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Abstract

Background: Identification and analysis of recurrent combinatorial patterns of multiple chromatin modifications
provide invaluable information for understanding epigenetic regulations. Furthermore, as more data becomes
available, it is computationally expensive and unnecessary to study combinatorial patterns of all modifications.

Methods: A novel framework is proposed to investigate recurrent combinatorial patterns of a subset of
quantitatively selected chromatin modifications. The framework is based on heirarchical clustering and selects
subsets of chromatin modifications that form distinct recurrent patterns at regulatory regions. The identified
recurrent combinatorial patterns can be further utilized to discover novel regulatory regions. Data is in the form of
genome wide maps of histone acetylations, methylations, and histone variant of human skeletal muscular and B-
lymphocyte cells both derived from the ENCODE project.

Results: A case study conducted at promoter regions is presented: four out of twelve chromatin modifications
were selected, eight different promoter states were identified and the identified patterns of active promoters were
further utilized to discover novel promoter regions. Several previously un-annotated promoters were discovered,
further investigations confirm their promoter functions.

Conclusions: This framework is approproiately general and could lead to better understanding of epigenetic
regulations by discovering previously unknown regulatory regions.

Background
Distributions of chromatin modifications on the human
genome are hardly random. As certain patterns frequently
recur, it has been shown that recurrent patterns of chro-
matin modifications can be utilized to infer the epigenetic
regulatory functions of their residing regions [1–5].
Hence, much attention has been spent on investigating re-
current patterns of chromatin modifications [1, 2, 6–17].
In particular, as the number of discovered modifications
increases, current analyses are constrained by data avail-
ability. Working with the whole map of all chromatin
modifications is challenging and possibly unnecessary.

Instead, we propose to analyze a quantitatively selected
subset of chromatin modifications. It could simplify the
analysis and provide guidance for future experimental
design at the same time.
Currently, there are several types of known regulatory

regions and it remains an active field of research to study
their regulatory mechanisms [3–6, 11, 12, 14, 18–28]. Pro-
gress has been made as more data becomes available and
more algorithms are developed. For instance, many efforts
were spent on analyzing chromatin modifications of in
human CD4+ T cells [29, 30]. ChromSig was developed by
Hon et al. to utilize combination of 21 chromatin modifi-
cations to search for commonly recurring chromatin sig-
natures using the updated data set [3, 27]. Subsequently,
ChromHMM was developed to annotate the human gen-
ome using 41 chromatin modifications by Ernst et al. [2].

* Correspondence: machiraju.1@osu.edu; Kun.huang@osumce.edu
1Department of Computer Science and Engineering, The Ohio State
University, Columbus, OH 43210, USA
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):534
DOI 10.1186/s12859-016-1346-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1346-5&domain=pdf
mailto:machiraju.1@osu.edu
mailto:Kun.huang@osumce.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The same group later annotated the human genome by 15
chromatin states based on 10 chromatin modifications
[26]. It is noteworthy that computationally sophisticated
methods become crucial to analyze patterns of chromatin
modifications as more data becomes available. Further-
more, it also demonstrates that chromatin modifications
do not contribute equally to the process of identifying
recurrent patterns; which is the reason why the authors
achieved decent accuracy by omitting more than three
quarters of available chromatin modifications in their later
study. Recently, Ernst et al. reported a new study that de-
tects chromatin states in 127 reference epigenomes [31].
This analysis was based on approximation of multiple
chromatin modifications by data imputation. Instead of
using data imputation to overcome the unavailability of
certain data sets, we aim to quantitatively identify a subset
of available chromatin modifications. Moreover, it could
also provide guideline for future experimental design on
choosing chromatin modifications.
In this study, a computational framework is designed

to select subsets of chromatin modifications that form
distinct recurrent patterns at regulatory regions. The
identified recurrent combinatorial patterns can be fur-
ther utilized to discover novel regulatory regions. A case
study of promoters yields encouraging results: 4 out of
12 available chromatin modifications were selected and
eight different recurrent patterns were indentified. In-
depth analyses show that the combinatorial patterns are
associated with different states of promoters, confirmed
by the expression levels of genes and enriched

distributions of PolII. Recurrent combinatorial patterns
of active promoters were further utilized to discover
novel promoters. The identified putative promoters are
shown to be related to transcription activation. Further-
more, this framework can be easily adapted to study
other regulatory regions or extended to annotate the
whole genome.

