
RESEARCH Open Access

Predicting essential proteins based on
subcellular localization, orthology and PPI
networks
Gaoshi Li1,2, Min Li1*, Jianxin Wang1*, Jingli Wu2, Fang-Xiang Wu1,3 and Yi Pan1,4

From 11th International Symposium on Bioinformatics Research and Applications (ISBRA '15)
Norfolk, VA, USA. 7-10 June 2015

Abstract

Background: Essential proteins play an indispensable role in the cellular survival and development. There have
been a series of biological experimental methods for finding essential proteins; however they are time-consuming,
expensive and inefficient. In order to overcome the shortcomings of biological experimental methods, many
computational methods have been proposed to predict essential proteins. The computational methods can be
roughly divided into two categories, the topology-based methods and the sequence-based ones. The former use
the topological features of protein-protein interaction (PPI) networks while the latter use the sequence features of
proteins to predict essential proteins. Nevertheless, it is still challenging to improve the prediction accuracy of the
computational methods.

Results: Comparing with nonessential proteins, essential proteins appear more frequently in certain subcellular
locations and their evolution more conservative. By integrating the information of subcellular localization,
orthologous proteins and PPI networks, we propose a novel essential protein prediction method, named SON, in
this study. The experimental results on S.cerevisiae data show that the prediction accuracy of SON clearly exceeds
that of nine competing methods: DC, BC, IC, CC, SC, EC, NC, PeC and ION.

Conclusions: We demonstrate that, by integrating the information of subcellular localization, orthologous proteins
with PPI networks, the accuracy of predicting essential proteins can be improved. Our proposed method SON is
effective for predicting essential proteins.
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Background
Essential proteins are indispensable in cellular life because
even if only one of these proteins is missing, organisms
cannot survive or develop. The identification of essential
proteins has great significance in the following facts: 1) it
helps understand the minimum requirements of the sur-
vival and development of a cell. By knowing the minimum
requirements of the survival and development of the cell,
researchers are able to create a new cell with a minimal

genome [1], which is an important content in the emer-
ging synthetic biology. 2) It helps identify disease genes
and find novel treatments for diseases [2–4]. Hence, the
discovery of essential proteins facilitates to study disease
genes. Because essential proteins are indispensable in bac-
terial cells, they are also the candidates for new antibiotics
drug targets.
There are several representative biological methods to

identify essential proteins, such as single gene knockout
[5], conditional knockout [6] and RNA interference [7].
Because these biological experiment discovery methods
are time-consuming, expensive and inefficient, it is
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appealing to develop novel computational methods to
improve the effectiveness of the identification.
Currently, a number of computational identification

methods have been proposed. According to the features of
essential proteins, these methods can be roughly divided
into topology-based methods and sequence-based methods.
The topology-based methods are designed based on associ-
ations between the essentiality and the topological features
of essential proteins in bio-molecular networks. Degree
Centrality (DC) [8], Betweenness Centrality (BC) [9], Close-
ness Centrality (CC) [10], Subgragh Centrality (SC) [11],
Eigenvector Centrality (EC) [12], Information Centrality
(IC) [13] and Neighborhood Centrality (NC) [14] are the
representatives of topology-based methods. CytoNCA [15]
is a cytoscape plugin for centrality analysis and evaluation
of biological networks, and ClusterViz [16] is a cytoscape
APP for cluster analysis of biological network. Additionally,
LAC [17], TP and TP-NC [18] are also common topology-
based methods.
The topology-based methods are consist of several

steps as follows: Firstly, constructing a PPI network G
(V, E) based on the pairs of PPI, where V denotes a set
of nodes (proteins), and E denotes a set of edges of PPI
network. Secondly, constructing an adjacency matrix A
of PPI network G, whose element Au,v is 1 if there is an
edge between nodes u and v, and 0 otherwise. Then,
each protein in PPI network G is scored by using differ-
ent centrality methods. Finally, essential proteins are de-
termined by their scores.
The key advantage of the topology-based methods is

able directly to predict essential proteins without know-
ing additional information. However, these methods have
three main disadvantages as follows: 1) due to a lot of
false positives and false negative data in PPI networks,
their identification accuracies are affected. 2) These
methods have difficulty in predicting essential proteins
with low connectivity. 3) These methods ignore the in-
trinsic biological significance of essential proteins.
The sequence-based methods are another kind of com-

