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Abstract

Background: Pathway analysis combining multiple types of high-throughput data, such as genomics and
proteomics, has become the first choice to gain insights into the pathogenesis of complex diseases. Currently, several
pathway analysis methods have been developed to study complex diseases. However, these methods did not take
into account the interaction between internal and external genes of the pathway and between pathways. Hence,
these approaches still face some challenges. Here, we propose a network-based pathway-expanding approach that
takes the topological structures of biological networks into account.

Results: First, two weighted gene-gene interaction networks (tumor and normal) are constructed integrating
protein-protein interaction(PPI) information, gene expression data and pathway databases. Then, they are used to
identify significant pathways through testing the difference of topological structures of expanded pathways in the
two weighted networks. The proposed method is employed to analyze two breast cancer data. As a result, the top 15
pathways identified using the proposed method are supported by biological knowledge from the published
literatures and other methods. In addition, the proposed method is also compared with other methods, such as GSEA
and SPIA, and estimated using the classification performance of the top 15 expanded pathways.

Conclusions: A novel network-based pathway-expanding approach is proposed to avoid the limitations of existing
pathway analysis approaches. Experimental results indicate that the proposed method can accurately and reliably
identify significant pathways which are related to the corresponding disease.
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Background
Complex diseases are likely to be associated with the
effects of multiple genes, proteins and biological pathways
[1]. Pathway analysis methods that combine multiple
types of high-throughput data, such as genomics and pro-
teomics, have become the first choice to gain insights into
the pathogenesis of complex diseases. A biological path-
way that reduces data involving thousands of altered genes
and proteins into a smaller and more interpretable set of
altered processes and combines multiple types of high-
throughput data plays an important role in understanding
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the mechanisms of complex diseases, improving
clinical treatment, and discovering drug targets and
biomarkers [2].
The most commonly employed traditional pathway

analysis methods use classical pathway databases (i.e.,
KEGG [3], MSigDB [4], Reactome [5], BioCyc [6], Meta-
Cyc [7], RegulonDB [8], PantherDB [9] and Gene Ontol-
ogy [10]) to analyse gene expression profile data. These
analyses use statistical methods to identify significant
pathways in a particular biological process, such as GSEA
[11], PAGE [12], GAGE [13] and MeanAbs [14]. A limita-
tion of this class of algorithms is their ignorance of interac-
tions between genes and proteins because neither network
topology nor dynamics is taken into account [15]. These
limitations are addressed by network-based pathway anal-
yses. Accordingly, several pathway analysis models that

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1333-x&domain=pdf
mailto: jieli@hit.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):536 Page 232 of 303

reflect the laws of life activities and employ network topol-
ogy information have been proposed [16], such as SPIA
[17], PARADIGM [18], PathOlogist [19], Active Mod-
ules [20], AMBIENT [21], GIGA [22] and GANPA [23].
Although the above methods utilize network topology
information, they only consider the topological structure
of the pathway itself and do not take into account the
information of pathway external genes in biological net-
works; thus, they do not fully mine pathway information.
For example, only the pathway internal topology is uti-
lized by the SPIA method, whereas the PathOlogist model
only computes the probability of an interaction of path-
way internal genes being active when it is consistent with
the known regulatory logic of the pathway. Hence, how to
take the interactions between internal and external genes
of the pathway and between pathways into account in the
pathway analysis method is the main problem addressed
in this paper.
To that end, we proposed a novel network-based path-

way analysis method. First, we integrated protein-protein
interaction (PPI) information, gene expression profile data
and pathway databases into the pathway analysis and con-
structed two whole-genome level gene-gene interaction
networks. Then, we expanded pathways based on the k-
walks algorithm [24, 25] to two small networks in two
weighted networks (tumor and normal). Finally, we scored
the pathways corresponding to the gene expression profile
data based on the correlations of these two small networks
to identify significant pathways (see Fig. 1).

