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Abstract

Background: A major challenge of bioinformatics in the era of precision medicine is to identify the molecular
biomarkers for complex diseases. It is a general expectation that these biomarkers or signatures have not only strong
discrimination ability, but also readable interpretations in a biological sense. Generally, the conventional expression-
based or network-based methods mainly capture differential genes or differential networks as biomarkers, however,
such biomarkers only focus on phenotypic discrimination and usually have less biological or functional interpretation.
Meanwhile, the conventional function-based methods could consider the biomarkers corresponding to certain
biological functions or pathways, but ignore the differential information of genes, i.e., disregard the active
degree of particular genes involved in particular functions, thereby resulting in less discriminative ability on
phenotypes. Hence, it is strongly demanded to develop elaborate computational methods to directly identify
functional network biomarkers with both discriminative power on disease states and readable interpretation
on biological functions.

Results: In this paper, we present a new computational framework based on an integer programming model, named
as Comparative Network Stratification (CNS), to extract functional or interpretable network biomarkers, which are of
strongly discriminative power on disease states and also readable interpretation on biological functions. In addition,
CNS can not only recognize the pathogen biological functions disregarded by traditional Expression-based/Network-
based methods, but also uncover the active network-structures underlying such dysregulated functions underestimated
by traditional Function-based methods. To validate the effectiveness, we have compared CNS with five state-of-the-art
methods, i.e. GSVA, Pathifier, stSVM, frSVM and AEP on four datasets of different complex diseases. The results show
that CNS can enhance the discriminative power of network biomarkers, and further provide biologically interpretable
information or disease pathogenic mechanism of these biomarkers. A case study on type 1 diabetes (T1D)
demonstrates that CNS can identify many dysfunctional genes and networks previously disregarded by
conventional approaches.
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Conclusion: Therefore, CNS is actually a powerful bioinformatics tool, which can identify functional or interpretable
network biomarkers with both discriminative power on disease states and readable interpretation on biological
functions. CNS was implemented as a Matlab package, which is available at http://www.sysbio.ac.cn/cb/chenlab/
images/CNSpackage_0.1.rar.
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Background
It is of great importance to capture the reliable molecu-
lar biomarkers, which is able to accurately diagnose or
even predict the relevant clinical characteristics for a
new patient with complex diseases [1]. The traditional
approaches can be broadly divided into three categories:
expression-based, network-based and function-based
methods. Expression-based methods, such as SAM [2],
obtained some gene sets as the molecular biomarkers
according to differential expression pattern between
normal and disease samples (Fig. 1). However, cellular
heterogeneity within tissues and genetic heterogeneity
across patients could weaken the discriminative power
of individual genes [3, 4] and then affect the final per-
formance of expression-based methods on independent
datasets. Meanwhile, network-based methods, such as
frSVM [5] and stSVM algorithm [6], were proposed to
extract the active sub-networks as network biomarkers,
by considering biological network information (Fig. 1).
Clearly, such analysis could make us further interpret
the mechanisms of complex diseases at a system level
[7].Although network biomarkers pay attention on a
growing consensus that complex diseases are mostly
contributed by multiple genes through their soph-
isticated interactions rather than by the individual genes
[8, 9], network-based analysis could not directly eluci-
date the biological or functional roles of the excavated
genes/interactions on specific conditions or samples due
to the accumulated interaction information on all
circumstances. In addition, based on such network-
centered idea, function-based methods, such as PEA
[10], Pathway activity classification [11], GSVA [12] and
Pathifier [13], are developed to obtain functional or in-
terpretable signatures by integrating the biological
knowledge (e.g., pathways) of genes into molecular net-
work and expression information [14] (Fig. 1). However,
the biological annotation deposited in databases is as-
sembled from different resources or projects on various
conditions, which makes it hard to precisely determine
the actual states of particular biological functions under
a specific condition, e.g. when a disease occurs to a per-
son with certain genetic or epigenetic background.
It is necessary to make biomarkers as a standard tool in

the clinical application for precision medicine, which re-
quires biomarkers to have not only discriminative power