Methods
Workflow
The workflow of proposed framework is shown in
Fig. 1. Firstly, data of all candidate chromatin modifi-
cations are pre-processed. Then, the distribution of
each chromatin modification is expressed as a
weighted sum of all other modifications. The resulting
coefficients are recorded in an affinity matrix. This af-
finity matrix is enforced to be sparse, as the distribu-
tion of each chromatin modification is expected to be
a weighted sum of few others. Consequently, the chro-
matin modifications are clustered into different groups
via hierarchical clustering. In this step, chromatin
modifications with closely related distributions are
clustered into the same cluster. Then, a representative
is selected from each cluster. After the subset that
contains all representatives is identified, the regulatory
functions associated with these combinatorial patterns
are further confirmed by evidence from other data-
bases. The identified patterns then further lead to dis-
covery of novel regulatory regions.

Fig. 1 Workflow of the framework. The distribution of each chromatin modification is expressed as a weighted sum of all other modifications. The
resulting coefficients are recorded in an affinity matrix. The affinity matrix is enforced to be sparse. Consequently, the chromatin modifications are clustered
into different groups via hierarchical clustering. Then, a representative is selected for each cluster. After the subset is identified, the regulatory functions
associated with these combinatorial patterns are further analyzed. The identified patterns then further lead to discovery of novel regulatory regions
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Case study at promoter region: data collection and
pre-processing
Genome wide maps of two histone acetylations, eight
methylations, a histone variant H2A.Z and CTCF of
human skeletal muscular cells and B-lymphocyte cells
were generated by the ENCODE project. For each chro-
matin modification, the raw data of summary tag counts
obtained at every 100 bp was pre-processed before
analyses.
Distributions of chromatin modifications at the -5 k

to +5 k base pair (bp) region of each annotated Tran-
scription Start Site (TSS) were extracted. The TSS list
was downloaded from UCSC Genome Browser website.
Overall, there are 41,413 annotated TSS from refGene.
In this study, the distribution of each chromatin modi-
fication at every captured promoter region is repre-
sented by a vector of length 100 (the locus is of length
10kbp and each genomic window is of length 100 bp).
Consequently, for each chromatin modification, the
data matrix is of size 41,413 × 100.

Problem formulation
Suppose distributions of N chromatin modifications at
M loci are collected via ChIP-seq experiments. We
separate the genome into M bins of size L and denote
the vector xi,j as

xi;j ¼
xi;j;1
xi;j;2

⋮
xi;j;L

2
664

3
775; i ¼ 1; 2;…; N and j ¼ 1; 2;…;M:

where xi,j,k is the read counts for the ith chromatin
modification at the kth base pair of the jth bin on the
genome. Then the data set H could be written as
following,

H ¼ h1 h2 …hN½ � ¼
�

x1;1⋯ xN ;1

⋮ ⋱ ⋮
x1;M ⋯ xN ;M

�
;

where hi ¼
xi;1
xi;2
⋮
xi;M

�
:

2
64

Affinity matrix of chromatin modifications
Following formulation is proposed to identify subsets of
chromatin modifications forming recurrent patterns on
the genome. Suppose there exists a subspace P that few
chromatin modifications reside. Then the distribution of
one chromatin modification could be expressed by linear
sum of distributions of remaining chromatin modifica-
tions in the same subspace, as follows

hi ¼
Xj∈P

j≠i

hjαj; or hi ¼
Xj∉P

αj¼0; j≠i

hjαj;

where αj = 0 for all j ∈ P. Here αj could be considered as
a coefficient measuring how the two distributions of ith

and jth chromatin modifications related. Furthermore,
this could be rewritten as hi =Hαi, where αii = 0 and
αi∈R

N and |αi|0 = |P|-1. This formulation follows the
assumption that a distribution can be explained by the
closely related distributions of other chromatin modifi-
cations. Hence, to calculate αi, it shall follow, min ‖
αi‖0 s. t. hi =Hαi, αii = 0.
As functions in L0 space is non-convex, here the for-

mulation is relaxed to minimize the tightest convex re-
laxation of the L0-norm, ie min ‖αi‖1 s. t. hi =Hαi, αii
= 0, which can be solved efficiently and prefers sparse
solutions. This sparse optimization program could also
be rewritten for all data points i = 1, …, N in matrix
form as

min‖A‖1 s:t: H ¼ HA; diag Að Þ ¼ 0;

where A ∈RN×N. This affinity matrix A is then used to
cluster chromatin modifications. This formulation is
inspired by Sparse Subspace Clustering [32].

