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Abstract

Background: HIV/AIDS is a serious threat to public health. The emergence of drug resistance mutations diminishes
the effectiveness of drug therapy for HIV/AIDS. Developing a computational prediction of drug resistance phenotype
will enable efficient and timely selection of the best treatment regimens.

Results: A unified encoding of protein sequence and structure was used as the feature vector for predicting phenotypic
resistance from genotype data. Two machine learning algorithms, Random Forest and K-nearest neighbor, were used.
The prediction accuracies were examined by five-fold cross-validation on the genotype-phenotype datasets. A
supervised machine learning approach for automatic prediction of drug resistance was developed to handle
genotype-phenotype datasets of HIV protease (PR) and reverse transcriptase (RT). It predicts the drug resistance
phenotype and its relative severity from a query sequence. The accuracy of the classification was higher than 0.973 for
eight PR inhibitors and 0.986 for ten RT inhibitors, respectively. The overall cross-validated regression R2-values for the
severity of drug resistance were 0.772–0.953 for 8 PR inhibitors and 0.773–0.995 for 10 RT inhibitors.

Conclusions: Machine learning using a unified encoding of sequence and protein structure as a feature vector
provides an accurate prediction of drug resistance from genotype data. A practical webserver for clinicians
has been implemented.

Keywords: Drug resistance prediction, HIV/AIDS drugs, Encoding structure and sequence, Supervised machine
learning, Automation

Background
HIV/AIDS is a pandemic disease caused by human im-
munodeficiency virus (HIV). In the absence of an effect-
ive vaccine for HIV, current treatment of AIDS/HIV
patients relies on Highly Active Antiretroviral Therapy
(HAART). HAART uses a combination of drugs that
target different steps in the viral life cycle to prolong the
life of patients. The antiviral drugs, and the structure
and mechanism of their targets are reviewed in [1]. The
viral enzymes, HIV-1 protease (PR) and reverse tran-
scriptase (RT), are important and well characterized
drug targets. The enzymatic activity of these two pro-
teins is blocked by the antiviral PR inhibitors (PIs) and

the active site (NRTIs) and non-active site inhibitors
(NNRTIs) of RT.
The rapid selection of drug resistant viral mutations

raises a challenge for therapy. The presence of these re-
sistance mutations in the infecting virus is an important
contraindication for an effective virological response to
HAART [2, 3]. At present, genotypic and phenotypic
tests are the two major methods for assessing the drug
resistance of HIV mutants. The most widely used tool is
the genotypic test where the sequence of the viral gen-
ome is analyzed for the presence of known drug resist-
ance mutations [4]. In the phenotypic test, the
susceptibility to drugs is measured for cells infected with
the viral strain in vitro [5]. The phenotypic test directly
determines the drug resistance profile of the viral strain,
however, it is relatively slower and more expensive than
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the genotypic test. Ideally, a highly accurate genotypic
test would be valuable in the clinic to quickly and inex-
pensively establish an effective antiretroviral regimen.
In principle, drug resistance can be predicted from the

presence of specific mutations in the viral genome. The
existence of multiple mutations in many different combi-
nations prevents naive direct interpretation of the muta-
tions, and poses a major challenge [6]. Several approaches
using machine learning, such as linear regression [7], deci-
sion trees [8], neural networks [9], support vector regres-
sion [10], and Bayesian networks [11], and rule-based
methods, such as Stanford HIVdb [12], HIV-GRADE [13],
and ANRS [14], have been proposed for the interpretation
of genotypic tests [15]. In our previous studies, we pre-
dicted phenotypic results successfully from PR and RT
sequences by applying a unified encoding of sequence and
protein structure as a feature vector. This approach
worked well with several unique machine learning algo-
rithms and obtained significantly higher accuracy than
other methods [7, 16]. Our classification accuracies were
in the range of 93–99 % vs. 60–85 % for the other
methods with HIV protease. The aim of this paper is to
develop and implement a phenotype prediction webser-
vice that can be used to guide the selection of drugs to
treat people with resistant infections. The service applies
the unified sequence/structure encoding and the machine
learning algorithms, K-nearest neighbor (KNN) and

