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Abstract

Background: Since traditional drug research and development is often time-consuming and high-risk, there is an
increasing interest in establishing new medical indications for approved drugs, referred to as drug repositioning,
which provides a relatively low-cost and high-efficiency approach for drug discovery. With the explosive growth of
large-scale biochemical and phenotypic data, drug repositioning holds great potential for precision medicine in the
post-genomic era. It is urgent to develop rational and systematic approaches to predict new indications for approved
drugs on a large scale.

Results: In this paper, we propose the two-pass random walks with restart on a heterogenous network, TP-NRWRH
for short, to predict new indications for approved drugs. Rather than random walk on bipartite network, we integrated
the drug-drug similarity network, disease-disease similarity network and known drug-disease association network into
one heterogenous network, on which the two-pass random walks with restart is implemented. We have conducted
performance evaluation on two datasets of drug-disease associations, and the results show that our method has
higher performance than six existing methods. A case study on the Alzheimer’s disease showed that nine of top 10
predicted drugs have been approved or investigational for neurodegenerative diseases. The experimental results
show that our method achieves state-of-the-art performance in predicting new indications for approved drugs.

Conclusions: We proposed a two-pass random walk with restart on the drug-disease heterogeneous network,
referred to as TP-NRWRH, to predict new indications for approved drugs. Performance evaluation on two independent
datasets showed that TP-NRWRH achieved higher performance than six existing methods on 10-fold cross validations.
The case study on the Alzheimer’s disease showed that nine of top 10 predicted drugs have been approved or are
investigational for neurodegenerative diseases. The results show that our method achieves state-of-the-art
performance in predicting new indications for approved drugs.
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Background
With the increasing population age, the incidence rate
of cancer is rising up and becoming a worldwide threat
to human health [1–3], which leads to increasing need
for anticancer drugs. However, the research and develop-
ment of anticancer drugs are time-consuming and costly
tasks. In recent years, many researchers and pharmaceu-
tical enterprises turned their attentions to finding new
medical indications for approved drugs [4], referred to
as drug positioning or drug repurposing, because it pro-
vides a relatively low-cost and high-efficiency approach
for drug discovery [5]. Nevertheless, most successfully
repositioned drugs up to date have been the consequence
of incidental observations of unexpected efficacy and side
effects of the drugs in development or on the market [6]. It
is urgent to develop rational and systematic approaches to
find new indications for approved drugs on a large scale.
The explosive growth of large-scale genomic and phe-

notypic data, as well as the chemical and bioactivity data
of thousands of compounds and natural products, allow
us to develop computational methods for drug reposi-
tioning [5]. In fact, a number of computational methods
have been proposed [7–10]. These methods roughly fall
into three categories: machine learning, literature mining
and network-based analysis [9]. Most machine learning-
based methods take randomly generated drug-disease
associations as negative samples, in which some false neg-
atives are included and lead to biased decision boundary
[7, 11]. The literature mining methods depend on
term co-occurrence and sematic inference of some key-
words of interest to infer new drug-disease associations
[10, 12]. Due to the ambiguity in nature of natural lan-
guage and limited accuracy of text mining techniques,
literature mining-based methods do not obtain desirable
performance.
Under the hypothesis that similar drugs would hold

potential therapy for diseases with similar pathogenesis
and symptoms, some network-based methods have been
proposed to find new indications for approved drugs,
by exploiting the topological and structural properties
of complex biomedical networks [8, 13]. For example,
Lee et al. built an integrated drug-protein-disease tripar-
tite network, PharmDB, and proposed a so-called shared
neighborhood scoring (SNS) algorithm to find new indi-
cations of known drugs [14].Martinez et al. have proposed
a network-based prioritization method, DrugNet, which
integrated the information of diseases, drugs and targets
to perform drug-disease and disease-drug prioritization
simultaneously [15]. Chen et al. formulated the drug-
disease association prediction problem as recommending
preferable diseases for drugs so that two existing recom-
mendation methods, ProbS and HeatS, were used to infer
drug-disease associations [4]. Yu et al. used protein com-
plexes as an intermediate bridge to construct a tripartite