Methods
Construction of a weighted gene-gene interaction network
PPI network provides a valuable framework to eluci-
date the functional organization of the proteome. How-
ever, existing PPI networks cannot accurately describe
the interactions between proteins in specific conditions
and have different degrees of false positive and false
negative results because most large-scale PPI networks
are obtained in different experimental conditions, pre-
dicted/extracted using different algorithms [26, 27]. Addi-
tionally, the interaction or the intensity between proteins
varies in different cells or tissues.
The gene co-expression network (GCN) is an undi-

rected graph where each node corresponds to a gene and a
pair of nodes is connected with an edge if there is a signifi-
cant co-expression relationship between them [28]. Using
gene expression profiles obtained from a number of genes
for several samples or experimental conditions, a gene
co-expression network can be constructed by looking for
pairs of genes that show a similar expression pattern
across samples. In this study, the weight of each pair of
genes is calculated by the Pearson’s correlation coefficient.
Pearson’s correlation coefficient was selected as the co-
expression measurement because it was the most popular

co-expression measurement used in the construction of
gene co-expression networks. The absolute values corre-
spond to an interaction mechanism where the intensity
of one gene is related to its co-expressed gene. How-
ever, a gene co-expression network does not guarantee the
existence of a real interaction between the correspond-
ing proteins; instead, it only suggests that there may be an
interaction between the proteins.
To accurately describe the change in gene interactions

for several samples or experimental conditions, here we
constructed twoweighted gene-gene interaction networks
(tumor and normal) with PPI and GCN (see Fig. 2).

Pathway-based extension of the sub-network
The gene-gene interaction of pathway is different in dif-
ferent tissues or samples. These differences may be caused
by changes in the interactions between internal genes of
the pathway or between pathway and neighbor genes. To
assess the significance of the pathway in different pheno-
typic data, we expanded the pathway based on the k-walk
algorithm [25] by considering all of the above factors in
two weighted gene-gene interaction networks separately.
The pathway-based extension of the sub-network was
constructed as follows:
Let G = (V ,E) comprise a set V of genes and a set E

of edges denote the weighted gene-gene interaction net-
work with E ⊆ V × V . Let n =| V |reflect the number of
genes. Symmetric matrix A represents the weighted n× n
adjacency matrix of G, where aijdenotes the weight of the
edge connecting gene i to gene j. Let di(i ∈ 1 · · · n) repre-
sent the weighted degree of each gene node i where di =∑n

j=1 aij. Then, aij is calculated by Pearson’s correlation
coefficient as:

aij =
⎧
⎨

⎩

|cor(xi, xj)|β xi, xj is expression
data of gene Vi,Vj

0 otherwise
(1)

where β = 1.
Given a gene set S (|S| ≥ 2) of a pathway belonging to

a subset of G, we formally define an edge relevance func-
tion ER:E → R

+ that maps any edge to its relevance. The
extended process of a gene set of a pathway simulates ran-
dom walks on a graph by the Markov Chain model. The
possibility of transiting from gene i to gene j is calculated
as:

Pij = aij
di

(2)

Here, a gene set S is a set of absorbing states of the
Markov chain. If the random walk starts from gene x, the
modified transition will be:

xPij =
⎧
⎨

⎩

1 i ∈ S\{x} and i = j
0 i ∈ S\{x} and i �= j
Pij otherwise

(3)
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Fig. 1Workflow of the proposed method

Then, the transition matrix is described as follow:

xP =
( xQ xR

0 I

)

(4)

where xQ is a matrix that denotes transient states, xR is a
matrix that denotes the transition probability from tran-
sient states to absorbing states, and I is the identity matrix.
After k steps, the transition matrix becomes (xQ)k .
Given that the walk started in state x, the joint probabil-

ity of visiting the edge E(i, j) between step k and k + 1 is
calculated as follow:

P
[
Xk = i,Xk+1 = j, L|X0 = x

] =
{
f (i, j, k, x, r, L) j is a transient state[
(xQ)L−1] xi[ (xR)] ij j is an absorbing state

(5)

where L is a total walk length, f ( i, j, k, x, r, L) = ∑

r∈S\{x}
[ (xQ)k] xi[ (xQ)] ij[ (xQ)L−k−2(xR)] jr , [ (xQ)k] xi is the pro-
bability of transiting from x to i in k steps.
The probability of a walk of length L starting in x is

calculated as follow:

P[ L|X0 = x]=
∑

r∈S\{x}
[ (xQ)L−1(xR)] xr (6)

The e(x, i, j) is defined as the number of times a ran-
dom walk starts in x using the transition from i to j. Given
that the walk length is L, the conditional expectations of
e(x, i, j) is given by:

E[ e(x, i, j)|L]=
L−1∑

k=0

P[Xk = i,Xk+1 = j, L|X0 = x]
P[ L|X0 = x]

(7)

Let Lmax denote a maximal walk length. Then:

E[ e(x, j, i)|L ≤ Lmax]=
Lmax∑

L=1
E[ e(x, i, j)|L] (8)

Finally, the edge relevance ER is given by:

ER(i, j) =

∑

r∈S
lx|E

[
e(x, i, j)|L ≤ Lmax

] − E
[
e(x, j, i)|L ≤ Lmax

] | ∀(i, j) ∈ E

(9)

where the vector lx represents an initial probability distri-
bution. Here, the maximal relevance score that can lead to
a connected subgraph is chose as the threshold θ . Finally,
a subnetwork is obtained by keeping only edges with rele-
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The PPI network 

The co-expression weighted network 

The weighted gene-gene interaction network

Fig. 2 Construction of the weighted gene-gene interaction network (the edge width reflects weight size in the weighted gene-gene interaction
network). The PPI network comes from I2D, the co-expression weighted network is from gene expression profiling, and the weight of each pair of
genes is calculated by Pearson’s correlation coefficient. Finally, the PPI network and the co-expression weighted network are merged into the
weighted gene-gene interaction network. We obtain two weighted gene-gene interaction networks under two phenotype datasets (tumor and
normal)

vance scores ER(i, j) above a threshold value θ (see Fig. 3).
In the paper, we set Lmax to 50 by default.

Identification of significant pathways
For a given pathway i, the pathway was expanded in two
weighted gene-gene interaction networks (Tumor_Net
and Normal_Net )for two phenotypic datasets sepa-
rately. The union genes of two expanded pathway play
a role in performing a similar function in normal or
tumor tissues.Moreover, genes in expanded pathway from
tumor and normal tissues are almost different. The union
genes construct sub-networks in two weighted networks.
These sub-networks weights’ differences can describe
the change of pathways between different phenotypes.
Accordingly, we calculate the difference between the two
pathway-based sub-networks reflects the change of the
given pathway for the two phenotypic datasets through
the union of the two sub-networks.
Let Union_Pathway[ i] denote the union of two sub-

networks (T_Ex_Pathway[ i] and N_Ex_Pathway[ i]) that
are the expansion of pathway i in two weighted gene-
gene interaction networks (Tumor_Net andNormal_Net).
Then, we mapped Union_Pathway[ i] into the two
weighted gene-gene interaction networks (T_subnet[ i]
and N_subnet[ i]) and obtained two edge weight vectors

T_w[ i] and N_w[ i]. Pearson’s correlation coefficient was
calculated as:

Corri(T_w[ i] ,N_w[ i] ) =
∑n

k=1(T_w[ i]k −T_w[ i])(N_w[ i]k −N_w[ i])
√∑n

k=1(T_w[ i]k −T_w[ i])2
∑n

k=1(N_w[ i]k −N_w[ i])2
(10)

where n is the dimension of the vector and T_w[ i] =
1
n

∑n
k=1 T_w[ i] k , N_w[ i] = 1

n
∑n

k=1N_w[ i] k . Finally,
we calculated Score[ i], which depicts the difference in
pathway i for two phenotypic datasets as follow:

Score[ i]= 1 − |Corri(T_w[ i] ,N_w[ i] )| (11)

Here, Score[ i] is a measure depicting the relevance
degree between pathway i and the corresponding disease
(for the pseudo-code see Algorithm 1).