Random Forest (RF), for HIV genomic data for PR and
RT. The overall workflow of the prediction service is
shown in Fig. 1 and the webserver is freely available at
http://apollo.cs.gsu.edu/~bshen/html/index.html.
Developing a public webservice for drug resistance

converts a pure research problem into an applied engin-
eering problem. The machine learning algorithm must
be chosen to allow automatic updating as the underlying
database acquires more data. We chose the KNN and RF
machine learning algorithms because they are reliable in
this context. In addition to simply classifying the se-
quence as resistant/non-resistant, it is critical to predict
the relative strength of the resistance in order to select
the most effective drug. Therefore the server performs
regression as well as classification. The novelty in this
work is not as much the choice of machine learning
algorithm or encoding, but their combination into an
effective and usable webservice.
The service was trained on existing drug specific data-

sets that are publicly available, and five-fold cross valid-
ation was applied to evaluate the quality of the machine
learning model. The server accepts amino acid sequences
in FASTA-format as query samples. Each sequence is
automatically mapped onto the structure and a 210 di-
mensional feature vector is generated as described in the
methods section. The server predicts the phenotype of the
query sequence from an online trained machine with

Fig. 1 Workflow of prediction server
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KNN and RF. The analysis reported here includes the
detailed evaluation of model performance and the overall
accuracy of prediction.

Methods
Preparation of the datasets
The publicly available high quality filtered datasets were
obtained from the HIV drug resistance database, which in-
cludes the results of drug susceptibility tests analyzed
using the PhenoSense assay and the viral sequences of PR
and RT [17] (http://hivdb.stanford.edu/pages/genopheno.
dataset.html). Eight PR inhibitors, tazanavir (ATV), indin-
avir (IDV), nelfinavir (NFV), amprenavir (APV), darunavir
(DRV), lopinavir(LPV), tipranavir (TPV) and saquinavir
(SQV), were included in the datasets. Ten HIV RT inhibi-
tors (RTIs), including active site (NRTIs) and non-active
site inhibitors (NNRTIs), nevirapine (NVP), rilpiviri-
ne(RPV), efavirenz (EFV), Etravirine (ETR), lamivudine
(3TC), abacavir (ABC), zidovudine (AZT), stavudine
(D4T), didanosine (DDI) and tenofovir (TDF), were in-
cluded in the datasets. The datasets remove redundancies.
The ambiguous mutations in the genotype data were

expanded into several individual protein sequences with
the same value of drug susceptibility. For example, if
there are two residues, both having two different muta-
tions in the original sequence, the total number of se-
quences after reconstruction will be 4 = (2 × 2) and all
will have the same resistance value. The input sequences
with insertion or deletion of amino acids were excluded
from the expanded datasets because of the lack of struc-
tural information for feature extraction.

Drug susceptibility and cutoffs for resistance/susceptibility
The susceptibility values of each drug reported from the
datasets are expressed as the fold change defined as the
ratio of the IC50 of a mutant and a wild-type standard
assayed by the PhenoSense assay. The distribution of
phenotypic results affects the accuracy of classification.
There is a specific cutoff for each drug that determines
when the virus is considered resistant to that drug. Cutoff
values were obtained from [18–20]. If the resistance is less
than the cutoff value, the mutant is classified as non-
resistant or susceptible to the drug, and reported as 0.
Otherwise, the mutant is considered as drug resistant, and
reported as 1. The cutoff values for PIs were as follows:
2.0 for TPV, 3.0 for NFV, SQV, IDV, and ATV, 4.0 for FPV,
9.0 for LPV, and 10.0 for DRV. For NRTIs, the cutoff
values were: 1.5 for D4T, TDF, and DDI, and 3.0 for AZT,
ABC and 3TC. For the NNRTIs the cutoff was 3.0.

Feature representation
Crystal structures of HIV PR and RT (pdb id: 2wom and
3oxc) were downloaded from the PDB (Protein Data
Bank at http://www.rcsb.org/pdb/) to serve as the

structural templates. Delaunay triangulation was applied
to extract a subset of interactions from the Cα atoms
[21]. This triangulation defines a graph of pairs of resi-
dues that have direct interactions in space and thus
summarizes the protein structure. The triangulation
removes the dependence of the representation on the
origin and orientation of the protein molecule. There
are 210 unique pairs of the twenty different amino acids
in proteins. The feature vector was determined by sum-
ming the distances between Cα atoms along each arc of
the Delaunay triangulation where the arc connected two
amino acids of the given type. For example, if an arc
connected an Alanine(A) to a Phenylalanine(F), then the
element of the feature vector for an (A,F) pair had the
distance between that pair of residues added to it. Sum-
marizing the content of the arcs into a 210 element vec-
tor results in a compact and efficient representation of
both the sequence and the structure. Compared to the
calculation for all residue pairs, the application of the
unified sequence/structure encoding in feature extrac-
tion successfully removed noise and indirect connections
of residue pairs from the vector and reduced the size of
features, thus improving the performance of the learn-
ing/prediction process [21].