Selection of chromatin modifications and identification of
combinatorial patterns
The affinity matrix A is then utilized to cluster chromatin
modifications via hierarchical clustering. Each cluster is
considered as a collection of chromatin modifications
displaying linearly related distributions. Consequently, one
chromatin modification is selected to represent the distri-
bution signal of each cluster. After the representative sub-
set is selected, distributions of all selected modifications
are concatenated as one vector. Recurrent combinatorial
distribution patterns are then identified by the K-means
clustering. Here, it is hypothesized that recurrent com-
binatorial patterns are indicators of different states of
regulatory regions. Hence, each pattern is further analyzed
to confirm if they are indeed associated with epigenetic
regulatory functions.

Discovery of novel regulatory regions
The identified combinatorial patterns are then utilized to
discover novel regulatory regions. Here, Pearson correlation
coefficient (PCC) is used to quantify the similarity between
distributions of two chromatin modifications. The similarity
metric is defined as the mean of correlation coefficients of
each pair of chromatin modifications. Putative regulatory
regions are selected by thresholding the similarity metrics.
The quality of the putative regulatory regions is further ana-
lyzed by confirming with existing annotations of the human
genome and other data evidence.
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In this study, ToppGene was used to study the enriched
biological functions of gene groups displaying identified
combinatorial patterns at promoter regions. Putative
promoters are further analyzed by using evidence from
other databases. Other approaches to examine the putative
promoters include the investigation of the expression levels
of downstream regions and PolII distributions, which are
usually considered as good indicators of promoter activities.

Results
Subset identification
Data from human skeletal muscular cells (HSMM)
and B-lymphocyte cells (GM12878) were used in this
study. Overall, this study includes twelve chromatin
modifications: two histone acetylations, eight histone
methylations, one histone variant H2A.Z and transcrip-
tional repressor CTCF. Annotation of promoters was ob-
tained from UCSC Genome Browser refGene annotation.

Affinity matrix of chromatin modifications was gener-
ated for each cell line individually (see Methods section).
Here, the hypothesis is that the distribution of one chro-
matin modification mark could be expressed as a weighted
sum of few related others. Therefore, the resulting affinity
matrix shall be sparse. To further enforce this assumption,
the value of parameter λ is empirically tested and selected.

Value of λ was chosen by empirical tests
Since the value of λ has great impact on the sparsity of
the resulting affinity matrix, it was empirically chosen by
comparing two affinity matrices. Previous studies show
that recurrent patterns at promoter regions remain cell
type invariant [12, 25]. Hence, the affinity matrices from
the two cell lines shall remain similar to each other. To
compare the similarity between the two affinity matrices,
the PCC between all matching entries were calculated
based on different choice of λ. The value of λ that gives
the highest PCC was chosen, as shown in Fig. 2.

a

c

b

d

Fig. 2 Value of λ is empirically selected by comparing the two affinity matrices generated based on data from two different cell lines. a
Heatmaps of the affinity matrices (12 chromatin modifications) for datasets of GM12878 and HSMM cell lines. There are 66 pairs of chromatin
modifications. b The affinity values are plotted in the scatter plot to compare the 66 pairs of chromatin modifications. The X coordinate is from
cell line GM12878, the Y coordinate is from cell line HSMM. If the affinities between chromatin modifications are close, the correlation (PCC)
between X and Y axis should be relatively high. c Changes of PCC based on different values of λ. The λ that associates with the highest PCC is
then used (λ = 1.3E5). d As the value of λ increases, the sparsity of the two affinity matrices also increases
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Clustering chromatin modifications
To divide the set of chromatin modifications into clusters,
hierarchical clustering was applied to the affinity matrices.
The clustering was tested with K = 3,4,5 to partition a set
of 12 chromatin modifications. In the end, we selected K =
4 by comparing the overlaps between the clusters from the
two datasets. The identified chromatin modification clus-
ters largely overlap between the two cell lines (Fig. 3). For
each cluster, one chromatin modification is selected to
represent the cluster. Therefore, a group of four chromatin
modifications are selected to represent the overall
distributions of all chromatin modifications. The selected
chromatin modifications are underlined in right of Fig. 3.