Results and discussion
Data
The breast invasive carcinoma (BRCA) dataset was
downloaded from the TCGA (The Cancer Genome
Atlas) website (http://cancergenome.nih.gov/). The BRCA
dataset consists of 590 samples obtained from com-
paring 529 breast cancer samples with 61 normal
samples using the Agilent platform. The second dataset

http://cancergenome.nih.gov/
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Fig. 3 An example of a pathway-based extension. Blue nodes denote a gene set of a pathway and red nodes denote the expanded genes that are
most associated with the corresponding pathway

was available via the Gene Expression Omnibus (ID=
GSE25066). This dataset compared 99 pathologic com-
plete response (PCR) samples and 389 residual dis-
ease (RD) samples [29] (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE25066). PPI network (version
2.9) was obtained from the Interologous Interaction
Database (I2D) website [26] (http://ophid.utoronto.ca/
ophidv2.204/downloads.jsp). PPI was mapped into the
gene-gene interaction (GGI) data through the UniProt
website (www.uniprot.org/). Finally, 234,524 unique gene
pairs were selected for BRCA, and 204,772 unique gene
pairs were selected for GSE25066 by data pretreatment.
The KEGG pathways were downloaded from the Con-
sensusPathDB website (http://consensuspathdb.org/). We
selected 280 pathways related to humans by screening;
only genes of pathways belonging to the BRCA gene set
were used in the downstream analysis. The breast cancer
gene set was downloaded fromwebsite(http://mlg.hit.edu.
cn/SIDD/).
To identify the significance of the given pathway, first,

we dealt with the PPI data. The PPI network was mapped
into the gene-gene interaction (GGI) network in which the
weight of each pair of genes was calculated using high-
throughput gene expression profiling data. Finally, we
obtained two weighted gene-gene interaction networks
for the two phenotypic datasets. The weighted gene-gene
interaction network has 15,129 vertices and 234,524 edges
for BRCA.
Based on the above algorithm, we expanded a gene set

of the given pathway based on the k-walks algorithm into

two sub-networks in two weighted networks (tumor and
normal). Then, we compared the number of the genes
in the original pathway and the expanded pathway (see
Fig. 4). Finally, the union of the two sub-networks served
as the ultimate expansion of the given pathway.
Next, we ran the proposed approach using the BRCA

dataset.
To provide a more comprehensive understanding of

the proposed method, we discuss the method from the
following aspects separately.

The pathway score
Based on the background mentioned above, each pathway
score depicts the degree of relevance between the given
pathway and the corresponding disease. All scores were
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Fig. 4 The number of the genes in the original pathway and the
expanded pathway. Through the diagram, we found that every
pathway was validly expanded except pathway hsa00472 because it
only contained one gene from the original pathway
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Algorithm 1: Compute Score
Input : Pathways,Tumor_Net,Normal_Net
Output: Score
for i = 1 to The total number of pathways do

1.Pathway[i] maps into Tumor_Net;
2.T_Ex_Pathway[i]= Expand Pathway[i] based on
Limited K-walks algorithm in Tumor_Net;
3.Pathway[i] maps into Normal_Net;
4.N_Ex_Pathway[i]=Expand Pathway[i] based on
Limited K-walks algorithm in Normal_Net;
5.Union_Pathway[i]=T_Ex_Pathway[i] ∪
N_Ex_Pathway[i] ;
6.T_subnet[i]=Union_Pathway[i] maps into
Tumor_Net;
7.T_w[i]= The weight of the T_subnet[i] in
Tumor_Net;
8.N_subnet[i]= Union_Pathway[i] maps into
Normal_Net;
9.N_w[i]= The weight of the N_subnet[i] in
Normal_Net;
10.Corri= The correlation coefficient of T_w[i]
and N_w[i];
11.Score[i]=1 − |Corri|;

end

calculated using Algorithm 1 (Additional file 1: Table S1).
The top 15 pathways were tabulated based on their scores
(see Table 1).
Top pathways identified by the proposedmethod should

be significantly associated with the breast cancer risk. To

test the idea, we compared the intersections of the breast
cancer gene set and pathway gene sets before and after
expansion (see Fig. 5). The breast cancer gene set comes
from SIDD which integrates 22 disease gene knowledge
sources. We found that more genes associated with breast
cancer were expanded to the original pathway gene set
through pathway expansion. This result demonstrates that
the proposed method can expand genes associated with
the corresponding disease.

