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Abstract

Background: Gene expression data produced on high-throughput platforms such as microarrays is susceptible to
much variation that obscures useful biological information. Therefore, preprocessing data with a suitable
normalization method is necessary, and has a direct and massive impact on the quality of downstream data analysis.
However, it is known that standard normalization methods perform poorly, specially in the presence of substantial
batch effects and heterogeneity in gene expression data.

Results: We present Gene Fuzzy Score (GFS), a simple preprocessing technique, that is able to largely reduce
obscuring variation while retaining useful biological information. Using four sets of publicly available datasets
containing batch effects and heterogeneity, we compare GFS with three standard normalization techniques as well as
raw gene expression. Each method is evaluated with respect to the quality, consistency, and biological coherence of
its processed output. It is found that GFS outperforms other transformation techniques in all three aspects.

Conclusion: Our approach to preprocessing is a stronger alternative to popular normalization techniques. We
demonstrate that it achieves the essential goal of preprocessing – it is effective at making expression values from
multiple samples comparable, even when they are from separate platforms, in independent batches, or belong to a
heterogeneous phenotype.
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Introduction
Gene expression profiling experiments and analysis are
often designed with the objective of verifying one or more
hypotheses that can help in building effective diagnos-
tic or prognostic models in clinical settings. Typically,
expression data are collected from groups manifesting dif-
ferences in certain properties of interest, such as disease
types or states, developmental stages, and response to spe-
cific treatments or interventions over time. The collected
data are then mined for appropriate variation patterns rel-
evant to the hypotheses under consideration. The under-
lying assumption in such studies is that the input gene
expression values from different samples accurately reflect
the amounts of RNA produced by the corresponding
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genes and, thus, are properly comparable. However, in
practice, unless an effective normalization technique is
applied to preprocess the expression data, a number of
factors may lead to the violation of this assumption [1, 2].
Firstly, the entire technical process of isolation and

quantification of RNA leading up to the final measure-
ments is unlikely to be completely error-free, as inac-
curacies may insinuate any of the steps in the long
procedure. Secondly, with change in time, place, and other
variables in experimental settings, systematic biases of
non-biological origins invariably enter during measure-
ment experiments in the form of batch effects. When such
biases are correlated with the biological properties under
investigation, they can severely confound interesting vari-
ation [3]. Thirdly, differences in experimental settings may
also introduce changes in local environments of cells,
thus inducing fluctuations in gene expression that further
contribute to noise in the measurement data [4].
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All these factors together make it improbable for mul-
tiple samples to naturally have comparable expression
values. Therefore, we rely heavily on the capabilities of
a preprocessing method to recover meaningful biologi-
cal information, and remove or account for noise in the
form of obscuring variation. Yet, it was reported [2] that
popular normalization techniques are not very success-
ful in discriminating between real and obscuring variation
to produce quality input for downstream gene expression
analysis. In fact, it was noted by Luo et al. [2] that pre-
processing using commonmethods led to reduction in the
quality of subsequent predictive models in upto 25% of the
cases.
To mitigate the performance issues commonly pre-

sented by preprocessing techniques, we propose Gene
Fuzzy Score (GFS), a transformation method that uses
fuzzy scores derived from rank values of gene expression
within individual samples. We chose four different sets of
gene expression data containing substantial batch effects
and heterogeneity for the analysis. On these datasets,
we compared the performance of GFS and other pop-
ular preprocessing methods with respect to the quality,
consistency, and biological coherence of their processed
output.

Background
Preprocessing techniques typically attempt to make
expression values from multiple samples comparable in
two different ways:

1. by scaling expression values such that each sample
has an equal value for a statistic such as mean or
median; or

2. by adjusting expression values such that each sample
has the same expression distribution across genes.

The first approach includes methods such as mean and
median scaling, and is popular for Affymetrix genechips.
For example, in the mean scaling method, the mean
gene expression value of each microarray in the sample
is first calculated, and a grand mean is then computed
as the mean of all means. Finally, expression value of
each microarray in the sample is scaled such that the
mean expression of each microarray is equal to the grand
mean. Median scaling also follows the same procedure,
with the mean statistic being replaced by median. While
these methods are simple to implement, they assume
that expression values of all samples share a linear rela-
tionship. They – especially mean scaling – also suffer
from a few other drawbacks such as sensitivity to outlier
distortions [5].
The second approach includes more sophisticated

methods such as z-score and quantile normalization. In
z-score normalization, the expression values of genes
in each microarray are transformed to fit the standard