network consisting of drugs, protein complexes, and dis-
ease, on which the likelihood probabilities of drug-disease
associations were inferred [16]. Luo et al. exploited known
drug-disease associations to improve the drug-drug and
disease-disease similarity measures, and then integrated
the similarity networks and drug-disease associations to
build a drug-disease heterogenous network, on which a
bi-random walk algorithm is proposed to predict novel
potential drug-disease associations [17]. However, current
network-based methods also have some limitations. They
either do not make full use of the unlabelled samples
[8, 14], or are based on the predictions of two classifiers
that are separately trained within the drug and disease
spaces [15, 17], respectively.
In this paper, we proposed a two-pass random walk

with restart on the drug-disease heterogenous network,
referred to as TP-NRWRH, to predict new indications
for approved drugs. The heterogenous network is built
by integrating drug-drug similarity network, disease-
disease similarity network and known drug-disease
association network. For a candidate drug-disease asso-
ciation, we run two-pass random walk, a drug-centric
random walk and a disease-centric random walk, to
obtain the probability of arriving the objective disease
node and drug node, respectively. Rather than two sep-
arate label propagation processes within the drug and
disease spaces, both the drug-centric and disease-centric
random walkers can travel through the whole space of
the heterogenous network. The mean probabilities of
the two-pass random walks are used as the confidence
scores to rank all candidate drug-disease associations. We
carried out performance evaluation on the widely used
PREDICT dataset, and found that TP-NRWRH achieved
higher performance than six existing methods on 10-
fold cross validations, as well as an independent test
set. On another larger dataset, our method also sig-
nificantly outperformed other six competitive methods.
A case study on the Alzheimer’s disease showed that
nine of top 10 predicted drugs have been approved or
are investigational for neurodegenerative diseases. The
results show that our method achieves state-of-the-art
performance in predicting new indications for approved
drugs.

Methods
Drug-disease association network
The drug-disease association network is constructed by
collecting known associations between a set of drugs
and diseases of interest. The drug-disease associations
are often extracted by professional biocurators from
FDA-approved drug indications and biomedical publi-
cations. Formally, denote by C = {c1, c2, . . . , cn} and
D = {d1, d2, . . . , dm} the drug and disease node set,
and A the adjacent matrix of drug-disease association
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network with element ail = 1 if there is known asso-
ciation between drug i and disease l, or ail = 0
otherwise.

Drug-drug similarity network
We compute two similarity measures for each pair of
drugs based on the chemical fingerprints and known
drug-disease associations, and then integrate the two sim-
ilarity measures to a comprehensive measure. The first
similarity measures is based on the chemical fingerprints
of the drug molecules. The chemical fingerprints are gen-
erated by using the PaDEL software (release v2.21) [18],
which takes as input the SMILES of the drugs to generate
the chemical fingerprints, as well as many other chem-
ical attributes. There are totally 800 kinds of chemical
fingerprints, and thus each drug was represented by a 880-
dimension binary vector, in which the element is equal to
1 if the corresponding chemical fingerprints is contained
in the drug, or 0 otherwise. With the vector form of the
chemical fingerprints, we can easily compute the Jaccard
score of two drugs as the chemical similarity. The Jaccard
score, which is widely used for measuring the similarity
and diversity of finite sample sets, is defined as the ratio
between the number of common fingerprints of two drugs
to their total number of fingerprints. Let �fi and �fj be the
vector forms of the chemical fingerprints of drug ci and
cj, the chemical similarity w(c1)

ij between drug ci and cj is
defined as below:

w(c1)
ij = |�fi ∩ �fj|

|�fi ∪ �fj|
. (1)

Besides, we can compute another drug-drug similar-
ity measure by exploiting the known drug-disease asso-
ciations. In particular, we adopt the bipartite network
projection proposed by [19] to derive the strength of
relatedness of two drugs. The bipartite network projec-
tion is inspired by the network-based resource-allocation
dynamics, which consists of two resource transfer steps.
In terms of the drug-disease bipartite network, the
resource originally held by each drug node is equally dis-
tributed to its disease neighbors, and then the resource
assigned to each disease node is equally distributed back
to its drug neighbors. Therefore, the second drug-drug
similarity, denoted by w(c2)

ij , is defined as the proportion of
the resource distributed from drug ci to drug cj during the
resource allocation process. Assume each drug node ini-
tially owns one-unit resource, w(c2)

ij can be formulated as:

w(c2)
ij = 1

k(ci)

m∑

l=1

ailajl
k(dl)