on samples but also clear biological interpretations [15].
In this work, we develop a novel computational frame-
work, namely Comparative Network Stratification (CNS),
to identify functional interpretable network biomarkers
using gene expression, gene network and biological
function together. Particularly, our biomarkers of the
active genes and network structures underlying certain
biological functions can better characterize diseases in
terms of both discriminative power on phenotypes and
readable interpretation on biological functions. To val-
idate the effectiveness of our approach, we have com-
pared CNS with five state-of-the-art methods (such as
GSVA, Pathifier, stSVM, frSVM and AEP) on four data-
sets. The results suggested that CNS can simultan-
eously identify more discriminative network biomarkers
as well as exhibit their biological interpretation in the
form of network structure and function annotation.
Moreover, we have also applied CNS on a case study of
T1D, and provided more biological information on dys-
functional description than other methods. Therefore,
CNS is actually a powerful bioinformatics tool, which
can investigate functional interpretable network bio-
markers in a whole transcriptome and function-
centered manner.

Methods
In this section, we describe the computational framework
of CNS (Fig. 2). We first introduce data pre-procession,
and then present the mathematical model of com-
parative network stratification to extract networks
based on prior-known biological functions. Finally, we
apply a classification-based model to select network
biomarkers.

Data pre-procession
Given multiple states (e.g. normal and disease, or dis-
ease subtypes), the certain context-specific gene co-
expression networks were first constructed before ap-
plying our CNS. Patients' expression profiles were
mapped onto a biological network obtained from the
STRING database (http://string-db.org/), by removing
missing genes and keeping those interactions with
high Pearson correlation coefficients (FDR < 0.01) be-
tween gene pairs. These state-specific networks are
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then integrated as a union background network G
used in the following steps.

Extraction of functional interpretable network
As known, the annotations of genes or proteins from
Gene Ontology (GO) are described by structured
vocabulary, i.e. GO terms [16, 17]. We use the bio-
logical processes (BP) terms as prior-known functional
genes' collaboration in this step. Given the above
obtained background network G, a mixed integer-
programming model (i.e. CNS) determines the sub-
network corresponding to a certain GO term (e.g.
term t), where genes show differential activities in
different states (e.g. normal and disease). In other

words, an optimal sub-network F = {N, E} should be a
functional interpretable gene community derived from
G, subject to

i) F should be a sub-network of G;
ii) F should be a connected graph;
iii)F should have enrichment on the genes annotated

with GO term t;
iv)F should indicate the most active alterations

between the weighted context-specific network
corresponding to different states.

Such an optimization problem can be solved by flux
balance process as the formula below:

Fig. 1 An overview of computational methods for identifying biomarkers. a The framework of three kinds of conventional methods; b The brief
comparison of our and other methods on input and output data
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great the edge weights of a functional sub-network change.
Besides, all the constraint conditions can make sure flux
balance so as to meet the selection criteria. In details, ei

1

and ei
2 are the average expression values of gene i in two

states, while wij
1 and wij

2 are the directional relationship
strength of a gene pair or edge (i→ j) in the context-
specific networks. For simplicity, Pearson correlation coef-
ficient of gene-pairs (i→ j and j→ i) is used as the edge
weight. And w1 and w2 represent average edge strength of
sub-networks. Similarly, d is the average value of all the
edge-alterations in network G. At the same time, several
indicators are also necessarily defined: si and sj are binary
(i.e., 0 or 1), representing whether corresponding genes
(i.e., gene i and j) are annotated by term t or not, and xij is
another indicator that xij = 1 if the interaction or edge
(i→ j) is selected in a given term, otherwise xij = 0.
Noted that the network flux is assumed to originate

from a "seed" gene o and flow downstream into a
bounded sub-network, where any node can be reachable
from the seed. In such a connected sub-network, the
flux balance could be defined as

X
j
yij−

X
k
yik ¼

X
k

xik , where yji (different from wji) represents the value of
virtual flow from j to i and

X
k

xik is the out-degree of
node i. V is a maximum value, which can guarantee that
if xij is zero, its flow yij also equals zero.