Identification of combinatorial patterns of chromatin
modifications
Recurrent combinatorial patterns of chromatin modifica-
tions were detected in both cell lines via K-means clus-
tering. Firstly, the distributions of selected chromatin
modifications are concatenated as one vector. Therefore,
for each known promoter, a vector of length N’ × L is
generated to represent the combinatorial distribution.
Then, the K-means clustering was performed to identify
recurrent combinatorial patterns at promoters. To select
an optimal value of K, the silhouette values and sum of
point-to-centroid distances were examined for K value
varies from 2 to 20. K is set to 8 for both cell lines
(Table 1 shows the sizes of all clusters in both cell lines)
as the silhouette values are high, sum of point-to-
centroid distances are low and the patterns show clear
visual differences. Figure 4 shows the clustering results
from both cell lines. The recurrent combinatorial pat-
terns (CP) are ranked by the expression level of their

target genes. It is observed that there exist similar com-
binatorial patterns in both cell lines. Similarity between
two combinatorial patterns is calculated by modified
PCC: the mean of PCC among all matching pairs of
chromatin modifications. As shown in Fig. 4 and Table 1,
modified PCCs between combinatorial patterns discov-
ered in both cell lines are quite high.
Analyses of expression levels of genes show different

combinatorial patterns are associated with different
promoter states. Each state is considered to carry out a
different epigenetic regulatory function. It is observed
that the same recurrent combinatorial pattern is associ-
ated with similar expression levels in both cell lines. As
Fig. 5 shows, the combinatorial patterns could be di-
vided into three groups: patterns of active promoters
(CP1-CP4), weak promoters (CP5, CP6) and inactive/
poised promoters (CP7, CP8).
Another indicator of activation of transcription is the

enriched distribution of PolII at promoters, as it is the

Fig. 3 Hierarchical clustering and subset selection of chromatin modifications. The resulting clusters from both cell lines are highly overlapped (denoted
by the index number of each chromatin modifications, the bold numbers indicate overlapping clusters). One chromatin modification is selected as the
representative of each cluster. The chromatin modifications selected in this study are underlined

Table 1 Sizes of identified clusters and the correlations
between matching clusters from the two cell lines

Cluster Sizes GM12878 HSMM Modified PCC

CP1 4655 3190 0.945

CP2 6954 6486 0.980

CP3 6154 7551 0.973

CP4 4145 4572 0.956

CP5 2799 3657 0.956

CP6 5259 6865 0.877

CP7 795 995 0.223

CP8 10652 8097 0.684
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enzyme that catalyzes the transcription at TSS. Here,
distributions of PolII at promoter regions of genes were
investigated as well. As plotted in Fig. 6, results show
that there is significant PolII enrichment at active pro-
moters (CP1-CP4), and scarce distribution on weak pro-
moters (CP5, CP6) and almost no clear distribution at
poise promoters (CP7, CP8).

To further evaluate the selected subsets of chromatin
modifications, we compared the clusters identified by
clustering all available chromatin modifications and the
selected subset, as shown in Fig. 7. Our experiment
shows that the recurrent patterns recovered by perform-
ing clustering on the two data sets are quite similar.
Hence, our selected subset of chromatin modification

Fig. 4 Identified combinatorial patterns (CP) and the average profile of each CP. Between the two cell lines, the patterns are similar and have
high correlation. Here the modified PCC is calculated as the average of the four PCCs of the four corresponding chromatin modifications

Fig. 5 Expression levels of identified clusters from the two cell lines. It is clear that CP 1–4 have higher expression levels in both cell lines than CP
5–6 (corresponding to weak promoters) and CP7-8 (corresponding to poised promoters)
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simplified the identification of recurrent patterns without
compromising accuracy. Moreover, we also selected an-
other subset of chromatin modifications (H3K4me1,
H3K9ac, H3K9me3, and H3K36me3) from Fig. 3. Our ex-
periment shows that the recurrent patterns recovered by
the two subsets are quite similar as well, as shown in Fig. 8.
Based on the original subset (H3K4me2, H3K27ac, H2Az
and H3K79me2), similar recurrent patterns were also
detected in CD 4 T cells, as shown in Fig. 9.