normal distribution with a mean of zero and 1 unit stan-
dard deviation. On the other hand, quantile normalization
uses the rank values of gene expression within individual
microarrays to make the distribution of all microarrays
identical in statistical properties. Since ranks are known
to be relatively more robust to batch effects than abso-
lute expression values [1], this is expected to lead to better
performance on datasets with batch effects. In the quan-
tile normalization procedure, the expression values of
each microarray are first sorted in ascending order, and
the mean expression corresponding to each rank across
microarrays is stored separately. Following this, the orig-
inal expression values in each microarray are assigned
ranks based on their relative quantitative order. Finally,
a transformed matrix is obtained by replacing each gene
rank value by the mean expression value corresponding to
that rank as stored earlier.
The z-score and quantile normalization methods are

relatively more robust to outliers, provided that the
number of microarrays in a dataset is sufficiently large.
However, the actual distributions of underlying data are
assumed to be identical in all samples, and specifically
assumed to be Gaussian in case of z-score normaliza-
tion. This assumption is especially likely to break down
in datasets with disease state samples where the regular
functions of the genes and their synchronization with each
other may be substantially disrupted. In such cases, the
expression patterns within a disease sample may not be
identical to samples of the normal phenotype. It also may
not be identical to other disease samples if the disease is
heterogeneous and is able to manifest itself through the
exploitation and/or breaking of multiple mechanisms.
It is also commonly observed that low-expression genes

and proteins exhibit a much greater coefficient of vari-
ance than highly expressed ones in their expression lev-
els (see figure 2E in the work by Goh et al. [6]). Thus,
the expression rank of low-expression genes is highly
unstable. This may adversely affect the performance of
a ranking-based normalization method such as quantile
normalization.
Therefore, we are inspired to present GFS as a pre-

processing technique for gene expression. Like quantile
normalization, our method also makes use of gene expres-
sion ranks instead of absolute values, thus earning more
robustness to batch effects. However, unlike the above
techniques, we do not make any assumptions on the simi
larity of distribution or the equality of any mean-, median-
like statistic across samples. Moreover, in our method,
we fuzzify the expression ranks such that irrelevant fluc-
tuations introduced by minor differences in ranks are
alleviated, and noise from low-ranked genes is discarded.
The idea of fuzzification has also been used earlier in

a few gene expression profile analysis methods [7, 8] and
also proteomic profile analysis methods [6, 9]. However,
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these works merely use it as a component of their respec-
tive methods, and do not study its role and effectiveness
as a normalization procedure.

Methods
Datasets
We collected datasets (see Table 1) from three different
disease types – Duschenne Muscular Dystrophy (DMD),
Leukemia, and Acute Lymphoblastic Leukemia (ALL).
A single gene expression matrix was produced by merg-

ing the two DMD datasets from Haslett et al. [10] and
Pescatori et al. [11]. Similarly, data were merged from
Armstrong et al. [12] and Golub et al. (Leukemia) [13],
as also from Yeoh et al. [14] and Ross et al. (ALL
subtypes) [15].
Note that each of the first three pairs of the cho-

sen datasets (as in Table 1) are independent and were
produced on different microarray platforms. Thus, the
merged gene expression matrices obtained from them
contain batch effects by default. We consider only genes
that are common in the two samples of the dataset pair,
and run all the four preprocessing techniques – GFS,
mean scaling, z-score normalization, and quantile nor-
malization – on these input matrices, and evaluate their
effectiveness in dealing with batch effects. To observe the
effect of preprocessing on highly heterogenous data, we
also use another more heterogeneous dataset from Yeoh
et al. [14] that has 9 disease subtypes (ALL) and nor-
mal patient samples to compare the selected methods.
Thus, in total, four sets of input gene expression matrices
belonging to three different disease types are used in our
analysis.

Approach
In GFS, we transform a raw gene expression matrix by
making use of the rank values of genes within each
microarray, rather than by using their absolute expression
values. Further, we use two quantile thresholds – θ1 and
θ2 – to assign a fuzzified score to each gene in each

patient. Ranks below θ2 in a sample are all reduced to
a score of zero, those above θ1 are given a score of 1,
and intermediate ranks are interpolated to obtain a score
between 0 and 1. In particular, let r(gi, pj) be the rank of
gene expression of a gene gi in patient pj, and q(pj, θ) be
the rank corresponding to the upper θth quantile of gene
expression in patient pj. Then, the gene fuzzy score s(gi, pj)
assigned to a gene gi in patient pj is given by the following
function:

s(gi, pj) =

⎧
⎪⎨

⎪⎩

1, if q(pj, θ1) < r(gi, pj)
r(gi,pj)−q(pj ,θ2)
q(pj ,θ1)−q(pj ,θ2) ,if q(pj, θ1) > r(gi, pj) ≥ q(pj, θ2)
0, otherwise

(1)

Apart from the use of rank values in computing trans-
formed scores, GFS also benefits from the fact that it
allows for selection of quantile thresholds such that noise
from low-ranked genes is safely removed by assigning a
score of 0, while genes with very high expression are all
treated equally with a score of 1. For the purpose of uni-
formity in comparison, we fix θ1 to 5% and θ2 to 15% for
all GFS runs mentioned in this paper. However, using a θ1
value between 5 to 10% and θ2 value between 15 to 20%
also leads to similar results.
In evaluating the proposed approach against other nor-

malization techniques discussed earlier, we focus on three
salient questions in this paper:

1. Does the preprocessing technique produce consistent
results across different datasets, provided that they
have the same composition of different phenotypes?

