST 103-2221-E-155-020-MY3, MOST 104-2221-E-155-036-MY2
and MOST105-2622-E-155-007-CC2 to TYL, and by Chang Gung Memorial
Hospital grant under contract number CMRPG3C1373 to JJL.

Author’s contributions
TYL and JJL conceived and designed the experiments. SLW, FJK, CHH, HJK
and KYH performed the experiments. FJK, SLW, HJK and THC analyzed the
data. FJK and SLW wrote the manuscript with revision by TYL and JJL.
All authors read and approved the final manuscript.

Competing interests
The authors have declared that no competing interests exist.

Author details
1Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial
Hospital, Hsin-Chu 300, Taiwan. 2Mackay Medicine, Nursing and Management
College, Taipei 112, Taiwan. 3Department of Medicine, Mackay Medical
College, New Taipei City 252, Taiwan. 4Department of Medical Research,
Hsinchu Mackay Memorial Hospital, Hsin-Chu 300, Taiwan. 5Department of
Computer Science and Engineering, Yuan Ze University, Taoyuan 320,
Taiwan. 6Tao-Yuan Hospital, Ministry of Health & Welfare, Taoyuan 320,
Taiwan. 7Graduate Institute of Biomedical Informatics, Taipei Medical
University, Taipei 110, Taiwan. 8Department of Laboratory Medicine, Chang
Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan. 9Department of
Medical Biotechnology and Laboratory Science, Chang Gung University,
Taoyuan 333, Taiwan. 10Innovation Center for Big Data and Digital
Convergence, Yuan Ze University, Taoyuan 320, Taiwan.

Published: 14 March 2017

References
1. van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ,

Anthony DC, Davis BG. Expanding the diversity of chemical protein
modification allows post-translational mimicry. Nature. 2007;446(7139):1105–9.

2. Huang KY, Su MG, Kao HJ, Hsieh YC, Jhong JH, Cheng KH, Huang HD, Lee
TY. dbPTM 2016: 10-year anniversary of a resource for post-translational
modification of proteins. Nucleic Acids Res. 2016;44(D1):D435–46.

3. Huang KY, Wu HY, Chen YJ, Lu CT, Su MG, Hsieh YC, Tsai CM, Lin KI,
Huang HD, Lee TY, et al. RegPhos 2.0: an updated resource to explore

Table 7 Comparison of independent testing results between our method and an available prediction tool (CarSPred)

Method Residue TP FP TN FN Sensitivity Specificity Accuracy MCC

Our method K 50 101 200 28 0.641 0.664 0.659 0.252

R 45 75 201 22 0.672 0.725 0.714 0.329

T 40 49 75 13 0.755 0.605 0.650 0.329

P 62 105 199 20 0.756 0.658 0.679 0.342

CarSPred K 44 112 189 34 0.564 0.631 0.617 0.161

R 40 80 196 27 0.597 0.706 0.685 0.252

T 43 74 50 10 0.811 0.403 0.525 0.208

P 56 134 170 26 0.683 0.559 0.585 0.198

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):66 Page 139 of 175

dx.doi.org/10.1186/s12859-017-1472-8
dx.doi.org/10.1186/s12859-017-1472-8
dx.doi.org/10.1186/s12859-017-1472-8
dx.doi.org/10.1186/s12859-017-1472-8
dx.doi.org/10.1186/s12859-017-1472-8


protein kinase-substrate phosphorylation networks in mammals.
Database. 2014;2014(0):bau034.

4. England K, O’Driscoll C, Cotter T. Carbonylation of glycolytic proteins is a
key response to drug-induced oxidative stress and apoptosis. Cell Death
Differ. 2004;11:252–60.

5. Jaisson S, Gillery P. Evaluation of nonenzymatic posttranslational modification-
derived products as biomarkers of molecular aging of proteins. Clin Chem. 2010;
56(9):1402–12.

6. Wong CM, Marcocci L, Liu L, Suzuki YJ. Cell signaling by protein carbonylation
and decarbonylation. Antioxid Redox Signal. 2010;12(3):393–404.