putational methods to predict essential proteins. The
sequence-based features are intrinsic features of an indi-
vidual protein that are determined by genomic sequences.
These features have been used by some methods, such as
subcellular localization [19], evolutionary conservation
[20–22], gene expression [23, 24].
Subcellular localization is an important feature of essen-

tial proteins. It represents a concrete location in cells that a
certain protein appears. Statistical results show that essen-
tial proteins appear more frequently in certain subcellular
location than nonessential proteins. Hence, we designed
and used protein subcellular localization score based on the
features of subcellular localization of proteins.
Evolutionary conservation is also an important charac-

teristic of essential proteins. Because basic life process of

a cell is more relevant with essential proteins. The effect
of essential proteins in a negative selection is stricter
than nonessential proteins [21]. Experimental results
have proved that essential proteins evolve more conser-
vative than nonessential proteins.
Gene expression is another important feature of essen-

tial proteins. The expression level of mRNA is closely as-
sociated with its essentiality. In bacteria, the higher
expression level, the slower evolution of protein se-
quence is [23, 24]. Some studies have shown that protein
sequence diversity and protein essentiality are relevant
to expression level [25] in eukaryotes. So we draw a con-
clusion that the expression level of essential genes is
higher than that of nonessential ones.
In order to achieve higher identification accuracy, more

and more researchers are combining above-mentioned two
kinds of methods. By integrating the information of GO an-
notations with proteins, Li et al. [26] built a weighted PPI
network. In addition, by integrating the information of net-
work topology with gene expression, they proposed a cen-
trality method PeC [27]. Based on prior knowledge,
network topology and gene expression, they also proposed
two new essential protein discovery methods CPPK and
CEPPK [28]. Besides the above methods, some researchers
proposed to construct dynamic PPI network to reduce the
impact of false positives in PPI data [29–31]. Xiao et al. [31]
constructed an active PPI network and applied six typical
centrality measures to identify essential proteins from the
constructed active PPI network. By using PPI network and
protein complexes information, Ren et al. [32] proposed an
essential protein discovery method named HC. Li et al. [33]
proposed a united complex centrality named UC and a par-
ameter controlled method UC-P by using predicting pro-
tein complexes [34]. Peng et al. [35] proposed an essential
protein discovery method by integrating protein domains
and PPI networks. Tang et al. [36] proposed a novel method
based on weighted degree centrality by integrating gene ex-
pression profiles.
There is other biological information which also was in-

tegrated with PPI network to predict essential proteins.
Based on random walk model, ION [37] integrates the in-
formation of orthologous proteins with PPI networks.
Zhao et al. [38] proposed their new method by using over-
lapping essential modules [39]. Zhong et al. [40] proposed
a feature selection method by considering 26 topological
or biological features for predicting essential proteins.
In this study, we propose a novel method to predict

essential proteins by integrating subcellular localization,
orthology with PPI network, named SON.

Experimental data
This experiment uses multiple datasets, including PPI
network dataset, essential protein dataset, subcellular
localization dataset and orthologous protein dataset. In
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order to unify the serial number of proteins in above-
mentioned databases, we use the UNIPROT [41] data
files to convert protein number in each database.
PPI network dataset of S.cerevisiae is downloaded

from DIP database [42] updated to Oct.10, 2010. There
are 5093 proteins and 24,743 interactions without self-
interactions and repeated interactions in this dataset.
We select S.cerevisiae because its PPI data and gene es-
sentiality data are most complete and reliable among
various species.
Essential protein dataset is selected from MIPS

[43],SGD [44],DEG [45] and SGDP [46]. There are 1285
essential proteins in this dataset, out of which 1167 are
in PPI network. We take the 1167 proteins as essential
proteins while other 3926(=5093−1167) proteins as non-
essential ones.
Subcellular localization dataset of yeast is down-

loaded from knowledge channel of COMPARTMENTS
database [47] on August 30, 2014. It integrates several
source databases (UniProtKB [48], MGD [49], SGD
[50], FlyBase [51] and WormBase [52]). As a result, it
contains 5095 yeast proteins and 206,831 subcellular
localization records. We select this database because
both its data volume is large and it is updated in a
timely manner. After preprocessing, there are still
3923 proteins in PPI network which have subcellular
localization information.
Orthologous proteins dataset is taken from Version

7 of InParanoid [53]. It contains a set of pairwise
comparisons among 100 whole genomes (1 prokaryote
and 99 eukaryotes) that are constructed by INPARA-
NIOD program. We only select the proteins in seed
orthologous sequence pairs of each cluster generated
by INPARANIOD as orthologous proteins, as it has

the best match between two organisms and stands for
the high homology.