2. What is the quality of the output produced by the
processing technique? How well does the processing
retain useful information while mitigating obscuring
effects?

3. Is the output produced by the technique biologically
coherent?

Table 1 Datasets used for comparing preprocessing methods

Disease type Source Affy GeneChip Dataset composition

DMD Haslett et al. [10] HG-U95Av2 12 DMD, 12 controls

Pescatori et al. [11] HG-U133A 22 DMD, 14 controls

Leukemia Golub et al. [13] HU-6800 47 ALL, 25 AML

Armstrong et al. [12] HG-U95Av2 24 ALL, 24 AML

ALL Yeoh et al. [14] HG-U95Av2 15 BCR-ABL, 27 E2A-PBX1

Ross et al. [15] HG-U133A 15 BCR-ABL, 18 E2A-PBX1

ALL Yeoh et al. [14] HG-U95Av2 6 Normal, 26 TEL-AML1,

22 Hyperdip>50, 15 T-ALL,

10 Pseudodip, 6 BCR-ABL,

7 MLL, 8 Hyperdip47-50

9 E2A-PBX1, 3 Hypodip
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We compared GFS with three standard normalization
methods described in the previous section –mean scaling,
z-score normalization, and quantile normalization. The
description of our design and approach to each experi-
ment is given in the next section.

Results and Discussion
Visualizing data after PCA transformation
Wepreprocess the raw gene expressionmatrices with each
of the four methods – mean scaling, z-score normaliza-
tion, quantile normalization and GFS. For each method,
we select the top 15% genes with maximum variance
in the processed matrix, as these are most likely to be
the genes contributing to interesting variation. We then
reduce the processed matrix to include only these high
variance genes, and apply PCA transformation on the
reduced matrix. A scatter plot of the coordinates corre-
sponding to the first two principal components (PC1 and
PC2) of each sample is visualized.
A good preprocessing method is expected to show

a clear clustering of samples of the same phenotype,
and separation between samples of different phenotypes.
Moreover, the quality of clustering would ideally not be
adversely affected by the presence of samples from multi-
ple batches in the data.
Observations: While in the Leukemia, DMD, and child-

hood ALL datasets, samples from different batches are
clearly separated, GFS (Fig. 5) shows the best phenotype-
wise clustering of samples among all preprocessing tech-
niques. Mean scaling (Fig. 2) does not perform well on
any of the datasets, and in some cases, obscures the sep-
aration seen even in raw gene expression (Fig. 1). This
degredation in peformance is in line with previous find-
ings [2]. Z-score normalization shows good performance
on DMD and Leukemia (Fig. 3) datasets, and quantile
normalization performs well only on the DMD dataset
(Fig. 4).
In case of the more heterogeneous ALL dataset (9

disease subtypes and normal samples), GFS is the only
method to discriminate between samples of the different
ALL subtypes (Figs. 1, 2, 3, 4, 5 (a)).
From the PCA scatterplots for all the three datasets

with batch effects (Leukemia, DMD, and ALL with 2
subtypes), we observed that samples from two batches
are always clearly separated along PC1. This implies
that the first principal component is highly enriched
in batch effects. Therefore, we exclude the first princi-
pal component (PC1), and draw scatterplots correspond-
ing to the second and third principal component (PC2,
PC3). In PC2 vs PC3 scatterplots, there is very less
separation between samples from different batches but
belonging to the same phenotype, as compared to that
in PC1 vs PC2 scatterplots (Figs. 1, 2, 3, 4, 5). This
trend is consistent across all three datasets with batch

effects. Thus, removing PC1 can be an effective technique
to reduce batch effects in gene expression data to a
great extent. However, for the more heterogeneous ALL
dataset where batch effects are absent, removing PC1
results in loss of important variation information, and
subsequently, less clearer separation between different
phenotypes.