Fig. 2 The overview of comparative network stratification (CNS) for identifying functional interpretable network biomarkers
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Identification of the functional interpretable network
biomarkers
After the above optimization process, we obtained the
set of active functional sub-networks corresponding to
all GO terms. Thus, a network-based classification
model is further proposed to identify the biomarkers
from the primary disease-relevant sub-networks, accord-
ing to the following defined network score.

Network score
A quantitative score is required to measure the discrim-
inative ability of an active functional network. Specific-
ally, the network score (NS) of a given sub-network F in
one sample can be calculated via Eq.(2).

NSm ¼

X
i;jð Þ∈E

eim þ ejm
2ffiffiffiffiffiffi
Ej jp ð2Þ

where eim and ejm are the expression values of the
nodes/genes i and j in a sample m when the edge/
interaction (i, j) belongs to F; |E| is the total number
of edges in F.
Noted, our NS is actually quantified by the expression

profiles as well as related to the topology of sub-networks,
consistent with the “network activity” definition in previ-
ous studies [18–22].

Classification-based model
Next, using the NS to assess network activities, a
classification-based model can pick out an optimal net-
work biomarker combination [23–25]. One in-house
classifier was previously designed to select the minimal
number of network features with great classification cap-
acity [20]. Here, we extended this mathematical model
to achieve ‘elastic’ classification by adding a correct reg-
ulization. Such a modified model is formulated as below:
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where xi is binary (i.e., 0 or 1), indicating whether the
sub-network i is selected or not; And C is a function
matrix, where each element Cij representing jth net-
work's contribution to ith sample if the sample is
assigned into the correct group [20]. ε is the 'elastic' cor-
rect regulator with its value as small as possible.
In the objective function, the first term is used to

characterize the classification capacity of selected bio-
markers; the second term is to minimize the marker

number in selection process; and the third term is to
minimize the classification error; α and β are positive
penalty parameters to control the trade-off within signa-
ture number, classification err and classification capacity.
Certainly, α and β are chosen to obtain the best classifi-
cation ratio by tuning in a reasonable scale.
In the constraint array, the first constraint is used to

ensure an acceptable sample classification; the second
constraint is used to guarantee at least one functional
sub-network should be selected as final biomarker; and
the third constraint is used to generate a reasonable
correction in practice.

Results
Stronger effectiveness of CNS compared to state-of-the-
art methods
To validate the effectiveness of CNS, a complete compari-
son scheme had been built to evaluate the performances
of the conventional biomarker discovery methods and
CNS on gene expression datasets. There are four datasets
used in the comparison, i.e. GSE38642 (54 normal vs. 9
disease) [26], GSE18732 (47 normal vs. 45 disease) [27],
GSE27342 (80 normal vs. 80 disease) [28] and GSE35713
(79 normal vs. 57 disease) [29]. The compared methods
include GSVA [12], Pathifier [13], stSVM [6], frSVM [5]
and AEP [10]. As stSVM, frSVM and AEP have been inte-
grated into the netClass package [1], we used the netClass
package directly. Due to GSVA and Pathifier implemented
without feature selection, we select the same number bio-
markers as identified by CNS through SVM-RFE [30].
As proposed, good biomarkers or signatures should

have more discrimination ability as well as more inter-
pretable biological sense. Thus, we used two criterions
to evaluate the identified biomarkers (see Additional files
1, 2, 3 and 4) respectively: classification accuracy and
functional interpretability.

Improved discrimination of CNS evaluated by classification
accuracy analysis
We used SVM to calculate the classification accuracy of
the biomarkers identified by all methods, employing
five-fold cross-validation. The performance of different
methods on four datasets were shown as ROC curves
(Fig. 3). And the AUC corresponding to these ROC
curves were reported in Table 1. These results illustrate
CNS biomarkers have the most stable and best classifica-
tion accuracy than those identified by other methods.
Note that, we can see, in the low false positive re-
gions, the true positive rate of CNS is lower than
some of other methods, that might be caused by the
trade-off between specificity and sensitivity of classifi-
cation approaches. It would be valuable to further im-
prove the accuracy by careful feature selection or
classifier building in future work.
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Improved biological sense of CNS evaluated by functional
interpretability analysis
In order to further evaluate the interpretability of
these methods on biological functions, we made an
association analysis to measure the relationship be-
tween the biomarkers and the studied disease, as the
functional interpretability power of those biomarkers.
And the association degree is evaluated by the pro-
portions of disease-associated genes (DAGs) in all se-
lected functional biomarkers. Here, the DAGs are the
intersection of the differential expressed genes (DEGs)
identified by t-test and genes associated with the