7. Protein carbonylation in human diseases. Trends in Molecular Medicine
2003, 9(4):169–176.

8. Gianazza E, Crawford J, Miller I. Detecting oxidative post-translational
modification in proteins. Amino Acids. 2007;33:51–6.

9. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica
Acta 2003, 329(1-2):23–38.

10. Bollineni RC, Hoffmann R, Fedorova M. Identification of protein
carbonylation sites by two-dimensional liquid chromatography in
combination with MALDI- and ESI-MS. J Proteomics. 2011;74(11):2338–50.

11. Madian AG, Regnier FE. Proteomic identification of carbonylated proteins
and their oxidation sites. J Proteome Res. 2010;9(8):3766–80.

12. Cattaruzza M, Hecker M. Protein carbonylation and decarbonylation: a new
twist to the complex response of vascular cells to oxidative stress. Circ Res.
2008;102:273–4.

13. Palmese A, De Rosa C, Marino G, Amoresano A. Dansyl labeling and
bidimensional mass spectrometry to investigate protein carbonylation.
Rapid Commun Mass Spectrom. 2011;25(1):223–31.

14. Prokai L, Yan LJ, Vera-Serrano JL, Stevens Jr SM, Forster MJ. Mass
spectrometry-based survey of age-associated protein carbonylation in rat
brain mitochondria. J Mass Spectrom. 2007;42(12):1583–9.

15. Rules governing selective protein carbonylation. PLoS One 2009, 4(10):e7296.
16. Lv H, Han J, Liu J, Zheng J, Liu R, Zhong D. Carspred: a computational tool for

predicting carbonylation sites of human proteins. PLoS One. 2014;9(10):e111478.
17. Mirzaei H, Regnier F. Enrichment of carbonylated peptides using Girard P reagent

and strong cation exchange chromatography. Anal Chem. 2006;78(3):770–8.
18. Mirzaei H, Regnier F. Identification and quantification of protein carbonylation

using light and heavy isotope labeled Girard’s P reagent. J Chromatogr A.
2006;1134(1–2):122–33.

19. Madian AG, Diaz-Maldonado N, Gao Q, Regnier FE. Oxidative stress induced
carbonylation in human plasma. J Proteomics. 2011;74(11):2395–416.

20. Madian AG, Regnier FE. Profiling carbonylated proteins in Human Plasma.
J Proteome. 2010;9(3):1330–43.

21. Bollineni RC, Hoffmann R, Fedorova M. Proteome-wide profiling of
carbonylated proteins and carbonylation sites in HeLa cells under mild
oxidative stress conditions. Free Radical Biol Med. 2014;68:186–95.

22. Huang Y, Niu BF, Gao Y, Fu LM, Li WZ. CD-HIT Suite: a web server for clustering
and comparing biological sequences. Bioinformatics. 2010;26(5):680–2.

23. Dynamics of protein damage in yeast frataxin mutant exposed to oxidative
stress. OMICS 2010, 14(6):689-699.

24. Mirzaei H, Regnier F. Affinity chromatographic selection of carbonylated
proteins followed by identification of oxidation sites using tandem mass
spectrometry. Anal Chem. 2005;77(8):2386–92.

25. Identification of oxidized proteins in rat plasma using avidin chromatography
and tandem mass spectrometry. Proteomics 2008, 8(7):1516–1527.

26. Mirzaei H, Regnier F. Creation of allotypic active sites during oxidative stress.
J Proteome. 2006;5(9):2159–68.

27. Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, Chu CH, Huang HD,
Ko MT, Hwang JK. KinasePhos 2.0: a web server for identifying protein kinase-
specific phosphorylation sites based on sequences and coupling patterns.
Nucleic Acids Res. 2007;35(Web Server issue):W588–94.

28. Sahu SS, Panda G. A novel featue representation method based on Chou’s
pseudo amino acid composition for protein structural class prediction.
Comput Biol Chem. 2010;34(5–6):320–7.

29. Park K-J, Kanehisa M. Prediction of protein subcellular locations by support
vector machines using compositions of amino acids and amino acid pairs.
Bioinformatics. 2003;19(13):1656–63.