Comparing processing quality
Quality of a preprocessing method is determined by its
ability to separate interesting from obscuring variation.
An inferior preprocessing method will lead to an output
in which expression variation across microarrays would
be confounded with irrelevant information. In contrast,
expression variation across microarrays in the output of
an ideal preprocessing method will correspond to inter-
esting biological variation alone.
Experiment: We estimate the quality of preprocess-

ing methods with respect to the capability of their
transformed output to separate samples of different
phenotypes. In particular, we randomly select 15% of
the genes, reduce the processed matrix to include
the selected genes, and apply PCA on the resultant
matrix. The PCA co-ordinates of all samples are then
used to compute a clustering performance metric called
the silhouette score. The silhouette score is calculated
based on the mean intra-cluster distance a and the
mean nearest-cluster distance b for each sample, as
(b − a)/max(a, b) [16]. The score ranges from -1 to 1.
In general, a higher silhouette score indicates a better
clustering.
For the ALL dataset with 9 subtypes, co-ordinates cor-

responding to the first three principal components are
used, while for the other three datasets with batch effects,
co-ordinates corresponding to only the second and third
principal components are used. This is repeated over
1000 iterations, and the distribution of silhouette scores
corresponding to each preprocessing method is used to
infer the quality of clusters formed by its transformed
output.
Observations: For all the four datasets, the distribution

of silhouette scores obtained using randomly chosen 15%
genes is stable at a higher value in case of GFS, in com-
parison to other preprocessing methods (see Fig. 6). This
shows that the assigned scores to each microarray-gene
pair after GFS preprocessing are more relevant to the
interesting variation in gene expression and thus, even
randomly chosen features are better able to capture the
phenotype-based clusters.Moreover, the reference silhou-
ette scores obtained from the top 15% variance genes
in GFS processed matrices are consistently higher than
the 75th percentile score of its null distribution obtained
from random 15% genes, across all datasets (Fig. 6).
For quantile normalization, while the silhouette scores
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Fig. 1 Visualisation with PCA scatter plots – Raw expression. a ALL (9 subtypes): PC1 vs. PC2. b ALL (9 Subtypes): PC2 vs. PC3. c ALL (2 subtypes): PC1
vs. PC2. d ALL (2 Subtypes): PC2 vs. PC3. e Leukemia : PC1 vs. PC2. f Leukemia : PC2 vs. PC3. g DMD: PC1 vs. PC2. h DMD: PC2 vs. PC3

obtained from its top 15% variance genes are also con-
sistently higher than the 75th percentile score of the
corresponding null distribution, these observed silhou-
ette scores are consistently lower than those for GFS.
On the other hand, the silhouette scores derived using
the top 15% variance genes in z-score normalized and
raw expression are lower than the 75th percentile score
of their corresponding null distributions in the DMD
dataset and ALL dataset with 2 subtypes. The silhou-
ette score computed on top 15% variance genes in scaled
expression data is lower than the median score of its null

distribution in all datasets. This shows GFS-processed
expression values are more effective than the other
methods.
The silhouette scores obtained from the PCA trans-

formed co-ordinates of samples using the top 15% high-
variance genes are recorded in Tables 2 and 3. In
all datasets, with and without the first principal com-
ponent (which is often the richest in batch effects),
GFS is seen to have a better score relative to other
processing methods. Also, in the three datasets with
batch effects, removing PC1 improves phenotype-wise
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Fig. 2 Visualisation with PCA scatter plots – Mean-scaled expression. a ALL (9 subtypes): PC1 vs. PC2. b ALL (9 Subtypes): PC2 vs. PC3. c ALL (2
subtypes): PC1 vs. PC2. d ALL (2 Subtypes): PC2 vs. PC3. e Leukemia: PC1 vs. PC2. f Leukemia: PC2 vs. PC3. g DMD: PC vs. PC2. h DMD: PC2 vs. PC3

clustering, while in the heterogeneous ALL dataset with
no batch effects, removing PC1 leads to discarding
important variation and thus a reduction in clustering
performance.

Comparing consistency
It is important that a reliable preprocessing method
produces an output that remains consistent in multi-
ple runs over datasets of the same type. For instance,
if two datasets of the same disease are transformed
by a preprocessing method, and the genes indicated

to have the highest contribution to interesting varia-
tion have very little overlap, it is natural to infer that
the variation is confounded by noise and the genes are
likely to be false positives. In contrast, consistency in
such output affirms that the preprocessing method is
indeed reliable, since similarity in input ensures similar-
ity in output. Thus, a preprocessing technique assign-
ing meaningfully transformed expression values should
indicate a consistent set of high-variance genes, when
applied to different datasets with the same phenotype
distribution.
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Fig. 3 Visualisation with PCA scatter plots – Z-score normalized expression. a ALL (9 subtypes): PC1 vs PC2. b ALL (9 Subtypes): PC2 vs. PC3. c ALL (2
subtypes): PC1 vs PC2. d ALL (2 Subtypes): PC2 vs. PC3. e Leukemia: PC1 vs. PC2. f Leukemia: PC2 vs. PC3. g DMD: PC1 vs. PC2. h DMD: PC2 vs. PC3