studied disease taken from GeneCard [31]. Mean-
while, the biomarkers identified by frSVM and stSVM
are general gene sets rather than functional gene
groups by GSVA, Pathifier and AEP; that’s why we
first functionally label them with the top enriched
terms by g:Profiler [32].
The enrichment ratio boxplots are shown in Fig. 4. It

seems CNS has the best performance on every dataset;
frSVM has varied performance than other conventional
approaches showing its dependency on the context of
analyzed datasets; while other methods have nearly the
same performances across all datasets. This fact suggests
many previous methods would consider less on the
functional interpretability, so that they tend to have the
similar lower performances; and CNS actually promote
the interpretability of identified biomarkers on biological
functions as proposed.
Furthermore, we also computed the P-values to meas-

ure CNS improved performance compared to other
methods, and shown in Table 2. Obviously, CNS has
much better performance on the functional interpret-
ability overall.

Fig. 3 The performance of all compared methods across multiple datasets in classification accuracy analysis. The ROC curves of the compared
methods on a GSE38642, b GSE18732, c GSE27342, d GSE35713 datasets

Table 1 The AUC of six methods on four datasets

Methods GSE38642 GSE18732 GSE27342 GSE35713 Mean ± SD

CNS 0.911 0.777 0.885 0.916 0.872 ± 0.06

GSVA 0.637 0.561 0.802 0.851 0.712 ± 0.13

Pathifier 0.9012 0.726 0.848 0.761 0.809 ± 0.08

stSVM 0.528 0.603 0.855 0.792 0.694 ± 0.15

frSVM 0.812 0.513 0.827 0.865 0.754 ± 0.16

AEP 0.711 0.708 0.852 0.621 0.723 ± 0.09
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A proof-of-concept study by CNS
The biomarkers identified by CNS not only determine
specific biological functions related to diseases, but also
reveal the active network-structure underlying such dys-
functions. These characteristics of biomarkers just make
that CNS have improved ability to understand complex
diseases. To further illustrate this advantage of CNS, we
have made a proof-of-concept study on GSE3571 dataset
of T1D (i.e. 79 normal samples and 57 T1D samples).

Dys-regulation analysis of biological functions enriched in
biomarkers
Biomarkers would play important roles on the development
and progression of complex diseases, and they would be

dysfunctional among different disease states. The DEGs pro-
portion is regarded as an effective standard to estimate the
dysfunction degree of the biomarkers. Thus, the enrichment
ratios of DEGs in each biological functions were calculated
to represent the dysfunction degree of our biomarkers. The
results were shown in Fig. 5, and CNS obtains the bio-
markers with significant dysfunctional signal again.
On one hand, the traditional function-based methods

(GSVA, Pathifier and AEP) and CNS all selected function
biomarkers. The traditional methods assumed to consider
all genes of each biological functions and transform gene
expressions to some meta-values with good distinguish-
able capacity. Different to them, CNS recognized the
representative genes of each biological function, which

Fig. 4 The performance of all compared methods across multiple datasets for functional interpretability analysis. The “*” represents the mean
value of the functional interpretability power for each method and “-” indicates the median value. The functional interpretability analysis of the
compared methods on a GSE38642, b GSE18732, c GSE27342, d GSE35713 datasets respectively

Table 2 The significance of better performance on functional interpretability comparison

Datasets CNS vs. GSVA CNS vs. Pathifier CNS vs. stSVM CNS vs. frSVM CNS vs. AEP <P-value

GSE38642 4.67E-17 1.43E-15 7.65E-92 1.34E-74 5.41E-04 1.0E-04

GSE18732 0.0183 1.29E-04 6.92E-08 6.40E-05 0.015 0.02

GSE27342 1.11E-05 1.52E-05 3.60E-20 5.49E-08 1.33E-05 1.0E-05

GSE35713 5.61E-15 5.46E-13 2.05E-44 1.14E-06 9.12E-16 1.0E-15
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would promote the enrichment of DEGs, and reflect more
reasonable dysfunction interpretation.
On the other hand, the traditional expression-based

and network-based methods are designed to identify
gene sets or sub-networks as biomarkers. Although these
biomarkers could contain many DEGs, these enriched
genes could be isolated and cannot provide readable
functional interpretation. According to these results of
DEGs enrichment for biomarkers, the performance of
the traditional expression-based and network-based
methods may be slightly better than traditional function-
based methods, but still be less than CNS.

