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Abstract

Background: Under both physiological and pathological conditions gene expression programs are shaped through
the interplay of regulatory proteins and their gene targets, interactions between which form intricate gene
regulatory networks (GRN). While the assessment of genome-wide expression for the complete set of genes at a
given condition has become rather straight-forward and is performed routinely, we are still far from being able to
infer the topology of gene regulation simply by analyzing its “descendant” expression profile. In this work we are
trying to overcome the existing limitations for the inference and study of such regulatory networks. We are
combining our approach with state-of-the-art gene set enrichment analyses in order to create a tool, called
Regulatory Network Enrichment Analysis (RNEA) that will prioritize regulatory and functional characteristics of a
genome-wide expression experiment.

Results: RNEA combines prior knowledge, originating from manual literature curation and small-scale experimental
data, to construct a reference network of interactions and then uses enrichment analysis coupled with a two-level
hierarchical parsing of the network, to infer the most relevant subnetwork for a given experimental setting. It is
implemented as an R package, currently supporting human and mouse datasets and was herein tested on one test
case for each of the two organisms. In both cases, RNEA’s gene set enrichment analysis was comparable to state-of-
the-art methodologies. Moreover, through its distinguishing feature of regulatory subnetwork reconstruction, RNEA
was able to define the key transcriptional regulators for the studied systems as supported from the literature.

Conclusions: RNEA constitutes a novel computational approach to obtain regulatory interactions directly from a
genome-wide expression profile. Its simple implementation, with minimal requirements from the user is coupled
with easy-to-parse enrichment lists and a subnetwork file that may be readily visualized to reveal the most
important components of the regulatory hierarchy. The combination of prior information and novel concept of a
hierarchical reconstruction of regulatory interactions makes RNEA a very useful tool for a first-level interpretation of
gene expression profiles.
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Background
The advent of high-throughput genomics that started
with DNA microarrays and is now rapidly shifting to
next-generation-sequencing, has been producing a vast
amount of information regarding a variety of cellular func-
tions. In the context of gene expression measurements,
genome-wide profiling approaches through RNASeq have
made possible the monitoring of gene expression at
unprecedented resolution, allowing not only the detection
of genes present in the cell in only a few mRNA copies,
but also revealing the transcriptional complexity reflected
in the use of alternative transcript isoforms [1–3]. In this
sense, the output of all genome-wide expression profiling
approaches, summarized in lists of differentially expressed
genes, may be seen as an accurate reflection of the intri-
cate regulatory dynamics that reshape the expression pro-
grams of a cell even, under the most subtle perturbations.
Such differentially expressed (DE) gene lists are often
quite extended, including a great number of genes, for
which there is little if any knowledge related to the system
under study. In this regard, considerable effort has been
directed towards methods for the efficient analysis and
interpretation of whole transcriptome read-outs [4–6].
Such analyses focus mostly on the testing of DE genes for
enrichment in various functional groupings, such as Gene
Ontology (GO) terms [7], or molecular pathways such as
those compiled by the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [8]. Biologists have thus to choose
from a variety of existing tools for data analysis and
interpretation.
Over the years, the accumulation of genome-wide data

has increased the possible gene groupings and categori-
zations, for which enrichment analyses may be con-
ducted. These may now include protein families,
molecular signatures defined under certain pathological
conditions, chromosomal territories or co-expressed
gene clusters obtained through meta-analyses of publicly
available datasets [9, 10]. Among the various available
gene categorizations, those referring to gene regulation
are of particular interest, not only because of their
wealth, encompassing predicted and experimental tran-
scription factor binding sites and miRNA targets, but
mainly because of their potential in inferring the gene
regulatory program responsible for the observed expres-
sion profile.
Gene regulation takes place in various stages among

which, transcription is the one most readily analyzed
and easy to quantify. Given a certain stimulus or under
specific conditions, the relative abundance of a great num-
ber of mRNA species may vary due to both orchestrated
changes resulting from the activation of a particular gene
expression program and random noise. The main goal of
a functional analysis at the regulatory level will thus be to
distinguish between the two and, moreover, to propose a