, (2)

in which k(ci) and k(dl) are the degree of drug ci and dis-
ease dl in the drug-disease association network. Note that
this measure is not symmetrical, as w(c2)

ij is often unequal

to w(c2)
ji . The intuitive explanation is that more common

disease neighbors of two drugs have, larger the similar-
ity measure is. When two drugs have no common known
disease, the similarity is equal to 0.
Subsequently, the two drug-drug similarities are inte-

grated into a comprehensive similarity measure by the
probability disjunction formula:

w(c)
ij = 1 −

(
1 − w(c1)

ij

) (
1 − w(c2)

ij

)
, (3)

in whichw(c)
ij represents the integrative similarity measure

between drug ci and drug cj.

Disease-disease similarity network
We build disease-disease similarity network by integrat-
ing two disease-disease similarity measures derived from
disease phenotypes and known drug-disease associa-
tions. The phenotype-based measure is calculated using
MimMiner [20], which adopt an approach analogous to
the term frequency-inverse document frequency (tf-idf )
technique widely used in information retrieval to com-
pute the phenotype similarity. More precisely, MimMiner
represents each disease-related phenotype by a vector of
MeSH concepts extracted from the OMIM database [21],
and then computes the cosine similarity between two
MeSH concept vectors. Denote by �ti = {ti1, ti2, . . . , tiK }
and �tj = {

tj1, tj2, . . . , tjK
}
the MeSH concept vectors of

disease di and disease dj, the phenotype-based similarity
w(d1)
ij is formulated as:

w(d1)
ij =

∑K
k=1 tiktjk√∑K

k=1 t2ik
√∑K

k=1 t2jk
, (4)

in which K represents the total length of the dictionary of
MeSH concepts.
Similarly, we compute another disease-disease similar-

ity by using the bipartite network projection mentioned
above. Let w(d2)

ij be the proportion of the resource dis-
tributed to disease dj from drug di, we have

w(d2)
ij = 1

k(di)

n∑

l=1

ailajl
k(cl)

(5)

in which k(di) and k(cl) is the degree of disease di and
drug cl in the drug-disease association network. The simi-
larity w(d2)

ij between disease di and disease dj has a similar
intuitive explanation, i.e. more common drug neighbors
of two diseases have, larger the similarity is. When two
diseases have no common known drug, the similarity is
equal to 0. We combine the two individual disease-disease
similarities into a comprehensive similarity by using the
probability disjunction formula as below:

w(d)
ij = 1 −

(
1 − w(d1)

ij

) (
1 − w(d2)

ij

)
, (6)
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in whichw(d)
ij represents the integrative similarity between

disease di and disease dj.

Two-pass randomwalk with restart on heterogenous
network
Based on the aforementioned drug-drug similarity net-
work, disease-disease similarity network and drug-disease
association network, we build a drug-disease heteroge-
nous network G = (V ,E). The node set V = {C,D} is
the union of the drug and disease node sets. The edge set
E = Ecc ∪ Edd ∪ Ecd in which Ecc, Edd and Ecd are the
sets of drug-drug edges, disease-disease edges and drug-
disease edges, respectively. Based on the drug-disease
heterogenous network, we extend the network-based ran-
dom walk with restart on the heterogeneous network
(NRWRH) developed by [22] to infer potential drug-
disease associations. For a candidate drug-disease asso-
ciation between drug ci and disease dj, we run two-pass
random walks with restart on the heterogenous network,
a drug-centric random walk and a disease-centric ran-
dom walk, to determine its confidence score. As shown in
Fig. 1a, the drug-centric random walk starts from drug ci
and its known associated diseases, and derive the prob-
ability of the random walker arriving at disease dj when
steady state is reached. Accordingly, the disease-centric
random walk starts from disease dj and its known asso-
ciated drugs, and derive the probability of the random
walker arriving at drug ci when steady state is reached, as
shown in Fig. 1b. Finally, we compute the mean probabil-
ity of the two-pass random walks as its confidence score.
Compared to traditional NRWRH algorithm, the two-pass
random walk with restart on heterogenous network, TP-
NRWRH for short, effectively balances the probabilities
derived from two single-pass random walks for each can-
didate drug-disease association (see Discussion for more
details).
If a random walker starts from a drug node on the het-

erogenous networkG, it can jump to one of the associated
disease nodes with probability λ, or jump to any other
drug nodes with probability 1-λ. A random walker can

only travel within one type of networks, if λ=0. Therefore,
we constructed the transition matrix T as