Experiment: In order to evaluate the consistency of dif-
ferent preprocessing methods, we split each dataset into
two datasets such that each contains the same number
of samples of each phenotype, independently apply the
preprocessing technique on the resultant split data, and
obtain the two resulting lists of the top 15% high-variance
genes from the splits. Further, we apply PCA to the nor-
malized data, and remove genes that have a coefficient of
zero in all of the first three principal components for the
ALL dataset with 9 disease subtypes. For the other three

batch effects-ridden datasets, we only remove genes that
have a coefficient of zero in the second and third princi-
pal component. This process is repeated 100 times using
different splits of each dataset. We then examine the dis-
tribution of similarity (measured in terms of the jaccard
coefficient) between the two gene lists.
Observations: A consistent preprocessing technique

would be expected to demonstrate a high overlap in high-
variance genes. It is seen that the distribution of jaccard
coefficient when the split datasets are processed using
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Fig. 4 Visualisation with PCA scatter plots – Quantile normalized expression. a ALL (9 subtypes): PC1 vs. PC2. b ALL (9 Subtypes): PC2 vs. PC3. c ALL
(2 subtypes): PC1 vs. PC2. d ALL (2 subtypes): PC2 vs. PC3. e Leukemia: Pc1 vs. PC2. f Leukemia: PC2 vs. PC3. g DMD: PC1 vs. PC2. h DMD: PC2 vs. PC3

GFS, is stable at an equal or higher value in all the datasets
(Fig. 7). The other methods fluctuate in performance and,
in some cases, show worse consistency than raw gene
expression.

Comparing biological coherence
For a phenotype to manifest, the causal genes often
co-ordinate with other genes, and seldom act alone.
Therefore, genes contributing to interesting variation in
data are more likely to be connected to each other in

biological pathways. Thus, we expect that a more bio-
logically coherent preprocessing technique will result in
high-variance genes that induce significantly more and/or
bigger subnetworks on known biological pathways.
Experiment: We assess the biological coherence of the

preprocessing methods by examining the subnetwork size
distribution obtained when high-variance genes are used
to induce subnetworks on pathways. The subnetwork size
distribution for each processing method is obtained as
follows:
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Fig. 5 Visualisation with PCA scatter plots – GFS normalized expression. a ALL (9 subtypes): PC1 vs. PC2. b ALL (9 Subtypes): PC2 vs. PC3. c ALL (2
subtypes): PC1 vs. PC2. d ALL (2 Subtypes): PC2 vs. PC3. e Leukemia: PC1 vs. PC2. f Leukemia: PC2 vs. PC3. g DMD: PC1 vs. PC2. h DMD: PC vs. PC3

1. Preprocess the gene expression matrix using the
chosen technique.

2. Select top 15% genes with maximum variance across
patient samples.

3. Reduce processed expression matrices to only
include the selected genes.

4. Perform a PCA transformation on the reduced
matrix, and list genes with non-zero coefficients in
any of the first three principal components.

5. Using genes in step 4, induce subnetworks on known
pathways from the PathwayAPI database [17] and
store the subnetwork size distribution.

To generate the null model, step 2 is replaced
with randomly selecting 15% of all genes, and steps
1–5 are repeated over 1000 iterations. Finally, for
each subnetwork size, a p-value is calculated as the
proportion of subnetwork frequencies in the null model
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Fig. 6 Null distributions of silhouette scores obtained with raw and processed expression matrices taking 15% random genes as features (the three
dashed lines show 25th quartile, median and 75th quartile, while the red dot indicates the score obtained from top 15% variance genes). a ALL (9
Subtypes). b ALL (2 Subtypes). c DMD. d Leukemia

found to be greater than the frequency from original
distribution.
The same analysis is repeated for the three datasets with

batch effects by modifying step 4 to include only those
genes that have a non-zero coefficient in the second or
third principal component.
Observations: The distribution of subnetwork sizes

induced by the top 15% variance genes are shown in Fig. 8
(using the first three principal components) and Fig. 9
(using PC2 and PC3 only). The figures show the actual
subnetwork count distribution across different subnet-
work sizes, while the inset figures show the corresponding
percentage frequencies. In the Leukemia dataset and ALL
dataset with 2 subtypes, GFS has the highest percentage
frequency of subnetworks of size greater than or equal to