hierarchy for the gene regulators involved in the system
under examination. The concept of hierarchical regulatory
interactions between genes is not new. Master regulators
are important drivers of gene expression [11] and defining
them is of primary interest at both experimental [12] and
theoretical levels [13, 14].
In spite of the increase of available information, the

problem of determining the hierarchy of transcriptional
regulators involved in given conditions remains an open
question. The definition of regulatory networks of inter-
action is a complex difficult task that may only be
achieved through the integration of multiple datasets from
various sources (TF binding, miRNA expression, gene ex-
pression etc.). Currently, the reconstruction of such global
networks has been limited in the context of large genomic
consortia (e.g. the ENCODE Project Consortium) [15, 16],
or small unicellular organisms [17, 18], but even in these
cases the resulting networks are extensive and difficult to
interpret. At the same time, gene expression profiles are
rapidly accumulating, exploring a vast amount of possible
regulatory patterns and pressing for more efficient ana-
lysis. In this sense, it becomes plausible to seek ways to
predict the regulatory network using only gene expression
data, in attempts to treat whole genome expression
profiles as a detailed reflection of the underlying
regulatory program.
Accumulating genome-wide data, coupled with detailed

studies has led to the creation of large compendia of well-
defined regulatory interactions for a number of model
species, compendia that are now being compiled in
specialized databases. The use, however, of the reported
resources requires filtering of noisy or trivial information.
HTRIdb [14] contains a large number of interactions
(>50000), the largest part of which are inferred from ChIP
experiments that are known to be extremely noisy.
ORegAnno [19] contains a more moderate number of
regulatory interactions but in many cases these are
reported as based on “unknown evidence” or refer to
unknown genes. Smaller databases such as TRED [20], or
TFactS [15], on the other hand, are built through a more
thorough process that involves manual curation of litera-
ture and public datasets. Finally, there are databases
employing intermediate approaches such as TRRUST
[16], which makes use of a text-mining algorithm
coupled with manual curation of the results to popu-
late a database of ~8000 interactions.
In this work we propose an enrichment analysis tool

that uses high-quality, curated, prior knowledge on
regulatory interactions to infer the hierarchy of gene
regulation from a gene expression profile. The main goal
is to draw significant information and prioritize import-
ant regulators and functional categories from a genome-
wide expression experiment. This is done through a
combination of a) manually curated prior knowledge, b)
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a novel approach for the inference of regulatory net-
works that takes into account their assumed hierarchical
organization. We compiled interactions for the human
and mouse regulomes from four different databases
through a semi-automatic curation process in order to
construct two reference networks. We then employ a
novel algorithm that reconstructs a relevant regulatory
subnetwork based on a combination of enriched regula-
tors and gene target deregulation, given a genome-wide
expression profile. In addition, our method, reports
enriched transcriptional regulators, miRNAs, KEGG
pathways and GO terms in a manner similar to standard
over-representation analysis tools such as DAVID [17],
or Enrichr [9]. Both processes are integrated in an over-
representation analysis tool, called RNEA (Regulatory
Network Enrichment Analysis), which provides highly
informative outputs for the understanding of the bio-
logical system studied (Fig. 1).
We use the proposed methodology to infer regulatory

networks for two test cases, one for each organism for
which we have compiled information (human, mouse).
We show RNEA able to reconstruct networks that are in
agreement with existing knowledge of the systems under
study, while at the same time they provide lists of add-
itional candidate genes being involved in key processes.
Our implementation shows RNEA to be a very useful
resource for a first-level analysis of gene expression
datasets in order to gain insight in the system of study
and to obtain leads for genes and proteins of primary
importance.