T =
[
T (cc) T (cd)

T (dc) T (dd)

]
(7)

where T (cc) and T (dd) are transition matrix of the proba-
bility from one drug (disease) to other drug (disease) in the
random walk, respectively; T (cd) is the transition matrix
from drug network to disease network, and T (dc) is the
transition matrix from disease network to drug network.
Based on the drug-drug similarity defined in Eq. (3), the
transition probability from drug ci to drug cj is defined as

T (cc)
ij =

⎧
⎨

⎩
w(c)
ij /

∑n
k=1 w

(c)
ik , if

∑m
l=1 ail = 0,

(1 − λ)w(c)
ij /

∑n
k=1 w

(c)
ik , otherwise.

Similarly, the transition probability from disease di
to disease dj can be defined on the basis of the
disease-disease similarity defined in Eq. (6). Formally, the
transition probability from disease di to disease dj is
defined as

T (dd)
ij =

⎧
⎨

⎩
w(d)
ij /

∑m
k=1 w

(d)

ik , if
∑n

l=1 ali = 0,

(1 − λ)w(d)
ij /

∑m
k=1 w

(d)

ik , otherwise.

The transition probability from drug ci to disease dj is
defined as

T (cd)
ij =

{
λaij/

∑m
l=1 ail, if

∑m
l=1 ail �= 0,

0, otherwise.

Similarly, the transition probability from disease di to
drug cj is defined as

T (dc)
ij =

{
λaji/

∑n
l=1 ali, if

∑n
l=1 ali �= 0,

0, otherwise.

Let P(t) be a (n+m)-dimension vector in which the i-th
element represents the probability of finding the random

Fig. 1 The illustrative diagram of the two-pass randomwalk with restart on drug-disease heterogenous network. For a candidate association between
drug ci and disease dj , a two-pass random walk process is run to compute its final confidence score. The nodes covered in the initial probability
distribution are in gold color, and the candidate drug-disease association is represented by dashed line. a The drug-centric randomwalk process starts
from drug ci and all its known associated diseases. b The disease-centric random walk process starts from disease dj and all known associated drugs
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walker at node i at step t, the probability can be calculated
iteratively by

P(t + 1) = (1 − α)T ′P(t) + αP0, (8)

where α is the restart probability at each step, and P0 is
the initial probability distribution over some given seed
nodes. For drug-centric random walk, a specific drug and
its known associated diseases are regarded as seed nodes,
as shown in Fig. 1a. Take drug ci as an example, ci is
denoted as the seed node in the drug network and given
probability 1, while other nodes in the drug network are
given probability 0. In this way, we construct the initial
probability regarding the drug nodes. Besides, the disease
nodes associated to drug ci are regarded as seed nodes
in disease network and given equal probabilities so that
the sum of their probabilities is equal to 1, forming the
initial probability regarding the disease nodes. Denote by
P(c)
0 and P(d)

0 the initial probabilities regarding the drug
and disease nodes, we define the initial probability P0 for
drug-centric random walk as

P0 =
[

ηP(c)
0

(1 − η)P(d)
0

]
, (9)

in which the parameter η ∈ [0, 1] is a tradeoff factor to bal-
ance the weight of importance between the drug network
and target network. Similarly, we can construct the initial
probability distribution for disease-centric random walk.
As shown in Fig. 1b, dj is denoted as the seed node in the
disease network and given probability 1, other nodes in
the disease network are given probability 0, forming the
initial probability P(d)

0 regarding disease nodes. The drug
nodes associated to disease dj are used as seed nodes in
the drug network and given equal probabilities so that the
sum of their probabilities is equal to 1, forming the ini-
tial probability P(c)

0 regarding drug nodes. As a result, the
initial probability P0 for disease-centric random walk is
formulated as

P0 =
[

(1 − η)P(c)
0

ηP(d)
0

]
. (10)

Let P∗ be the vector when the random walks converge,
i.e. the change between P(t) and P(t+1) (measured by the
L1 norm) is less than a very small number ε (=1.0E-10), P∗

i
is the probability of finding the random walker at node i
in the steady state. Once the two-pass random walks for a
candidate drug-disease association are finished, the mean
probability is computed as its confidence score, which is
used to rank all candidate drug-disease associations.