Distinct combinatorial patterns are indicators of specific
regulatory functions
To thoroughly investigate the differences among
genes associated with patterns of active promoters,
they are further examined with functional enrichment
analyses. Results show that genes displaying CP1 are
enriched with tissue specific functions and genes dis-
playing CP2-4 are associated with mostly housekeep-
ing functions.

Fig. 6 Distributions of PolII for identified clusters. For CP1-4, the PolII distribution levels are very high, comparing to that at the CP5-8 loci on genome

Fig. 7 Recurrent patterns from clustering selected subset (left columns of heatmaps) of chromatin modifications and the full set (right columns of
heatmaps). The average pattern profiles detected based on subset (red) and full set (black) of chromatin modifications are also plotted. While the clusters
on the left columns (columns 1 and 4) are generated by the four modifications, the profiles for all 12 modifications are still shown in the heatmaps

The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):534 Page 297 of 303



Fig. 8 By the framework proposed, we could also select another subset of chromatin modifications and achieve similar results. Here,
black line denotes the pattern profiles detected by clustering full set of chromatin modifications; red line is for the patterns detected
by using H3K4me2, H3K27ac, H2Az and H3K79me2; blue line is for patterns detected by using H3K4me1, H3K9as, H3K9me3,
and H3K36me3

Fig. 9 Test the pipeline in different dataset. Similar patterns are also detected by performing clustering on the same subset of chromatin modifications
(H3K4me2, H3K27ac, H2Az and H3K79me2) in GM12878 (black) and CD4 T (blue) cells
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CP1 (tissue specific genes)
Functional enrichment analysis of genes displaying CP1
at promoter regions yield several tissue specific bio-
logical processes and mouse phenotypes. The enriched
GO terms and associated p-values are listed in Table 2
(with details in Additional file 1: Table S1).

CP2-4 (housekeeping genes)
For genes that displaying CP2, CP3 and CP4 at pro-
moter regions, functional enrichment analyses indicate
that they are mostly associated with housekeeping
functions. It is noteworthy that the enriched functions
usually overlap significantly for genes displaying the

same pattern from both cell lines. The enrichment
analyses results are listed in Table 3 (with details in
Additional file 2: Table S2, Additional file 3: Table S3,
and Additional file 4: Table S4 for CP2, CP3, and
CP4 respectively). GO terms that are enriched in gene
groups from both cell lines are listed in bold. The
remaining non-overlapping GO term are mostly related to
the overlapping GO terms. For example, in Table 3 for
CP2, one GO term enriched in both cell lines is “regula-
tion of cellular protein metabolic process”, and the non-
overlapping GO terms include “negative regulation of
metabolic process” and “negative regulation of cellular
metabolic process”. Even though some GO terms do not

Table 2 Top enriched GO terms for genes with CP1 at promoters (details in Additional file 1: Table S1)

GM12878 HSMM

CP1: Biological Process

Lymphocyte activation 4.06E-12 cardiovascular system development 8.08E-22

Leukocyte activation 2.05E-11 muscle structure development 2.31E-21

Immune response 5.48E-11 skeletal system development 8.68E-19

CP1: Mouse Phenotype

Abnormal leukocyte physiology 3.12E-26 abnormal axial skeleton morphology 4.27E-10

Abnormal lymphocyte physiology 5.95E-26 abnormal muscle morphology 1.69E-09

Abnormal hematopoietic system physiology 9.38E-26 abnormal thoracic cage morphology 3.81E-09

Table 3 Riched GO BP terms for genes with CP2to CP4 at promoters (details in Additional file 2: Table S2, Additional file 3: Tables
S3, Additional file 4: Tables S4)