Analysis of the top 15 BRCA pathways
In order to prove that the pathways identified by the pro-
posed method are associated with the breast cancer risk,
we need to look for the supports of biological knowledge
and other methods. Table 1 shows that top 15 pathways
identified from BRCA by the proposed method are signif-
icantly associated with the breast cancer risk through ref-
erence. Here we give the supports of biological knowledge
and other methods for the top 15 BRCA pathways.
The number 1 ranked significant pathway identified

by our method was vitamin B6 metabolism (hsa00750).
Growing evidence suggests that the lack of several trace
elements, such as vitamin B6 and folate, can induce DNA
damage (e.g., single or double-stranded breaks or fusion),
eventually leading to tumors, cancers and a variety of
degenerative diseases [30]. There is a significant nega-
tive correlation between the plasma B6 level and different
types of cancer. Vitamin B6 can reduce the homocys-
teine and pyridoxal phosphate levels, which have potential
biological effects on tumors. Vitamin B6 deficiency leads
to lower serine hydroxymethyltransferase activity, lower
generation of 5,10-methylenetetrahydrofolate and the

Table 1 Top 15 pathways identified from BRCA

Rank Entry Name Score SPIA GSEA Proof

1 hsa00750 Vitamin B6 metabolism 0.997735 No No [30–33]

2 hsa00072 Synthesis and degradation of ketone bodies 0.940425 No Yes [34–37]

3 hsa04122 Sulphur relay system 0.855753 No No [38, 39]

4 hsa00400 Phenylalanine,tyrosine and tryptophan biosynthesis 0.850563 No No [40]

5 hsa00533 Glycosaminoglycan biosynthesis 0.836469 No No [41–43]

6 hsa04964 Proximal tubule bicarbonate reclamation 0.803311 No Yes [46]

7 hsa01040 Biosynthesis of unsaturated fatty acids 0.799334 No No [47]

8 hsa00630 Glyoxylate and dicarboxylate metabolism 0.785954 No Yes [48]

9 hsa05217 Basal cell carcinoma 0.779876 No No [49, 50]

10 hsa00910 Nitrogen metabolism 0.77962 No Yes [51, 52]

11 hsa05218 Melanoma 0.758975 Yes Yes [53]

12 hsa04972 Pancreatic secretion 0.754263 No Yes [54, 55]

13 hsa00670 One carbon pool by folate 0.7452 No No [56]

14 hsa00900 Terpenoid backbone biosynthesis 0.736641 No No [57, 58]

15 hsa00920 Sulphur metabolism 0.733627 No No [59]

Note: Yes if the pathway was also ranked in the SPIA or GSEA top 15; No if otherwise
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Fig. 5 Comparison between the gene number of intersections of the
breast gene set and pathway gene sets before and after expansion

generation of a dUMP instead of a dTMP mismatch to
DNA, which is more likely to lead to a chromosome chain
break and /or impair DNA excision repair. The reduced
generation of 5,10-methylenetetrahydrofolate may lead to
DNA hypomethylation. Abnormal methylation of DNA
has been found in different tumor types [31, 32]. Vitamin
B6 deficiency can increase the sensitivity of the steroid
hormone,which may lead to breast cancer or colon cancer
[33]. These findings demonstrate that the proper intake of
vitamin B6 can reduce the risk of breast cancer; therefore,
this pathway is significantly associated with the breast
cancer risk.
The number 2 ranked significant pathway identified by

the proposed method was Synthesis and degradation of
ketone bodies (hsa00072). Ketone bodies (i.e., 3-hydroxy-
butyrate and/or butanediol) are sufficient to drive mito-
chondrial biogenesis in human breast cancer cells [34, 35].
Carcinoma-associated fibroblasts (CAF) produce “mito-
chondrial fuels”, including lactic acid, ketones, fatty acids,
and glutamine, that provide a "eutrophication" microen-
vironment for tumor cells and promote tumor cell pro-
liferation when metabolized; these fuels are the major
cellular components of the breast cancer stroma [36]. It
was reported that CAF reduced the apoptosis of human
breast cancer MCF7 cells induced by tamoxifen and ful-
vestrant by 4.4-fold and 2.5-fold, respectively [37]. Lactic
acid and ketones are sufficient to induce tamoxifen resis-
tance in breast cancer MCF7 cells. Metformin and arsenic
trioxide can overcome CAF-induced drug resistance in
MCF7 cells. These findings indicate that this pathway is
also significantly associated with the breast cancer risk.
The proposed method ranked the Sulphur relay system