Results
Competitive methods used in performance evaluation
To evaluate the performance of the proposed method, we
compare it with six existing methods on two different

datasets. Two methods, MBiRW [17] and DrugNet [15],
have been proposed to predict drug-disease associations.
Four other methods, including NBI [23], HGBI [24],
KBMF2K [25] and DT-Hybrid [26], have been origi-
nally developed for predicting drug-target interactions
but are applicable in the prediction of drug-disease associ-
ations. MBiRW exploits known drug-disease associations
to improve the drug-drug and disease-disease similar-
ity measures, and then integrates the similarity networks
and drug-disease associations to build a drug-disease het-
erogenous network on which a bi-random walk algorithm
is proposed to predict novel potential drug-disease associ-
ations [17]; DrugNet is a network-based drug reposition-
ing method, which is able to perform both drug-disease
and disease-drug prioritization [15]; NBI predicts new
drug-target interactions by running a two-step diffusion
model on the drug-target bipartite graph [23]; HGBI is
based on the guilt-by-association principle and predict
new drug-target associations by iteratively updates the
measure of strength between unlinked drug-target pairs
by taking all the paths in the network into account [24];
KBMF2K uses kernelized bayesian matrix factorization
with twin kernels to predict drug-target interactions [25];
DT-Hybrid extends the NBI algorithm by adding domain
knowledge including drug-drug similarity and target-
target similarity into the original model.
In particular, each method is configured to its default

setting or best parameter values reported in its paper.
In particular, the parameters (λ,α, η) included in TP-
NRWRH are set to (0.8, 0.3, 0.4) in following experiments.
MBiRW is run in its default setting, namely, the restart
probability α is 0.3 and the numbers of maximal itera-
tions in the left and right random walks are equal to 2. For
DrugNet, the restart probability α is set to its default value
0.3. For HGBI, both the restart probability α and the cut-
off for drug-drug and disease-disease connections are set
to their best values 0.4 and 0.3, respectively. For KBMF2K,
we use KBMF2K-classification model and kept its default
parameter values. The two parameters α and λ included
in DT-Hybrid are set to the reported values 0.7 and 0.8, as
these values are used in the original paper.

Evaluation on PREDICT dataset
We first carry out performance evaluation on a drug-
disease association dataset published by Gottlieb
et al. [27]. The dataset is manually curated from multiple
resources and published in accompany with a novel com-
putational method called PREDICT for predicting new
drug indications [27]. For convenience, we refer to this
dataset as PREDICT dataset in the following experiments.
The PREDICT dataset includes 1933 known drug-disease
associations involving 593 approved drugs in Drug-
Bank [28] and 313 diseases in the Online Mendelian
Inheritance in Man (OMIM) [21].
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10-fold cross validations
We conduct 10-fold cross-validations on the PREDICT
dataset to compare the performance of our TP-NRWRH
and other six existing methods. The drug-disease asso-
ciations in PREDICT dataset are randomly split into 10
subsets with roughly equal size, and then each subset is
taken in turn as a test set and the remaining nine sub-
sets are taken as input to run our method. The prediction
accuracies are calculated on the test subset, and the aver-
ages over the 10-fold test subsets are regarded as overall
performance measures.
The ROC curves of TP-NRWRH and other six meth-

ods on the PREDICT dataset are shown in Fig. 2. It
can be found that TP-NRWRH significantly outperforms
all other competitive methods. TP-NRWRH achieves the
highest AUC 0.9394, followed by MBiRW at 0.9134 AUC
value. The performance of DrugNet is the worst and gets
only 0.7641 AUC value.
Since the number of correctly predicted true posi-