Significance evaluation of dysfunction in biomarkers
Besides dysfunction degree measurement, it is also
necessary to evaluate the level of significance of those
dysfunctions in the biomarkers. A hyper-geometric test
is used to compute the P-value of the enrichments of
DEGs for a biomarker/a biological function.

P ¼ 1−
XX−1
k¼0

G
k

� 	
R−G
T−k

� 	

R
T

� 	 ð4Þ

where R is the number of all genes, T is the number of
genes in the biomarker/the biological function; G is the

number of DEGs; X is the number of DEGs enriched in
the biomarker/the biological function.
Given a threshold of statistic significance, we define

those biomarkers/biological functions with less P-values
as significant ones. And then the ratios of these significant
biomarkers/functions in identified biomarkers under the
varied thresholds are shown in Fig. 6. Obviously, CNS is
more effective to obtain dysfunction-explainable bio-
markers than other methods.

Biological significances of dysfunctions of biomarkers
The most significant dysfunction of ten biomarkers/functions
identified by CNS are listed in Table 3, five of which are
related to T1D as reported in literatures. These biomarkers
include: two functions direct correlated with T1D (e.g. regula-
tion of insulin secretion and regulation of gluconeogenesis
[31]), and three functions relevant with T1D complications
(e.g. positive regulation of cytokine-mediated signaling path-
way [33], positive regulation of response to cytokine stimulus
[34, 35], establishment of Tcell polarity [35–37]).
P-values_Dis evaluates the significance of the disease

genes enriched in biomarkers; P-values_Diff evaluates
the significance of DEGs enriched in the biomarkers; R
represents whether one biomarker is known related with
T1D or its complications; Y denotes the biomarker is
known associated with T1D or its complications; N
denotes the biomarker is unclearly associated with T1D

Fig. 5 The performance of the compared methods for dysfunction analysis. The “*” represents the mean value of the functional interpretability
power for each method and “-” indicates the median value
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A case study on the network biomarkers
Insulin secretion dysfunction is known to be a key
characteristic of T1D. And such regulation function
identified in our biomarkers is further analyzed to see
how its topological structure changes and gene ex-
pression perturbations.
The overall and state-specific network structures of

“the regulation of insulin secretion” were shown in Fig. 7.
The network topology under normal condition is very
similar to background network structure, while the

network under T1D loses much functional completeness
(Fisher’s Exact Test P-value is 7.31E-06). In particular, as
Nils Billestrup et al. ever reported, SOCS inhibited IRS
in diabetic patients [38], which agreed with their dis-
appearance in our T1D active network structure. Mean-
while, our network biomarker has 46 genes including 39
DEGs, which means that the network biomarker can
represent an active functional module/unit under differ-
ent states. But when we check the same function in the
biomarkers identified by other five methods, the real

Fig. 6 Percentages of dysfunctions obtained under different thresholds of significance