GM12878 HSMM

CP2-Biological Process

Cell cycle 2.87E-36 regulation of cellular protein metabolic
process

1.07E-40

Mitotic cell cycle 1.04E-34 negative regulation of macromolecule metabolic process 1.62E-37

Single-organism organelle organization 1.37E-29 cell cycle 2.17E-33

CP3-Biological Process

tRNA metabolic process 2.71E-11 protein modification by small protein conjugation or removal 1.15E-14

ncRNA metabolic process 3.64E-09 protein modification by small protein conjugation 2.62E-13

tRNA processing 6.71E-09 ncRNA metabolic process 5.48E-13

Protein modification by small protein
conjugation or removal

3.57E-08 cellular respiration 9.00E-13

ncRNA processing 1.07E-07 tRNA metabolic process 1.17E-12

CP4-Biological Process

RNA processing 5.30E-09 RNA processing 5.51E-15

tRNA metabolic process 4.06E-08 ncRNA metabolic process 1.40E-12

DNA metabolic process 1.44E-06 DNA metabolic process 3.64E-11

tRNA processing 5.01E-06 ncRNA processing 4.52E-11

Cellular response to DNA damage
stimulus

5.93E-06 DNA repair 1.04E-09

ncRNA metabolic process 6.76E-06 cellular response to DNA damage stimulus 1.41E-09

ncRNA processing 7.45E-06 RNA modification 6.34E-09

Recurrent GO that are enriched from both cell lines are listed in bold
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appear in both columns, the functions of both gene
groups are closely related.

Discovery of novel promoters
As the identified recurrent combinatorial patterns asso-
ciate with promoters of different states, they could be
utilized to discover novel promoters. In this study, un-
annotated promoter regions are discovered if they
display identified patterns of active promoters. Here, the
human genome is divided into 10 k bps loci with 2 k bps
sliding window. The combinatorial distribution at each
locus was then compared to the identified recurrent
patterns of active promoters (Fig. 10). Here the similarity
between two combinatorial patterns is calculated as the
mean of the PCC of all matching pairs. A locus is
considered as a putative promoter only if similarity coef-
ficients of all individual PCC are above certain threshold
(0.75 in this study). After all the candidate loci are
selected, loci with high similarity scores are further ana-
lyzed. The search is carried out on both DNA strands.

Evaluation of the putative promoters
Putative promoter regions are further analyzed: the
expression levels of downstream regions are examined
along with the PolII distributions. Investigations show
that the downstream regions from putative promoters
have similar expression levels with the genes that dis-
playing the same patterns at their promoters, as shown
in Fig. 11. Furthermore, investigations also show putative
promoter regions display PolII distribution patterns that
are expected for active promoter regions, as shown in
Fig. 7. Further analyses indicated that putative promoters
mostly consist of promoter regions of non-coding RNAs,
exons of known genes along gene body and regions
without annotations. The breakdown of the putative
promoters is listed in Table 4.
As shown above, the un-annotated regions down-

stream of active promoter patterns also have similar

expression levels of known genes with the same pro-
moter pattern, and similar PolII distributions. The PolII
distributions of putative promoters were also investi-
gated in other cell lines, such as HUVEC, K562 and
HeLa (Fig. 12). Results show that the putative pro-
moters in these three cell lines also display enriched
PolII distributions. One interesting observation is that
the PolII distributions are different in these three cell
lines, suggesting that some identified promoters are
likely to be tissue specific. Hence, some of them are
active in GM12878 but not as much in other cells.

Discussion and conclusion
In this study, we propose a framework to investigate re-
current combinatorial patterns of chromatin modifications
at regulatory regions. As certain chromatin modifications
are not available for analyses, our method focuses on ex-
ploring the distinct combinational patterns of selected
modifications. The framework is demonstrated in detail
by a case study conducted at promoter regions. By
using the proposed framework, a subset of available
chromatin modifications was successfully identified
based on their distribution patterns at promoter
regions. Specifically, we identified four groups of chro-
matin modifications that provide four representative
modifications. Interestingly, in the Epigenome Roadmap
project, six types of chromatin modifications (H3K4me1,
H3K4me3, H3K9ac, H3K9me3, H3K27me3, H3K36me3)

Fig. 11 Comparison of expression levels of regions regulated by
putative (left) and identified active promoters (right)