Supervised machine learning
The K-nearest neighbor and Random Forest algorithms
were used to train a learning model from the 210 dimen-
sion vectors of training samples paired with phenotypic
data. The phenotype of the testing samples was pre-
dicted from learning model. The output from the learn-
ing model is a discrete label for the classification of the
phenotype and is a continuous number for the regres-
sion analysis of relative resistance.
The KNN algorithm is a non-parametric method that

uses the full training data set. It finds the K nearest
neighbors to a query point and reports either their class
by majority vote or the average of their resistance value.
K was set to 6 for both classification and regression. The
benefit of applying KNN is that the training stage is fas-
ter, but unlike SVM and sparse dictionary, KNN uses the
complete training data in the prediction stage because
the result is reported based on the training data. Updat-
ing a KNN predictor with new experimental resistance
data is especially straightforward and simply requires
performing the feature extraction step on the new data.
The RF algorithm is an ensemble based classifier/re-

gression that works with multiple decision trees to im-
prove the accuracy. The disadvantage of individual
decision trees is that they are sensitive to small changes
of selected features in the training space. Therefore an
individual decision tree is a weak learner with a poor
ability to generalize and a strong tendency to be un-
stable. RF uses the ensemble votes from multiple
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decision trees to improve the stability of trained ma-
chine as well as the prediction accuracy. In practice,
the RF algorithm calculates the averaged value voted
from different sub-trees that randomly built from the
training dataset. The number of sub-trees is set to 10,
and the criterion for the quality of split is the mean
squared error.

Cross validation
Cross-validation with 5 random folds was applied for all
classifier and regression analysis to assess the quality of
the machine learning models. Our previous work [7]
showed that 5-fold cross validation was an appropriate
statistical measure of quality for this dataset. All the se-
quences, including drug resistant and non-drug resistant
mutants, were randomly assigned to one of five sets. For
each cross-validation one of the five sets was reserved
for testing and the other four used to train the machine.
At the end of validation, the average error across the 5
tests was calculated. For classification, the accuracy (Eq. 1),
sensitivity (Eq. 2) and specificity (Eq. 3) were calculated,
and regression reported R2 value.

Accuracy ¼ TP þ TN½ �= TP þ FN þ TN þ FP½ �
ð1Þ

Sensitivity ¼ TP= TP þ FN½ � ð2Þ
Specificity ¼ TN= TN þ FP½ � ð3Þ

Where TP, TF, FP, and FN are the true positive, true
negative, false positive and false negative, respectively.

Implementation and run-time analyses
The automated prediction server was implemented with
the Python programming language (v. 2.7.6). Open
sourced libraries, BioPython (v. 1.65) for parsing se-
quence data, SciPy (scipy.org, v.0.15.0) for Delaunay tri-
angulation, NumPy (numpy.org, v. 1.9.1) for vector
operations; and scikit-learn (scikit-learn.org, v. 0.16.1)
for different machine-learning algorithms, were applied
to construct the system. The application architecture
consists of the client front end, HTML and shell-based
processes, PHP and Python, for analysis. Tests were per-
formed on a DELL PRECISION T5500 with two Intel®
Xeon E5607 CPU, 8 cores available, and 24 GB RAM
running Ubuntu 10.04.

Results
Datasets
The 210 dimensional vectors were constructed from the
genotype-phenotype datasets for classification and re-
gression analysis. The details of the preprocessing of the
sequence and resistance values are described in
Methods. After the expansion of genotype data to

unique protein sequences, there were 11,314 to 13,795
unique sequences of HIV PR mutants and 4,540 to
259,347 sequences of RT mutants for the various resist-
ance values to the inhibitors. The reconstructed se-
quences of PR include wild type and mutants with a
maximum of 31 substitutions. For RT datasets, the re-
constructed datasets contain wild type and mutants with
a maximum of 35 mutations. The expanded datasets
were used for the model learning and validation of
learned models.