30. Wang L, Huang C, Yang JY. Predicting siRNA potency with random forests
and support vector machines. BMC Genomics. 2011;11 Suppl 3:S2.

31. Sadygov RG, Yates 3rd JR. A hypergeometric probability model for protein
identification and validation using tandem mass spectral data and protein
sequence databases. Anal Chem. 2003;75(15):3792–8.

32. Chang W-C, Lee T-Y, Shien D-M, Hsu JB-K, Horng J-T, Hsu P-C, Wang T-Y, Huang
H-D, Pan R-L. Incorporating Support Vector Machine for Identifying Protein
Tyrosine Sulfation Sites. J Comput Chem. 2009;30(15):2526–37.

33. Huang CH, Su MG, Kao HJ, Jhong JH, Weng SL, Lee TY. UbiSite: incorporating
two-layered machine learning method with substrate motifs to predict
ubiquitin-conjugation site on lysines. BMC Syst Biol. 2016;10 Suppl 1:6.

34. Bui VM, Weng SL, Lu CT, Chang TH, Weng JT, Lee TY. SOHSite: incorporating
evolutionary information and physicochemical properties to identify protein
S-sulfenylation sites. BMC Genomics. 2016;17 Suppl 1:9.

35. Bui VM, Lu CT, Ho TT, Lee TY. MDD-SOH: exploiting maximal dependence
decomposition to identify S-sulfenylation sites with substrate motifs.
Bioinformatics. 2016;32(2):165–72.

36. Kao HJ, Huang CH, Bretana NA, Lu CT, Huang KY, Weng SL, Lee TY. A two-
layered machine learning method to identify protein O-GlcNAcylation sites
with O-GlcNAc transferase substrate motifs. BMC Bioinformatics. 2015;16
Suppl 18:S10.

37. Chen YJ, Lu CT, Huang KY, Wu HY, Chen YJ, Lee TY. GSHSite: exploiting an
iteratively statistical method to identify s-glutathionylation sites with
substrate specificity. PLoS One. 2015;10(4):e0118752.

38. Bretana NA, Lu CT, Chiang CY, Su MG, Huang KY, Lee TY, Weng SL.
Identifying protein phosphorylation sites with kinase substrate specificity on
human viruses. PLoS One. 2012;7(7):e40694.

39. Lu CT, Chen SA, Bretana NA, Cheng TH, Lee TY. Carboxylator: incorporating
solvent-accessible surface area for identifying protein carboxylation sites.
J Comput Aided Mol Des. 2011;25(10):987–95.

40. Lee TY, Chen YJ, Lu TC, Huang HD, Chen YJ. SNOSite: exploiting maximal
dependence decomposition to identify cysteine S-nitrosylation with
substrate site specificity. PLoS One. 2011;6(7):e21849.

41. Lee TY, Chen SA, Hung HY, Ou YY. Incorporating distant sequence features
and radial basis function networks to identify ubiquitin conjugation sites.
PLoS One. 2011;6(3):e17331.

42. Lee TY, Bretana NA, Lu CT. PlantPhos: using maximal dependence
decomposition to identify plant phosphorylation sites with substrate site
specificity. BMC Bioinformatics. 2011;12:261.

43. Hsu JB, Bretana NA, Lee TY, Huang HD. Incorporating evolutionary
information and functional domains for identifying RNA splicing factors in
humans. PLoS One. 2011;6(11):e27567.

44. Altschul SF, Koonin EV. Iterated profile searches with PSI-BLAST-a tool for
discovery in protein databases. Trends Biochem Sci. 1998;23(11):444–7.

45. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997;25(17):3389–402.

46. Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell
DS, Westbrook JD, Woo J, et al. The RCSB Protein Data Bank: views of
structural biology for basic and applied research and education. Nucleic
Acids Res. 2015;43(Database issue):D345–56.

47. Ahmad S, Gromiha MM, Sarai A. RVP-net: online prediction of real valued
accessible surface area of proteins from single sequences. Bioinformatics.
2003;19(14):1849–51.