5 and, in most datasets, GFS induces more subnetworks
overall.
From the low p-values in Tables 4, 5, 6, 7, we observe

that the significance of frequencies is high for subnet-
works induced by GFS, regardless of their size. Further,
comparison with other methods shows that the fre-
quency of subnetworks induced by high-variance genes
in GFS-processed datasets is much more significant
than those induced on datasets processed with other
methods and raw gene expression. Hence, we infer that
GFS-transformed output is highly biologically coherent.
Moreover, we observe that on excluding the batch effects-
enriched PC1 from the analysis, the p-values correspond-
ing to larger subnetwork sizes are lower than those of
smaller sizes, indicating higher significance, and hence

Table 2 Silhouette Scores obtained using the transformed expression values from top 15% variance genes on applying different
preprocessing techniques (using first three principal components)

Raw Scaled Z-Score Quantile GFS

ALL (9 subtypes) -0.212 -0.209 -0.145 -0.099 0.312

ALL (2 subtypes) 0.009 0.027 0.043 0.070 0.145

DMD 0.025 0.044 0.096 0.202 0.203

Leukemia 0.153 0.128 0.177 0.227 0.289

Silhouette scores corresponding to GFS are the highest among all methods (highlighted in bold)
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Table 3 Silhouette Scores obtained using the transformed expression values from top 15% variance genes on applying different
preprocessing techniques (using only PC2 and PC3, ignoring PC1)

Raw Scaled Z-Score Quantile GFS

ALL (9 subtypes) -0.243 -0.186 0.017 0.027 0.217

ALL (2 subtypes) 0.012 0.121 0.176 0.289 0.538

DMD 0.049 0.047 0.426 0.486 0.530

Leukemia 0.349 0.072 0.412 0.482 0.528

Silhouette scores corresponding to GFS are the highest among all methods (highlighted in bold)

greater biological coherence, of the large subnetwork
sizes.

Effect of sample size on performance of GFS
To examine the effect of sample size on GFS, we randomly
selected samples of the size of 0.25, 0.50, 0.75 times the
original sample size over 100 iterations. We then noted
the range of silhouette scores obtained from the iterations
for each sample size. (For the heterogeneous ALL dataset,
the first three PCs were used to calculate the silhou-
ette scores, while for the other datasets, only the second
and third PCs were used). As expected, Fig. 10 shows
that the clustering performance improves with increase in
sample size. Interestingly, the boxplots in Fig. 10, inter-
preted together with Tables 2 and 3, also indicate that
the median performance of GFS when provided with even
0.25 times of the entire sample size is still comparable

with, and often better than, that of other normalization
methods when they are supplied with the entire sample
size.

Conclusion
An effective preprocessing technique is expected to trans-
form the gene expression matrix such that data of the
same phenotype from different sources is made simi-
lar. This can be achieved by removing or accounting
for obscuring noise in gene expression measurement,
and retaining interesting variation relevant to properties
of biological interest. Such a processing is essential to
ensure reliable downstream analysis of gene expression
data. However, popular normalization techniques do not
necessarily improve the quality of expression data, and
sometimes even exacerbate the issue by mistaking real
variation for noise and discarding it.

Fig. 7 Consistency of preprocessed output - Jaccard coefficient distribution of top variance contributing genes on comparing 100 data splits. a ALL
(9 Subtypes). b ALL (2 Subtypes). c DMD. d Leukemia
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Fig. 8 Distribution for size of subnetworks induced by high-variance genes in different preprocessed outputs (using first three components); Inset
figure shows the same as percentage frequency. a ALL (9 Subtypes). b ALL (2 Subtypes). c DMD. d Leukemia

Fig. 9 Distribution for size of subnetworks induced by high-variance genes in different preprocessed outputs (using PC2, PC3 only, ignoring PC1
from analysis); Inset figure shows the same as percentage frequency. a ALL (9 Subtypes). b ALL (2 Subtypes). c DMD. d Leukemia
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Table 4 Leukemia – Significance comparison of size of subnetworks induced by high-variance genes in preprocessed output;
p1 = p-value using first three PCs, p2 = p-value using PC2, PC3 only