tives reflects the discriminatory power of a prediction
method to distinguish true positives, especially when the
number of negative samples is far larger than that of
positive samples. Therefore, we report the number of cor-
rectly predicted drug-disease associations with respect
to a specified top-rank threshold. A known drug-disease
association is considered as correctly predicted if its
ranking according to the predicted confidence score is
higher than a specified top-rank threshold. As shown
in Fig. 3, we report the number of correctly predicted
drug-disease associations by the seven methods for top
1, 10, 20, 50 and 100 rank thresholds. It can be seen
that ourmethod correctly predictsmore true drug-disease
associations than other six methods upon each top-rank
threshold.

Fig. 2 The ROC curves and AUC values of the proposed TP-NRWRH
and six existing methods on the PREDICT dataset

Fig. 3 The number of correctly predicted drug-disease associations
by our method and six existing methods on the PREDICT dataset,
with respect to five different top-ranked thresholds

Evaluation on independent test set
For objective performance evaluation, another dataset
released by [17] is used to assess the performance of the
seven methods. By removing the drugs not included in
PREDICT, we produce an independent test set includ-
ing 89 drug-disease associations regarding 71 drugs and
313 diseases. Here, we use it to assess the performances
of the seven prediction methods, by predicting the drug-
disease associations based on the PREDICT dataset and
calculating the performancemeasures on the independent
test set.
The ROC curves of the seven competitive methods on

the independent test set are shown in Fig. 4. Overall, the
performance of all the methods moderately deteriorate
relative to the 10-fold cross validations. TP-NRWRH still
holds the highest performance by achieving 0.8947 AUC
value. MBiRW and HGBI successively follow our method
by 0.8893 and 0.8006 AUC values, while the AUC val-
ues of the remaining four methods are no less 0.8. We
also show the number of correctly predicted drug-disease
associations with respect to given top-ranked thresholds,
as shown in Fig. 5. Accordingly, TP-NRWRH achieves
more correctly predicted drug-disease associations than
all other six methods on almost every top-rank threshold
except top 50.

Evaluation on Cdataset
We further evaluate the performance of the proposed
method on another larger dataset than PREDICT dataset,
referred to as Cdataset, which is published by Luo
et al. [17]. The Cdataset includes 2,352 known drug-
disease associations between 663 drugs and 409 diseases.
Similarly, ten-fold cross validations are conducted to com-
pare the performance of the seven competitive methods,
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Fig. 4 The ROC curves and AUC values of TP-NRWRH and six existing
methods on the independent test set. Note that the predictions are
based on PREDICT dataset, while the performance measures are
calculated on the independent test set

and the results are shown in Fig. 6. It can be seen that TP-
NRWRH obtains the AUC value 0.9546, which is signifi-
cantly higher than that of other six competitive methods.
MBiRW still closely follows our method on Cdataset
by 0.9225 AUC value. Interesting, the performance of
each method notably rise up on Cdataset compared to
PREDICT dataset. In terms of the number of correctly
predicted drug-disease associations, TP-NRWRH has the
best performance on every top-rank threshold, as shown
in Fig. 7.

Case study: Alzheimer’s disease
To further validate the performance of the proposed
method, we conduct a case study for Alzheimer’s disease.

Fig. 5 The number of correctly predicted drug-disease associations
by TP-NRWRH and six existing methods on the independent test set,
with respect to five different top-ranked thresholds

Fig. 6 The ROC curves and AUC values of TP-NRWRH and six existing
methods on the Cdataset

We report the top 10 predicted drugs for Alzheimer’s
disease, as shown in Table 1. For each drug, we show
the canonical name and DrugBank Accession Number,
drug-centric probability score, disease-centric probability
score and mean probability. Through retrieval of Drug-
Bank, we have found that nine of the10 drugs, except for
Calcitriol, are muscarinic antagonists or antimuscarinics-
like agents that have been approved or investigational for
neurodegenerative diseases such as Parkinson’s disease. In
despite of the difference in pathogenesis between Parkin-
son’s disease and Alzheimer’s disease, they are common
neurodegenerative diseases associated with aging [29].
Moreover, a recent study has revealed that Parkinson’s dis-
ease and Alzheimer’s disease are genetically related, as
both diseases are primarily caused by deposits of some

Fig. 7 The number of correctly predict drug-disease associations by
TP-NRWRH and six existing methods on the Cdataset, with respect to
three different top-ranked thresholds
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Table 1 Top 10 predicted drugs for Alzheimer’s disease by TP-NRWRH

Drug name DrugBank ID Drug-centric prob. Disease-centric prob. Mean prob.