Fig. 10 Combinatorial patterns and PolII distributions of putative promoters
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were adopted for characterizing chromatin states [33].
Among them, H3K4me1 is in the Cluster A (Fig. 3),
H3K4me3 and H3K9ac are in Cluster B, H3K9me3 is in
the Cluster C, and H3K36me3 is in the Cluster E. In
addition, in [31], five chromatin modifications (H3K4me1,
H3K4me3, H3K9me3, H3K27me3, and H3K36me3) were
adopted for imputing other chromatin marks. These five
selected modifications also span the four clusters detected
using our methods. These observations clearly demon-
strated that the clusters we identified are comprehensive
for selecting representative modifications. In addition, our
method also suggested that there are relationships
between the modifications within each cluster that cannot
be effectively detected using traditional Pearson correl-
ation method. For Cluster A, while H3K4me1 is known to
preferentially bind to active enhancers, H3K4me2 is
known to exist in both active enhancers and promoters.
Thus the correlation between H3K4me1 and H3K4me2
over the neighborhood of TSS regions is not strong. Since
our analysis focuses on regions within 5Kb of the TSS
regions, there are complementary patterns for the pro-
moters and the proximal enhancers for active genes that
can be detected by our method. The three chromatin
modifications in Cluster B are H3K27ac, H3K4me3 and
H3K9ac. Interestingly, using a two step computational
model, Dong et al. [34] showed that H3K4me3 has
provide similar information on gene transcription as the
activating marks H3K27ac and H3K9ac. In Cluster D, the
two chromatin modifications H3K36me3 and H3K79me2
are both activating marks binding to gene bodies. How-
ever, H3K36me3 occurs preferentially on the 3’ of the
genes while H3K79me2 is present more in the 5’ region.
Thus they do not always show strong correlations. Instead

the subspace model can detect the complementary relation-
ships between them. The relationship between H2A.Z and
H3K9me3 in Cluster C are less well known. H3K9me3 is
known to mark heterochromatin [35]. Some recent studies
showed that the H2A.Z and H3K9me3 co-localize in
certain heterochromatin regions but H2A.Z have much
wider presence than H3K9me3 [36, 37].
Furthermore, instead of just assigning chromatin states

and predicting gene activities, we examine the distribu-
tion patterns of the four representative modifications to
categorize the genes as it has been shown previously that
different distribution patterns of certain chromatin mod-
ifications may be associated with different gene func-
tions [13, 17]. Specifically, the recurrent patterns formed
by the selected subset of chromatin modifications were
identified. Our investigations show that the identified re-
current combinatorial patterns associated with different
states of promoters, confirmed by the expression levels
of downstream genes and PolII distributions at promoter
regions. Importantly, our results showed that even for
active genes, they have different distribution patterns for
the selected modifications corresponding to different
functions. The most active group contains tissue specific
genes while active genes in the other groups are usually
involved in more household functions such as cell cycle,
RNA metabolism and protein synthesis.
In addition, the identified patterns were further utilized

for discovering putative promoters. Further analysis show
that the putative promoters are indeed related to activa-
tion of transcription. Promoter regions were chosen to
demonstrate this framework as their targeted regions are
easy to locate. It is worth mentioning that this framework
can be easily adapted to other regulatory regions with suit-
able data sets, or extend to study genome wide recurrent
patterns/annotate the whole human genome.
A major limitation of our current analysis is that

we focused on the TSS regions. It has been shown
that different regulatory regions may have different
combinatorial patterns [1] and we plan to extend the
analysis to whole genome in our future work.
In conclusion, we present a computational framework

to identify relationships of chromatin modifications be-
yond correlation analysis and identified representative

Fig. 12 PolII distributions at putative promoters (identified in cell line GM12878) in other cell lines

Table 4 Further analyses of the identified putative promoters

Number of
putative
promoters

Regions overlaps with annotations Un-annotated
regionsRegions between

gene bodies
Regions within
gene bodies

CP1 10 3 3 4

CP2 46 6 17 25

CP3 15 1 4 11

CP4 105 27 8 72
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modifications that can be further used to categorize func-
tional groups of genes as well as predicting new gene
regulatory regions.
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Abbreviation
TSS: Transcription starting site
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