Raw Scaled Z-score Quantile GFS

Size freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2

2 44 0.994 0.993 57 0.920 0.924 47 0.987 0.986 59 0.893 0.894 47 0.570 0.582

3 34 0.557 0.584 23 0.954 0.945 27 0.842 0.844 26 0.885 0.883 34 0.073 0.075

4 14 0.664 0.679 14 0.664 0.679 15 0.588 0.589 17 0.454 0.471 15 0.046 0.044

5 7 0.597 0.579 6 0.700 0.686 8 0.474 0.465 7 0.597 0.579 4 0.244 0.253

6 5 0.279 0.318 2 0.762 0.779 1 0.904 0.925 4 0.423 0.462 6 0.011 0.013

7 1 0.688 0.696 1 0.688 0.696 4 0.130 0.149 1 0.688 0.696 2 0.159 0.166

8 4 0.048 0.039 3 0.119 0.104 - - - 1 0.487 0.500 1 0.259 0.220

9 1 0.384 0.369 2 0.153 0.159 3 0.051 0.047 4 0.014 0.011 3 0.021 0.017

10 1 0.285 0.252 2 0.107 0.098 1 0.285 0.252 1 0.285 0.252 2 0.032 0.031

11 1 0.201 0.224 - - - - - - 1 0.201 0.224 2 0.020 0.017

12 - - - - - - - - - - - - 1 0.030 0.028

15 - - - - - - - - - - - - 1 0.006 0.001

Table 5 ALL (2 Subtypes) – Significance comparison of size of subnetworks induced by high-variance genes in preprocessed output;
p1 = p-value using first three PCs, p2 = p-value using PC2, PC3 only

Raw Scaled Z-score Quantile GFS

Size freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2

2 89 0.620 0.604 94 0.476 0.482 93 0.502 0.509 92 0.527 0.532 82 0.128 0.105

3 44 0.646 0.663 44 0.646 0.663 50 0.419 0.430 44 0.646 0.663 46 0.030 0.030

4 31 0.196 0.173 32 0.162 0.153 28 0.312 0.316 29 0.268 0.259 33 0.001 0.001

5 14 0.429 0.398 13 0.509 0.487 18 0.169 0.156 17 0.226 0.193 20 0.001 0.002

6 12 0.082 0.101 15 0.018 0.024 12 0.082 0.101 14 0.032 0.038 6 0.045 0.043

7 7 0.133 0.117 7 0.133 0.117 6 0.224 0.220 9 0.035 0.030 14 0.000 0.000

8 6 0.050 0.043 6 0.050 0.043 7 0.019 0.017 5 0.098 0.097 5 0.006 0.005

9 2 0.324 0.345 2 0.324 0.345 1 0.594 0.607 4 0.061 0.069 3 0.043 0.031

10 3 0.076 0.075 1 0.451 0.449 1 0.451 0.449 1 0.451 0.449 1 0.177 0.168

11 1 0.350 0.357 - - - - - - - - - 1 0.129 0.117

12 1 0.300 0.278 1 0.300 0.278 1 0.300 0.278 1 0.300 0.278 1 0.066 0.083

13 - - - 1 0.233 0.264 1 0.233 0.264 1 0.233 0.264 - - -

14 - - - - - - - - - - - - 1 0.021 0.019

15 - - - 1 0.156 0.145 1 0.156 0.145 1 0.156 0.145 - - -

16 1 0.133 0.139 3 0.005 0.002 2 0.038 0.027 2 0.038 0.027 1 0.002 0.005

17 3 0.006 0.001 1 0.093 0.099 2 0.020 0.018 1 0.093 0.099 1 0.003 0.002

18 - - - 1 0.077 0.070 1 0.077 0.070 2 0.013 0.012 1 0.000 0.001

19 3 0.001 0.001 - - - 1 0.008 0.007 - - - 2 0.000 0.000

20 1 0.035 0.041 - - - - - - - - - - - -

21 - - - - - - - - - - - - 1 0.000 0.000

22 - - - 1 0.008 0.007 - - - - - - 1 0.000 0.000



The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):540 Page 182 of 303

Table 6 DMD – Significance comparison of size of subnetworks induced by high-variance genes in preprocessed output; p1 = p-value
using first three PCs, p2 = p-value using PC2, PC3 only