Correlation analyses of subcellular localization, orthology
and essentiality of proteins
To understand associations between subcellular localization
and essentiality of proteins, we first count the number of
essential and nonessential proteins in each subcellular loca-
tion, respectively. Next, their ratios are calculated. The re-
sults are shown in Table 1. According to Table 1, the ratios
of essential proteins are higher than that of nonessential
proteins in Cytoskeleton, Golgi apparatus, Cytosol, Nucleus
and Endoplasmic reticulum. Hence, the five subcellular
locations above mentioned are positively correlated with es-
sential proteins while the others are negatively correlated.
The associations between orthology and essentiality

of proteins have been verified by Peng et al. [37]. The
ratio of essential proteins is 51 % if the proteins have
orthologs for at least 80 species. But if the proteins
have no orthologs for reference organisms, the ratio
of essential proteins is about 22 %, near to random
probability [54].

Methods
Our novel method, SON, predicts essential proteins based
on the information integration of subcellular localization,
Orthology and PPI network. In the following subsections,
we will introduce how to use these information and inte-
grate them to calculate a protein’s essentiality.

Network Centrality based on edge clustering coefficient (NC)
In the previous studies, it has been shown that network
centrality is an important measure for predicting essen-
tial proteins and the network centrality based on edge

Table 1 Number and ratio of essential and nonessential proteins in each subcellular location

Subcellular location Essential proteins number Essential proteins ratio Nonessential proteins number Nonessential proteins ratio

Cytoskeleton 95 0.081 133 0.033

Golgi apparatus 61 0.052 184 0.046

Cytosol 138 0.118 289 0.073

Endosome 22 0.019 109 0.027

Mitochondrion 173 0.148 753 0.189

Plasma membrane 53 0.045 354 0.089

Nucleus 809 0.693 1407 0.353

Extracellular space 1 0.001 70 0.018

Vacuole 19 0.016 238 0.060

Endoplasmic reticulum 137 0.117 292 0.073

Peroxisome 4 0.003 61 0.015

To understand the association between subcellular localization and essentiality of proteins, we first count the number of essential and nonessential proteins in
each subcellular location, respectively. Next, their ratios are calculated. According to Table 1, the ratios of essential proteins are higher than that of nonessential
proteins in Cytoskeleton, Golgi apparatus, Cytosol, Nucleus and Endoplasmic reticulum. Hence, the five subcellular locations above mentioned are positive
correlation with essential proteins while the others are negative correlation
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clustering coefficient [14] is one of the most effective
measures for the identification of essential proteins.
Given a PPI network G = (V, E) and a protein i, its net-
work centrality based on edge clustering coefficient
NC(i) is defined as the sum of edge clustering coeffi-
cients of all edges directly connected with protein i in
the graph G.

NC ið Þ ¼
X
j∈Ni

ECC i; jð Þ

¼
X

j∈Ni

Zi;j

min ki−1; kj−1
� � ð1Þ

where Ni denotes the set of all neighbors of protein i, Zi,

j is the number of triangles built on edge(i,j), ki and kj
are the degrees of nodes i and j, respectively. min(ki−1,
kj−1) represents the maximal possible number of trian-
gles that might potentially include the edge(i,j).
The edge clustering coefficient (ECC) is used to meas-

ure the degree of closeness between two nodes in a
graph which has been widely applied in identifying net-
work modules [55, 56]. Those edges which have higher
ECC value are more likely to be in a module. It has been
shown that essential proteins and disease genes tend to
appear in the same cluster [57–59]. Therefore, if an edge
with high ECC value, it is more likely to be a connection
of two essential proteins. Obviously, a protein which has
more neighbors and gets higher ECC values with its
neighbors will have a relatively higher NC value and will
tend to be an essential protein. In order to match with
orthologous score and subcellular localization score
whose value ranges are [0,1], here we use the normalized
NC value for each protein, denoted as NNC. For a pro-
tein i, its normalized NC value NNC(i) is defined as:

NNC ið Þ ¼ NC ið Þ=Max�NC ð2Þ

where Max_NC denotes the maximum NC value of all
the proteins in the graph G.