Table 3 The biological sense of dysfunction of biomarkers

Biomarkers Name P-values_Dis P-values_Diff R

positive regulation of cytokine-mediated signaling pathway 1.42E-09 1.36E-05 Y

positive regulation of response to cytokine stimulus 3.5E-03 9.79E-06 Y

lipid metabolic process 5.11E-04 4.34E-05 N

positive regulation of osteoclast differentiation 6.79E-04 1.95E-06 N

regulation of insulin secretion 9.95E-11 6.28E-10 Y

beta-amyloid clearance 5.71E-09 8.51E-05 N

regulation of gluconeogenesis 1.15E-08 6.5E-07 Y

establishment of T cell polarity 1.7E-08 1.9E-10 Y

epithelial cell differentiation 3.68E-08 2.4E-05 N

cellular lipid metabolic process 3.52E-08 3.25E-05 N
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active genes are more likely drown out in a huge gene
set. The function of “the regulation of insulin secretion”
is probably missed by network-based methods, because
the frSVM biomarkers (94 genes) and stSVM biomarkers
(445 genes) have only 4 and 14 genes enriched in this
biological function. Besides, for those function-based
methods (GSVA, Pathifier and AEP), the real active
network structure of this regulation function is also
incomplete in their biomarkers, where only 23 DEGs are
covered in 55 genes. All the comparison results further
show CNS, different from traditional methods, can
recognize the representative genes of biological functions,
which would promote the enrichment of differential
expressed genes, and reflect more readable interpretation
on biological dysfunctions.

Discussion and Conclusion
The complex diseases are usually thought to be caused
by the dysfunction on the molecular interaction net-
work (e.g. protein-protein interactions). Conventional
expression-based and network-based methods widely
use genes and their networks to capture the biomarkers
without clear complete biological interpretation due to
subsequent function enrichment in the whole gene
pool. While, the function-based analysis just solved this
problem by integrating biological functions (e.g. path-
ways or GO terms) into gene sets at the beginning.
However, rather than a list of disease associated func-
tions, detailed alterations (e.g. topological structure) in
such functions clearly are more valuable to precision
medicine study to some extent.

Fig. 7 The topology alterations of the network biomarker. a The background network is the biomarker of “The regulation of insulin secretion”,
which is a union network of (b) normal-specific active sub-network and (c) disease-specific active sub-network identified by CNS. Nodes and
edges in black present genes and interactions are selected under a certain state; Nodes and edges in gray mean genes and interactions are
background features and not selected
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With respect to the problems, we proposed a novel
computational framework, named as comparative network
stratification (CNS), to identify active sub-networks as
functional interpretable network biomarkers, which have
both discriminative power on disease states and readable
interpretation on biological functions. Actually, we previ-
ously also developed a method as Network Stratification
Analysis (NetSA) [39] to decompose an context-specific
biological network into many function-specific network
modules. CNS analyzed the characteristics of two or more
states of complex diseases based on the same back-
ground biological network. Using CNS, the extended
method of NetSA, we tessellated two-states' context-
specific networks and identified the active network
structures of biological functions under normal and
disease conditions, respectively.
To validate the effectiveness of such a new approach,

we have compared CNS with five state-of-the-art
methods (such as GSVA, Pathifier, stSVM, frSVM and
AEP) on four datasets of complex diseases. These results
demonstrate CNS considers the representative genes
and their networks in biological functions, and thus it
can have better discrimination, better enrichment on
disease-associated genes and better enrichment on dif-
ferential expressed genes simultaneously. Therefore,
CNS will be actually a powerful bioinformatics tool to
investigate functional interpretable network biomarkers
in a whole transcriptome and function-centered manner.
Besides, we mainly focus on the discrimination be-

tween normal and disease, which can be expanded to
distinguish multiple diseases in future work. In fact, in
our experiments, we have analysis on type 1 diabetes
(GSE35713) and type 2 diabetes (GSE38642) in this
paper. As known to us, type 1 diabetes (T1D) and type 2
diabetes (T2D) are two subtypes of Diabetes and have
similar disease genes from the GeneCard database in-
cluding 5066 and 4970 disease genes, respectively. How-
ever, the number of the identified biomarkers of T1D
and T2D are 91 and 164 respectively, and the overlap of
them only contains 7 biomarkers. Meanwhile, Figs. 4d
and a both show the functional interpretability of the
identified biomarkers of T1D and T2D respectively.
Based on these results, we could find that the func-
tional interpretability of the identified biomarkers in
T1D and T2D is indeed different, and this fact sug-
gests that the different genes or functions form the
different biomarkers for T1D and T2D. Therefore, the
identified functional biomarkers are sensitive and
specific on the diseases.
In addition, considering the functional containment

relationships or the ancestors-descendants relationships
of the biological functions in GO database, it is neces-
sary to remove redundant functional interpretations in
the network biomarkers in the future work around CNS.
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