Raw Scaled Z-score Quantile GFS

Size freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2 freq p1 p2

2 74 0.901 0.903 970 0.429 0.415 57 0.995 0.995 104 0.298 0.278 85 0.015 0.009

3 83 0.004 0.007 44 0.649 0.644 23 0.999 0.999 40 0.794 0.777 81 0.000 0.000

4 19 0.817 0.799 22 0.660 0.643 17 0.894 0.894 18 0.861 0.861 28 0.002 0.004

5 15 0.337 0.324 11 0.692 0.665 12 0.588 0.586 13 0.499 0.485 18 0.001 0.000

6 7 0.536 0.521 11 0.147 0.145 7 0.536 0.521 10 0.213 0.206 11 0.000 0.000

7 8 0.084 0.106 12 0.005 0.005 4 0.521 0.519 10 0.021 0.022 9 0.000 0.000

8 7 0.025 0.018 6 0.053 0.045 3 0.379 0.392 6 0.053 0.045 3 0.019 0.011

9 1 0.598 0.615 5 0.029 0.031 3 0.182 0.148 7 0.004 0.008 4 0.000 0.002

10 2 0.209 0.229 1 0.449 0.467 3 0.089 0.084 2 0.209 0.229 2 0.007 0.007

11 2 0.134 0.140 5 0.001 0.001 1 0.372 0.372 2 0.134 0.140 1 0.012 0.006

12 4 0.006 0.003 3 0.021 0.027 - - - 3 0.021 0.027 1 0.005 0.003

13 3 0.017 0.016 2 0.078 0.077 3 0.017 0.016 2 0.078 0.077 2 0.000 0.001

14 3 0.011 0.012 1 0.200 0.189 3 0.011 0.012 - - - 1 0.000 0.002

15 2 0.054 0.039 3 0.012 0.009 1 0.181 0.164 1 0.181 0.164 2 0.000 0.000

16 3 0.004 0.002 - - - - - - 1 0.133 0.142 2 0.000 0.000

17 1 0.104 0.091 - - - - - - 2 0.016 0.019 1 0.000 0.000

18 1 0.097 0.072 - - - - - - 1 0.097 0.072 - - -

19 1 0.058 0.073 - - - - - - - - - 1 0.000 0.000

20 1 0.041 0.040 1 0.041 0.040 - - - - - -

21 - - - - - - 1 0.026 0.038 - - - 1 0.000 0.000

28 - - - 1 0.001 0.000 - - - - - - - - -

Table 7 ALL (9 subtypes) - Significance comparison of size of subnetworks induced by high-variance genes in preprocessed output;
p = p-value of the frequency using first three principal components

Raw Scaled Z-score Quantile GFS

Size freq p freq p freq p freq p freq p

2 87 0.672 77 0.861 76 0.876 87 0.672 80 0.071

3 44 0.621 46 0.545 41 0.722 45 0.577 67 0.000

4 24 0.483 24 0.483 24 0.483 23 0.546 39 0.000

5 18 0.105 18 0.105 18 0.105 18 0.105 16 0.001

6 3 0.890 2 0.958 4 0.804 2 0.958 11 0.000

7 9 0.025 4 0.408 3 0.588 9 0.025 4 0.029

8 2 0.492 3 0.289 4 0.144 3 0.289 4 0.013

9 5 0.017 6 0.004 4 0.057 5 0.017 1 0.170

10 3 0.062 3 0.062 4 0.021 2 0.165 5 0.000

11 3 0.038 7 0.001 7 0.001 3 0.038 2 0.015

12 1 0.289 3 0.021 2 0.092 2 0.092 3 0.001

13 1 0.230 2 0.059 4 0.007 - - 1 0.011

14 3 0.005 1 0.203 - - 3 0.005 2 0.000

15 1 0.193 1 0.193 1 0.193 2 0.047 2 0.002

16 1 0.124 1 0.124 2 0.031 1 0.124 2 0.000

17 1 0.122 1 0.122 - - 1 0.122 - -

19 - - - - - - - - 1 0.000

20 - - - - - - - - 1 0.000

23 1 0.006 - - - - 1 0.006 - -

24 - - 1 0.003 1 0.003 - - - -
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Fig. 10 Effect of sample size on clustering performance of GFS. a ALL (9 Subtypes). b ALL (2 Subtypes). c DMD. d Leukemia

We discussed a new approach, Gene Fuzzy Score, to
address this issue and compared it with other popular
preprocessing methods with respect to three important
criteria. First, we assessed the capability of the trans-
formed output of each technique to resolve differences in
phenotypes within the dataset. Secondly, we estimated the
consistency of their output when presented with different
datasets with the same phenotype distribution. Finally, we
analysed the distributions of size of subnetworks induced
by genes indicated to be sources of interesting variation
in each processed expression matrix. In each of these
aspects, GFS was successful in improving the transfor-
mation outcome, proving its applicability in datasets with
batch effects and heterogeneity. Moreover, the perfor-
mance of GFS improves with increase in sample size.
A recurring observation from our experiments is that

in datasets with significant batch effects, the batch effects
are generally captured by the first principal component in
PCA. Thus, applying a PCA transformation and excluding
the first principal component from subsequent analysis
leads to significant reduction in batch effects in any
dataset, and improves the performance of all preprocess-
ing techniques. Further, we note that GFS outperforms
other methods irrespective of whether this additional step
is implemented.
Another merit of GFS is the interpretability of its trans-

formed outcome. A biologist may quickly understand how
highly the gene is ranked in a particular patient. For
b, when a gene has a GFS score of 0.5 in a patient, it

means the gene is in the top 10% most highly expressed
genes in that patient (assuming θ1and θ2 are set at 5
and 15% respectively). Thus, apart from being a robust
and effective preprocessing technique, GFS is also easily
interpretable.
While we evaluated GFS only on microarray gene

expression, it is conceivable that the method may be
applied to data obtained from other high-throughout
technologies such as RNA-seq and SWATH proteomics.
Exploring this possibility remains the subject of our future
work.
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