Subcellular localization score
It has been shown that proteins must be localized at
their appropriate subcellular compartments to perform
their desired functions and thus the subcellular
localization information is helpful to the identification of
essential proteins [59]. Here, we analyzed the associa-
tions between the subcellular localization and the top-
ology of PPI networks. All the proteins in the PPI
network are sorted in descending order according to
their NNC scores. Then we calculate the numbers of
subcellular location l where the top k% proteins appear
and where the bottom k% proteins appear, respectively.
Considering that more counting proteins may result in
more false positives, we use k = 5 in this paper, ie., that

the top/bottom 5 % proteins are selected. Let f l be the
frequency of l where the top k% proteins appear and hl
denote the frequency of l where the bottom k% proteins
appear. Subcellular Localization Correlation Coefficient
LCC(l) is defined as

LCC lð Þ ¼
1−

hl
f l
; f l < hl

f l
hl
−1; f l≥hl

8>><
>>:

ð3Þ

When fl < hl, more proteins with low NNC values ap-
pear in the location l and a negative relationship is
thought to be between the location l and protein’s essen-
tiality. On the contrary, there is a positive correlation be-
tween the location l and protein’s essentiality when fl ≥
hl. When fl = 0, we set LCC(l) as the maximum of 1− hl

f l

with fl ≠ 0. When hl = 0, we set LCC(l) as the maximum

of f l
hl
−1 with hl ≠ 0. A protein may appear in multiple

subcellular locations. For a protein i, its subcellular
localization score SL(i) is defined as the sum of LCC(l)
of all the subcellular locations it appears. Here, for each
protein i we also use the normalized SL value NSL(i) by
using the following formula:

NSL ið Þ ¼ SL ið Þ þMax�jSLj
Max SL ið Þ þMax�jSLj� � ð4Þ

Where Max_|SL| denotes the maximum value of |SL(i)|
for all the proteins in G and Max in the denominator
takes for all the proteins in G.

Orthologous score
Orthologous score method of SON comes from ION
method [37]. Given a PPI network G = (V, E), let S be
the set of reference species which is used to get ortholo-
gous information of V. s denotes its element and |S| de-
notes the number of its elements. Let Xs be a subset of
V whose element has orthologs in organism s. For a pro-
tein i, its orthologous score OS(i) is defined as the num-
ber of reference organisms in which the protein i has
orthologs, where i ∈V (i = 1,…,N). Similar to the net-
work centrality based on edge clustering coefficient and
subcellular localization score, we also use the normalized
OS value NOS(i) by using the following formula:

NOS ið Þ ¼ OS ið Þ
Max�OS

ð5Þ

Where Max_OS denotes the maximum value of OS(i)
for all the proteins in G.
According to the above definition, a protein’s ortholo-

gous score is 1 if its orthologs in all organisms included
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in set S. On the contrary, its orthologous score is 0 if it
does not have orthologs in any organisms in set S.

The sorting score and SON algorithm
The sorting score of our algorithm SON is a linear
combination of the three scores: normalized network
centrality based on edge clustering coefficient NNC(i),
normalized subcellular localization score NSL(i), and

normalized orthologous score NOS(i). For a protein i,
its sorting score is calculated as follows:

pr ið Þ ¼ 1−αð Þ � NOS ið Þ þ α 1−βð Þ � NSL ið Þ þ β � NNC ið Þ½ �
ð6Þ

where α ∈ [0, 1] and β ∈ [0, 1] are used to adjust the pro-
portion of these three scores.

Fig. 1 Influence of parameters α and β. (a) Top 1 % (Top 51) (b) Top 5 % (Top 255) (c) Top 10 % (Top 510) (d) Top 15 % (Top 764) (e) Top 20 %
(Top 1019) (f) Top 25 % (Top 1274)
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Fig. 2 Influence of parameters α and β for SON

Fig. 3 SON compared with several existing methods. (a) Top 1 % (Top 51) (b) Top 5 % (Top 255) (c) Top 10 % (Top 510) (d) Top 15 % (Top 764)
(e) Top 20 % (Top 1019) (f) Top 25 % (Top 1274)
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SON algorithm is introduced as follows.