(hsa04122) in 3rd place. Sulphur enables the transport
of oxygen across cell membranes. Oxygen is necessary
for healthy cellular regeneration in mammals. Therefore,
sulphur deficiencies may promote sickness and disease.
Sulphur is commonly used as an herbal medicine to treat
inflammation and cancer and organic sulphur has been

studied in several types of cancers and found to have
remarkable anti-cancer benefits. Methylsulfonylmethane
(MSM) is an organic sulphur-containing natural com-
pound without any toxicity. It was found that MSM sub-
stantially decreased the viability of human breast cancer
cells in a dose-dependent manner and recommended the
use of MSM as a trial drug for the treatment of all types
of breast cancers [38]. Leimkühler et al. pointed out that
sulphur not only prevented but also helped reverse can-
cer [39]. Hence, the sulphur relay system is significantly
associated with the breast cancer risk to some extent.
Phenylalanine, tyrosine and tryptophan biosynthesis

(hsa00400) was ranked 4th in the list of proposed meth-
ods. ENO1 in phenylalanine tyrosine and tryptophan
biosynthesis was significantly overexpressed in HER-
2/neu positive breast tumors [40]. This finding indicates
that this pathway is associated with breast cancer to some
extent; however, the clear relationship between this path-
way and breast cancer re-quires further verification.
The 5th ranked pathway was Glycosaminoglycan

biosynthesis (hsa00533). Abnormal glycosaminoglycan
(GAG) concentrations have been reported for various
types of tumors, suggesting that they may play a role
in neoplasia. Recently, cell biology studies revealed that
glycosaminoglycans were among the key macromolecules
that affected cell properties and functions by acting
directly on cell receptors or via interactions with growth
factors. The interactions of GAGs with growth fac-
tors, cytokines and growth factor receptors have been
implicated in cancer growth and progression. GAGs are
involved in signalling cascades that regulate the angiogen-
esis, invasion and metastasis of malignant cells. Investi-
gations of the fine structures and specific biological roles
of GAGs has led to novel therapeutic approaches [41–43].
The above references denote that glycosaminoglycan
biosynthesis and breast cancer have a certain degree of
correlation.
The top 6–15 pathways are also associated with human

breast cancer (see Table 1). Based on the Table 1, one can
argue that the proposed method is very efficient in iden-
tifying significant pathways of the corresponding complex
disease.

Classification performance using the original genes and
expanded genes of the pathway
To estimate the classification performance of the top 15
expanded pathways, we firstly prepared our data set con-
sisted of 60 normal and 60 tumor samples randomly
derived from the BRCA dataset. The original genes and
expanded genes of the pathway were selected classifica-
tion features and SVM is employed to classify the selected
samples. Next, a 10-fold cross validation was used to train
and test SVM. The above experiment was repeated 100
times and the average accuracy of SVM is shown in Fig. 6.
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In results, the lowest accuracy was 0.9333 and the high-
est accuracy was 0.9917. The experimental results sug-
gested that the union of the original genes and expanded
genes of the pathway had a good classification ability
and that the top 15 pathways were significantly different
between the two phenotypic data sets.

Analysis using alternative methods
To assess the validity of the proposed approach, we anal-
ysed the same data using GSEA and SPIA. The GSEA
approach searches for gene sets that are enriched at the
top or bottom of the ranked list of all genes. This method
is a typical representative of the gene set enrichment
analysis methods. The SPIA method scores a gene prod-
uct as highly impactful if it points to other impactful
gene products in the network diagram. This method is
a representative of the network-based pathway analysis
approaches. Therefore, we compared our method with
GSEA and SPIA. It was interesting to examine pathways
ranked at the top by our method but not by GSEA and
SPIA, which reflected the validity of our method.
In GSEA, the analysis performed 1000 permutations

with an FDR cutoff of 25%. Then, 115 pathways were iden-
tified (Additional file 2: Table S2) of which 6 were found
among the top 15 pathways identified using the proposed
method (see Table 1).
In SPIA, a significant threshold of 5% was used on

the FDR corrected P-values to infer pathway signifi-
cance. Then, 3 pathways were identified (Additional file 3:
Table S3) of which one was identified by the proposed
method (see Table 1). The SPIA did not identify any of the
top 5 pathways identified using the proposed method.