48. Ahmad S, Gromiha MM, Sarai A. Real value prediction of solvent accessibility
from amino acid sequence. Proteins Struct Funct Genet. 2003;50(4):629–35.

49. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa
M. AAindex: amino acid index database, progress report 2008. Nucleic Acids
Res. 2008;36(Database issue):D202–5.

50. Su MG, Huang KY, Lu CT, Kao HJ, Chang YH, Lee TY. topPTM: a new
module of dbPTM for identifying functional post-translational
modifications in transmembrane proteins. Nucleic Acids Res. 2014;
42(Database issue):D537–45.

51. Lu CT, Huang KY, Su MG, Lee TY, Bretana NA, Chang WC, Chen YJ, Chen YJ,
Huang HD. DbPTM 3.0: an informative resource for investigating substrate
site specificity and functional association of protein post-translational
modifications. Nucleic Acids Res. 2013;41(Database issue):D295–305.

52. Lin C-J, Chen Y-W. Combining SVMs with various feature selection
strategies. NIPS 2003 feature selection challenge. 2003. p. 1–10.

53. Huang HD, Lee TY, Tzeng SW, Horng JT. KinasePhos: a web tool for
identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res.
2005;33(Web Server issue):W226–9.

54. Ding C, Peng H. Minimum redundancy feature selection from microarray
gene expression data. J Bioinform Comput Biol. 2005;3(2):185–205.

55. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural
Netw. 1999;10(5):988–99.

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):66 Page 140 of 175



56. Chang C-C, Lin C-J. LIBSVM: A Library for Support Vector Machines. Acm ACM
Trans Intell Syst Technol. 2011;2(3):27.

57. Salzberg S. Locating protein coding regions in human DNA using a decision
tree algorithm. J Comput Biol. 1995;2(3):473–85.

58. Sharma AK, Sahni S. A comparative study of classification algorithms for
spam email data analysis. IJCSE. 2011;3(5):1890–5.

59. Patil TR, Sherekar SS. Performance analysis of naive bayes and J48
classification algorithm for data classification. IJCSE. 2013;6(2):256–61.

60. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
61. Livingston F. Implementation of Breiman’s random forest machine learning

algorithm. Mach Learn J Pap. 2005;2005:ECE591Q.
62. Dehzangi A, Phon-Amnuaisuk S, Dehzangi O. Using random forest for protein

fold prediction problem: an empirical study. J Inf Sci Eng. 2010;26:1941–56.
63. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo

generator. Genome Res. 2004;14(6):1188–90.
64. Vacic V, Iakoucheva LM, Radivojac P. Two Sample Logo: a graphical

representation of the differences between two sets of sequence
alignments. Bioinformatics. 2006;22(12):1536–7.

65. Rao RSP, Moller IM. Pattern of occurrence and occupancy of carbonylation
sites in proteins. Proteomics. 2011;11(21):4166–73.

66. Pang CN, Hayen A, Wilkins MR. Surface accessibility of protein post-translational
modifications. J Proteome Res. 2007;6(5):1833–45.

67. Tung CW, Ho SY. Computational identification of ubiquitylation sites from
protein sequences. BMC Bioinformatics. 2008;9:310.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):66 Page 141 of 175


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Data collection and preprocessing
	Features investigation
	Amino acid sequence (AA)
	Amino acid composition (AAC)
	Amino Acid Pair Composition (AAPC)
	Positional weighted matrix (PWM)
	Position-specific scoring matrix (PSSM)
	Accessible surface area (ASA)
	Physicochemical properties
	Combination of hybrid features
	Construction of predictive models
	Support Vector Machine (SVM)
	J48 decision tree (DT)
	Random forest (RF)

	Performance measurement

	Results and discussion
	Composition of amino acids around carbonylation sites
	Investigation of structural and physicochemical properties around carbonylation sites
	Cross-validation performance of the models trained �with various features
	Cross-validation performance of the models trained with hybrid features
	Performance evaluation by independent testing datasets

	Conclusion
	Additional files
	Acknowledgements
	Declarations
	Author’s contributions
	Competing interests
	Author details
	References