Biperiden DB00810 0.010013127 0.0027618815 0.006387

Procyclidine DB00387 0.007374576 0.0029763145 0.005175

Benzatropine DB00245 0.007368236 0.0029541662 0.005161

Carbidopa DB00190 0.005865933 0.0030864640 0.004476

Ropinirole DB00268 0.005859384 0.0030558408 0.004458

Pramipexole DB00413 0.005862381 0.0030442238 0.004453

Scopolamine DB00747 0.003635959 0.0033643315 0.003500

Calcitriol DB00136 0.003123367 0.0014964786 0.002310

Trihexyphenidyl DB00376 0.003490107 0.0005885250 0.002039

Bromocriptine DB01200 0.003481560 0.0005622120 0.002022

common proteins in the brain. There are certain strains
of the alpha-synuclein protein associated with Parkin-
son’s disease that can encourage the accumulation of the
tau protein associated with Alzheimer’s [30]. More inter-
estingly, the drug Calcitriol is an active form of vitamin
D(3) metabolite and a receptor in the central nervous
system. Calcitriol have been suggested to play beneficial
role in improving the cognitive function in some patients
with Alzheimer’s disease [31, 32]. These previous find-
ings strongly support the predicted drugs are potential
indications for Alzheimer’s disease.

Discussion and conclusion
In this paper, we propose a network-based method to
predict new indications for approved drugs. To verify
the performance of the proposed method, we use sev-
eral network-based methods for predicting drug-target
interactions and drug-disease associations in our empir-
ical experiments. In fact, our method is inspired by the
network-based randomwalk with restart on heterogenous
network (NRWRH) [22], which run only drug-centric
random walk with restart on drug-target heterogenous
network to predict new targets for a drug of interest.
To test whether the two-pass NRWRH (TP-NRWRH)
really improves the performance of traditional NRWRH,
we conduct another experiment to compare the perfor-
mance of TP-NRWRH and two single-pass NRWRH, i.e.
drug-centric and disease-centric random walks on het-
erogenous network, on the PREDICT dataset. The exper-
imental results are shown in Fig. 8, it can be found that
TP-NRWRH significantly outperforms the drug-centric
and disease-centric algorithms. We postulate that the
drug-centric and disease-centric random walks are actu-
ally asymmetric label propagation processes, which would
provide complementary information for a candidate drug-
disease association, while TP-NRWRH gracefully bal-
ances the probabilities derived from the two single-pass
random walks and thus achieves better performance.

Our another concern is that the network topological
structure of the heterogenous network may affect the
performance of our method. Especially, the existences
of the edges linking drugs and diseases depend on the
collected drug-disease associations. However, current col-
lection of drug-disease associations is often incomplete,
and the strengths of the associations between drugs and
diseases are actually quantitative. We suggest that quan-
titative associations rather than qualitative associations
between heterogenous nodes probably improve the per-
formance of our method, and we thus plan to verify this
point in our future work.
We have conducted empirical experiments to compare

the performance of TP-NRWRH and other six popu-
lar methods on two different datsets. One the PREDICT
dataset, a widely used standard dataset in drug position-
ing, TP-NRWRH achieved higher performance than six
existing methods on both the 10-fold cross validations

Fig. 8 The ROC curves and AUC values of TP-NRWRH (two-pass) and
the two single-pass NRWRH, drug-centric and disease-centric
algorithms, on the PREDICT dataset
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and an independent test set. On another larger dataset,
our method also significantly outperforms the other six
competitive methods. Moreover, the case study on the
Alzheimer’s disease showed that nine of the top 10 pre-
dicted drugs have been approved for neurodegenerative
diseases. The results show that our method achieves state-
of-the-art performance for the discovery of new drug-
disease associations.
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