SON algorithm
Input: A PPI network represented as a graph G= (V, E),
the scoring table of subcellular localization of proteins,
orthologs datasets between Yeast and 99 other
organisms, parameter α, parameter β.
Output: Top K percent of proteins sorted by pr in
descending order.
Step1: Calculate the value of NNC for each protein
by using Equation (2).
Step2: Calculate the score of subcellular
localization for each protein by using Equation (4).
Step3: Calculate orthologous score for each protein
by using Equation (5).
Step4: Calculate the value of pr for each protein by
using Equation (6).
Step 5: Sort proteins by the value of pr in
descending order.
Step 6: Output top K percent of sorted proteins.

Results and discussion
In order to analyze and evaluate the performance of our
method, SON, we perform a large number of experi-
ments on these datasets. There are 5093 proteins and
24,743 interactions in PPI network of S.cerevisiae. Essen-
tial protein dataset is constructed by integrating
MIPS,SGD,DEG and SGDP which has 1167 essential
proteins in PPI network. Subcellular localization dataset
includes 5095 yeast proteins and 206,831 subcellular
localization records. After preprocessing, there are 3923

proteins in this dataset that have subcellular localization
records. Orthologous proteins dataset is taken from Ver-
sion 7 of InParanoid consisting a set of pairwise compari-
sons between 100 whole genomes.
In this section, we first analyze the influence of two pa-

rameters α and β towards the performance of SON algo-
rithm. Then, SON is compared with the other existing
algorithms, such as DC, BC, CC, SC, EC, IC, NC, PeC and
ION. We adopted three types of popular comparison meth-
odologies: 1) Histogram comparison methodology. Firstly,
the results are sorted in descending order. Next, to select
the top 1, 5, 10, 15, 20 and 25 % proteins as candidate es-
sential proteins. Then, we compare prediction results based
on the set of known essential proteins. The performance is
presented in the form of histograms of the number of es-
sential proteins predicted by each algorithm. 2) Precision-
recall curves methodology. 3) Jackknife methodology. In
the end, the differences of these algorithms which have high
connectivity proteins and low ones are analyzed in detail.

Influence of parameter α and β
In our novel method, SON, the scoring of proteins is as-
sociated with parameters α and β. The value ranges of α
and β are both from 0 to 1. When the values of α and β
take 0, 0.1, 0.2, …, 0.9, 1, respectively, the number of es-
sential proteins predicted by SON are shown in Fig. 1.
As shown in Fig. 1, when α values from 0.2 to 0.8 and

β from 0.3 to 0.7, simultaneously, the result of SON is
better. In particular, when α = 0, namely only ortholo-
gous information is used, parameter β has no effect, all
the results are the same.

Fig. 4 PR curves of SON and that of other methods
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In order to further analyze the influence of the pa-
rameters α and β, we utilize the precision-recall curves
methodology with five sets of parameters α and β,
such as α = 0.7and β = 0.3,α = 0.7 and β = 1,α = 0.7 and
β = 0,α = 0 and β = 0.3, α = 1 and β = 0.3. The results
are shown in Fig. 2. According to Fig. 2, when α =
0.7and β = 0.3, namely, the proportions of orthologous
information, NC, and subcellular localization informa-
tion are 30, 21, and 49 %, respectively, the result is the

best. In this paper, we consider the optimal values to
be α = 0.7 and β = 0.3.

Comparison with nine existing methods
In this section, the performance of SON is compared
with nine existing methods. We select the top 1, 5, 10,
15, 20 and 25 % proteins predicted by DC, BC, CC, SC,
EC, IC, NC, PeC, ION and SON as candidate essential
proteins to compare, respectively. The results are shown

Fig. 5 Jackknife curves of SON and other nine methods

Table 2 Number of predicting high and low connectivity essential proteins by using SON and other nine existing methods