Regression on resistance to inhibitors of PR and RT
The KNN and RF regression analyses were performed
on genotype-phenotype data for HIV PR and RT to
predict the resistance values of the query samples.
The R2 values are listed in Tables 1, 2 and 3 as the
average of all the R2 values from the 5-fold analysis.
The analysis for eight PR inhibitors gave R2 values of
0.719–0.928 for KNN regression and 0.772–0.953 for
RF (Table 1). Both KNN and RF regressions gave high
R2 values with standard deviation lower than 0.05 for
all PIs, except for TPV. In comparison, we reported
lower R2 values of 0.579–0.783 for multi linear re-
gression on seven PIs using a smaller dataset [7]. For

Table 1 Regression on predicted resistance for eight PR
inhibitors

RF Regression KNN Regression
R2 values R2 values

mean stddev mean stddev

SQV 0.858 0.034 0.719 0.042

LPV 0.953 0.010 0.928 0.013

FPV 0.859 0.027 0.822 0.032

DRV 0.920 0.019 0.924 0.019

ATV 0.906 0.016 0.851 0.032

NFV 0.909 0.026 0.836 0.020

TPV 0.772 0.147 0.735 0.102

IDV 0.890 0.023 0.794 0.045

Table 2 Regression on predicted resistance for six NRTIs

RF Regression KNN Regression
R2 values R2 values

mean stddev mean stddev

AZT 0.881 0.040 0.816 0.051

DDI 0.924 0.116 0.960 0.011

D4T 0.974 0.023 0.918 0.055

3TC 0.989 0.002 0.968 0.002

ABC 0.773 0.188 0.785 0.135

TDF 0.964 0.008 0.903 0.034
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six NRTIs, RF regression gave R2 values of 0.883–
0.989 and KNN regression gave R2 values of 0.816–
0.986 (Table 2), again showing an improvement over
the earlier results of 0.614–0.975 for multi linear
regression on six NRTIs. Even higher R2 values of
0.937–0.995 for RF regression and 0.895–0.980 for
KNN regression were obtained for four NNRTIs
(Table 3). The previous results for three NNRTIs gave
R2 values of 0.850–0.904 for multi linear regression.
Thus, both KNN and RF regressions improve the R2

values and show reasonable standard deviations over
calculations with multi linear regression. Therefore,
the graph based encoding with regression had out-
standing predictions of resistance to eight PR inhibi-
tors and ten RT inhibitors.

Classification using k-nearest neighbor
KNN algorithm is widely used as a supervised learning
classifier for the machine learning classification. Five-
fold cross validation tests were performed, the results
are shown in Tables 4, 5, and 6 for HIV-1 PIs, HIV RT
NRTIs, and NNRTIs, respectively. Using KNN shows
high values of accuracy, sensitivity and specificity. For
classification of resistance of protease inhibitors, the
values calculated for accuracy, sensitivity and specificity
have a low of 0.963 and a high of 0.99. Resistance to
NRTIs is classified with accuracies of 0.986–0.991, sensi-
tivities of greater than 0.984 and specificities of greater
than 0.986, while for NNRTIs the classification was su-
perior showing values over 0.983 for accuracy, sensitivity
and specificity. The run times of 5-fold validation with
KNN ranged from 5.1 to 1283.7 s.

Classification using random forest
The predicted and observed phenotype were compared
and the results are shown in Tables 7, 8 and 9 for HIV
PIs, RT NRTIs and NNRTIs, respectively. RF classifica-
tion provides superior values for accuracy, sensitivity
and specificity for all PR and RT inhibitors. Resistance
to protease inhibitors was classified with the values for
accuracy, sensitivity and specificity calculated at 0.98–
0.99. Resistance to NRTIs is classified with values of
greater than 0.99 for accuracy, sensitivity and specificity,
while for NNRTIs the classification performance also
achieved values of over 0.985. We recorded the run time
of 5-fold validation with RF classifier, the performance
ranged from 2.2 to 69.3 s for 10 RT inhibitors.
The KNN classification algorithm is capable of hand-

ling large volumes of data in near real-time which makes
it eminently suitable for deployment in an automated
webservice [22]. In our tests, the KNN and RF classifica-
tions provide higher accuracy compared to our previous
results where the values for accuracy were calculated in
the range of 0.93–0.99 for SVM and ANN classifications
[7], as well as improved R2 values from regression ana-
lyses. These results suggest both algorithms perform well
with the high dimensional data and a large number of
training examples.