Validation of the alternative data set
To test the effectiveness of the proposed method, we
ran the proposed approach on GSE25066. The data were
obtained from response and survival following Taxane-
Anthracycline chemotherapy for newly diagnosed inva-
sive breast cancer. Anthracyclines and taxanes are the

two most active classes of cytotoxic agents for early and
advanced stage breast cancer and thus are commonly
used as a component of either adjuvant or neoadjuvant
therapy and/or in patients with metastatic breast can-
cer (MBC) [44]. Finally, we also obtained two weighted
gene-gene interaction networks for the two phenotypic
datasets. The weighted gene-gene interaction network has
10,856 vertices and 204,772 edges for GSE25066. Our
intention was to identify significant pathways for breast
cancer patients before and after Taxane-Anthracycline
use and to evaluate the pharmacological mechanism
of Taxane-Anthracycline. Among the top 15 pathways
identified using the proposed method, which were sig-
nificant pathways for Taxane-Anthracycline except for
collecting duct acid secretion pathway (hsa04966), the
GSEA and SPIA did not identify any. The relation-
ship between collecting duct acid secretion pathway and
Taxane-Anthracycline and/or breast cancer requires fur-
ther verification. The results (Additional file 4: Table S4)
showed that our approach discovered significant pathways
for Taxane-Anthracycline. The top 15 pathways are shown
in Table 2.
The significantly impacted pathways identified by the

proposed method in the corresponding conditions were
mostly consistent with the known biological processes.
Accordingly, the novel proposed method is of method-
ological and biological significance for future research.

Conclusions
Pathway analysis not only reduces data involving thou-
sands of altered genes and proteins to a smaller and more
interpretable set of altered processes but can also com-
bine multiple types of high-throughput data. The analysis
results play an important role in elucidating the mecha-
nisms of complex diseases, improving clinical treatment,
and discovering drug targets and biomarkers. Therefore,
pathway-based analysis of complex diseases has become
a research hotspot. To date, these methods have entered
the third stage [45]: 1) Pathway-based gene set enrich-
ment analysis; 2) Pathway-based functional class clus-
tering and scoring approaches; and 3) Network-based
pathway approaches.
Unlike existing pathway analysis approaches that do

not take into account the interaction between internal
and external genes of the pathway and between path-
ways, we propose a novel approach that addresses the
above-mentioned limitations by expanding a pathway
based on the k-walk algorithm to two small networks
in two weighted networks (tumor and normal). Finally,
our approach effectively identified significant pathways
that corresponded to a complex disease through a series
of verification steps. It is undeniable that the pathways
identified by GSEA and SPIA but not by our method
are mostly significantly associated with the breast cancer
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Table 2 Top 15 pathways identified from GSE25066

Rank Entry Name Score SPIA GSEA Proof

1 hsa05033 Nicotine addiction 0.430656 No No [60]

2 hsa05217 Basal cell carcinoma 0.402534 No No [49, 50]

3 hsa04740 Olfactory transduction 0.398952 No No [61, 62]

4 hsa04742 Taste transduction 0.393069 No No [63, 64]

5 hsa04340 Hedgehog signaling pathway 0.376035 No No [65, 66]

6 hsa04727 GABAergic synapse 0.362031 No No [67]

7 hsa04713 Circadian entrainment 0.356687 No No [68, 69]

8 hsa00053 Ascorbate and aldarate metabolism 0.35363 No No [70]

9 hsa04723 Retrograde endocannabinoid signaling 0.343314 No No [71–73]

10 hsa04978 Mineral absorption 0.342461 No No [74]

11 hsa04961 Endocrine and other factor-regulated calcium reabsorption 0.341614 No No [75–77]

12 hsa00140 Steroid hormone biosynthesis 0.337664 No No [78, 79]

13 hsa04966 Collecting duct acid secretion 0.336179 No No Not Found

14 hsa04330 Notch signaling pathway 0.333964 No No [80, 81]

15 hsa04614 Renin-angiotensin system 0.332994 No No [82, 83]

Note: Yes if the pathway was also ranked in SPIA or GSEA top 15; No if otherwise

risk. Based on the above analysis, our method combined
with GSEA may produce better results. Hence, we will
combine our method with GSEA in future studies. This
study provides a new research direction for the pathway-
based analysis of complex diseases. We will employ more
datasets to assess the validity of our approach in future
research.
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