K DC IC EC SC BC CC NC PeC ION SON

degree < =10 1 % 0 0 0 0 0 0 0 0 17 14

5 % 0 0 0 0 0 0 3 40 66 64

10 % 0 0 0 0 1 0 27 84 108 116

15 % 0 0 8 8 18 7 66 117 146 156

20 % 0 0 28 28 41 20 101 153 188 193

25 % 11 20 73 73 76 55 156 192 253 220

degree > 10 1 % 22 24 24 24 24 24 32 39 24 29

5 % 101 102 96 96 95 104 156 133 122 129

10 % 207 210 195 195 181 193 255 209 223 233

15 % 320 316 271 271 253 277 307 255 299 313

20 % 413 406 349 349 320 344 363 285 359 387

25 % 491 484 394 394 357 393 388 302 381 441

As shown in the top part of Table 2 (degree < = 10), it is weak for eight centrality methods to predict low connectivity essential proteins. When taking the top
20 % proteins ranked in descending order according to their ranking scores computed by DC and IC, the numbers of predicting essential proteins are 0. The
performance of SON overall is better than that of eight centrality methods (DC, IC, EC, SC, BC, CC, NC and PeC). When K is 10, 15, 20 %, respectively, the
performance of SON is also better than that of ION
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in Fig. 3. From Fig. 3, it is easy to see that the result of
SON is clearly the best.

Comparison the experimental results based on precision-
recall curve
Precision-recall (PR) curve is another common method-
ology to validate algorithm performance. In terms of the
corresponding area under the PR curve (AUC) value, the
overall performance of each method is evaluated. At the
beginning, according to their scores computed for each
method, all proteins are sorted in descending order.
Then the top K proteins are selected as candidate essen-
tial proteins while the remaining proteins in PPI net-
works as candidate nonessential ones. The values of K
range from 1to 5093. The results are shown in Fig. 4. As
shown in Fig. 4, PR curve of SON is obviously higher
than that of other methods. Note that the curves of EC
and SC are almost identical.

Comparison the experimental results based on jackknife
methodology
To further investigate the performance of SON, jack-
knife methodology is also employed. The results are
shown in Fig. 5. The x-axis represents the number of
proteins in PPI networks ranked in descending order ac-
cording to their sorting scores computed from all above-
mentioned methods while the y-axis represents the cu-
mulative count of essential proteins. The areas under
the curves are used to measure the performances of the
above-mentioned methods. According to Fig. 5, SON is
clearly better than DC, IC, EC, SC, BC, CC, NC, PeC
and ION. Note that the curves for EC and SC are al-
most identical.

Differences between SON and nine existing methods
In order to further analyze SON, we compared its ability to
identify low/high connectivity essential proteins with nine
existing methods. After statistical analysis, we notice that
the low connectivity (less than or equal to 10) proteins are
about 76 % in the yeast PPI network and 58 % of essential
proteins in known essential protein list are low connectivity
in the yeast PPI network. Hence, it is very important for es-
sential protein prediction method to identify low connectiv-
ity essential proteins. The results of predicting essential
proteins with low and high connectivity for several above-
mentioned methods are illustrated in Table 2.
As shown in the top part of Table 2 (degree ≤ 10), it is

weak for eight centrality methods to predict low con-
nectivity essential proteins. When taking the top 20 %
proteins from DC and IC, the numbers of predicting es-
sential proteins are 0. The performance of SON overall
is better than that of eight centrality methods (DC, IC,
EC, SC, BC, CC, NC and PeC). When K is 10, 15 and

20 %, respectively, the performance of SON is also better
than that of ION.
As shown in the bottom part of Table 2 (degree > 10),

we can see that DC and IC have good performance in
predicting high connectivity essential proteins. However,
SON in predicting high connectivity essential proteins
outperforms EC, SC, BC, CC and ION.

Conclusions
Although identification of essential proteins is of great
significance, biological experimental methods for identi-
fying essential proteins are time-consuming, costly and
inefficient. Hence it is necessary to use computational
methods to identify essential proteins. In this paper, by
the integration of subcellular localization, orthologous
and PPI, we proposed a novel method, SON, to predict
essential proteins.
First, we analyze the correlation between subcellular

localization, orthologous proteins and essentiality of pro-
teins. Then, we propose our novel method SON. By
comparing with nine existing methods (DC, IC, EC, SC,
BC, CC, NC, PeC and ION), we conclude that the over-
all performance of SON is the best among them. We
further analyze the performance of SON in predicting
low/high connectivity essential proteins, and discover
that SON can predict a large number of low connectivity
essential proteins ignored by the eight existing centrality
methods.
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