Discussion
This unified sequence-structure encoding gave high ac-
curacy in initial tests on four PIs [16] and subsequent
expansion to seven inhibitors of HIV PR and nine

Table 3 Regression on predicted resistance for four NNRTIs

RF Regression KNN Regression
R2 values R2 values

mean stddev mean stddev

EFV 0.985 0.008 0.980 0.009

NVP 0.995 0.001 0.986 0.001

ETR 0.955 0.022 0.929 0.020

RPV 0.937 0.022 0.895 0.044

Table 4 Classification using KNN for resistance to PIs

SQV LPV FPV DRV ATV NFV TPV IDV

Accuracy 0.973 0.979 0.971 0.989 0.982 0.981 0.985 0.979

stddev 0.003 0.003 0.005 0.003 0.002 0.001 0.002 0.002

Sensitivity 0.965 0.977 0.963 0.988 0.979 0.976 0.986 0.976

stddev 0.005 0.004 0.008 0.005 0.005 0.002 0.004 0.002

Specificity 0.980 0.981 0.980 0.990 0.986 0.985 0.984 0.982

stddev 0.004 0.003 0.005 0.004 0.002 0.002 0.003 0.005

Run time 17.2 18.3 21.0 5.1 18.5 31.8 8.8 26.4

Table 5 Classification using KNN for resistance to NRTIs

AZT DDI D4T 3TC ABC TDF

Accuracy 0.988 0.989 0.991 0.992 0.990 0.986

stddev 0.002 0.001 0.001 0.001 0.001 0.002

Sensitivity 0.984 0.986 0.989 0.988 0.988 0.985

stddev 0.003 0.001 0.002 0.002 0.001 0.002

Specificity 0.991 0.991 0.993 0.995 0.991 0.986

stddev 0.002 0.001 0.001 0.001 0.002 0.003

Run time 98.5 142.7 144.7 143.1 166.3 56.1

Table 6 Classification using KNN for resistance to NNRTIs

EFV NVP RPV ETR

Accuracy 0.996 0.996 0.987 0.995

stddev 0.000 0.000 0.001 0.001

Sensitivity 0.996 0.995 0.983 0.992

stddev 0.000 0.001 0.003 0.002

Specificity 0.997 0.997 0.992 0.997

stddev 0.000 0.001 0.003 0.001

Run time 1199.8 1283.7 7.2 48.9
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inhibitors of RT [7]. Here, we used an expanded data
set, which included more genotype/phenotype data and
additional data for two drugs, darunavir and amprenavir.
We also evaluated machine learning tools with imple-
mentations that are compatible with web services. Re-
gression and classification analysis on resistance data
were performed for eight inhibitors of HIV PR and ten
inhibitors of RT. Both KNN and RF regressions provide
better R2 values than the multi-linear regression applied
in our previous study [7]. The lower R2 values obtained
from multi-linear regression may occur because the
structural effects induced by the multiple mutations are
not interacting linearly. Each single mutation can have
various effects on the overall function of the protein,
such as altering the interactions between the protein and
its inhibitor, altering the catalytic activity and changing
the stability of the protein, however, the mutations accu-
mulate in different combinations to produce higher level
resistance, which makes it difficult to interpret pheno-
typic data though linear regression. In the case of HIV
PR, different sets of about 20 mutations produce high
level resistance by altering the structure, activity and
inhibition as reviewed in [23].
Classification with KNN or RF methods also had high

accuracies for predicting the drug resistance for PR and
RT inhibitors. Importantly, both algorithms can reliably
predict the phenotype of an unknown sample because
the prediction of query sample relies on how well the
features match with the training sample. One weakness
of applying KNN or RF regression is that the interpreted

phenotypic values cannot exceed the cutoff values ob-
tained from the experiment in the training space.
The current implementation of the encoding scheme did

not handle deletions or insertions in the protein sequence.
Another group applied a normalized protein sequence to
extract features for the machine learning [24]. A future dir-
ection for this research is to expand the representation to
handle insertions and deletions using normalization tech-
niques similar to those explored in our previous work [21]
for proteins of varying sizes.

Conclusions
Our unified encoding of protein sequence and structure
using Delaunay triangulation results in a unique 210 elem-
ent vector for each protein, which is a compact and efficient
representation. The application of the unified encoding as a
feature vector for machine learning provides an accurate
prediction of HIV drug resistance from genotype data. This
approach has been implemented in a practical webservice.
The webserver for predicting resistance is freely available at
http://apollo.cs.gsu.edu/~bshen/html/index.html.
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Table 7 Classification using RF for resistance to PIs

SQV LPV FPV DRV ATV NFV TPV IDV
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Table 8 Classification using RF for resistance to NRTIs

AZT DDI D4T 3TC ABC TDF

Accuracy 0.994 0.993 0.994 0.997 0.994 0.992

stddev 0.001 0.001 0.001 0.001 0.000 0.001

Sensitivity 0.994 0.993 0.993 0.997 0.994 0.99

stddev 0.002 0.001 0.002 0.001 0.001 0.003
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Table 9 Classification using RF for resistance to NNRTIs
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stddev 0.000 0.000 0.003 0.000
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stddev 0.000 0.001 0.006 0.001
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