Methods
Pipeline
The Regulatory Network Enrichment Analysis tool
(RNEA) is based on a collection of regulatory interac-
tions compiled from manually curated databases. RNEA
uses prior knowledge, coupled with standard statistical
methods for the inference of active regulators, miRNAs
and functional categories. Most importantly, RNEA ex-
tracts the presumably active regulatory subnetwork from
a global gene regulatory network (GRN) based on the
calculated transcriptional regulator - gene target enrich-
ments, showing how significantly enriched regulators
interact with their target genes and between each other.
RNEA receives a gene expression profile, in the form of
a complete list of differential expression values as input.
This should include gene name identifiers coupled with
differential expression values and significance p-values.
Based on this list of differential expression, fold-change
values and their accompanying p-values, it calculates
enrichments for particular gene groupings. The output
of RNEA is dual; on one hand it produces lists of over-
represented gene categories in the form of current state-
of-the-art approaches, but most importantly, it provides

the user with a regulatory subnetwork file where the
relevant gene interactions are registered. The lists can
help identify important regulators and functions, while
the created regulatory subnetwork, provides a view of
the transcriptional regulation at a system level and may
enhance the interpretation of a genome-wide expression
experiment.
RNEA has been developed in R, aiming to be a cross-

platform and easy-to-use tool. It is compatible with
widely used differential expression analysis software such
as Cufflinks [2], EdgeR [18] and DESeq [21] and may
therefore be easily incorporated in already existing
pipelines. Its results are displayed as HTML files with
sortable tables, which include the corrected p-values for
the functional and the regulatory groups respectively for
greater ease of use. The regulatory subnetwork is
extracted in a tab separated file format in order to be
compatible with typical network visualization software,
such as Cytoscape [22]. The source code, alongside the
reference networks for human and mouse and detailed
documentation may be found at: https://sites.google.com/
a/fleming.gr/rnea/.

Resources
In order to create a highly-confident dataset of transcrip-
tional regulator–gene target interactions we searched for
databases, which mainly contain experimentally validated
or manually curated interactions. With these criteria,
TRED [20], TFactS [15], Oreganno [19] and TRRUST [16]
were chosen and lists of human and mouse regulator–
gene-target interactions were created separately. TRED is
a database designed as a resource for gene regulation. It
has gathered data for many elements of regulation, such
as promoters, many of which are annotated with compu-
tational tools produced by the same group. Their analysis
is done genome-wide for human, mouse and rat. In this
way, TRED combines promoter annotation with experi-
mental results to assign target genes to transcriptional
regulators, assignments, further refined through manual
curation of the results and validation from the literature.
TRED was organized in modular gene regulatory net-
works (GRNs) that were created and uploaded in the form
of network figures (https://cb.utdallas.edu/TRED/GRN/
grn.htm). These GRNs include visual representation of 34
transcription factor (TF) families. All images for human
and mouse were downloaded and, in a thorough and
time-consuming procedure, each interaction was recorded
in a tab-separated text file.
Most of the interactions TFactS includes, overlap the

dataset compiled by TRED. Most of the non-overlapping
interactions are based on manual curation of literature
articles, missing from the TRED reference database. We
only kept species-specific interactions because in spite of
the extended conservation between human and mouse
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at gene level, one cannot rule out significant differences
existing at the level of protein-protein and protein-DNA
interaction hierarchies between the two species. This
was observed in the case of TRED, where in many cases
the GRNs in human and mouse significantly differed for
the same TF family.
TRRUST is a large database with literature-curated

regulatory interactions. The authors, combining text
mining in around 20 million abstracts and manual
curation of the results, identified ~8000 interactions
between ~750 TF and ~2000 target genes. The only
limitation of this highly informative database is that it

only contains data on the human regulome. ORegAnno,
on the other hand, includes TF-target genes interactions
for many species. Annotation is collected from users
worldwide, which brings about an inherent variability in
the confidence with which each interaction may be re-
ported. The representation of interactions from different
resources in our reference network is indicative of the
fragmentary nature of the data, available in various data-
bases. For the human reference network less than 0.5 %
of interactions were shared between all databases (the
same percentage for mouse was 1.5 %). TRRUST shared
14 % of interactions with the precompiled TRED-

Fig. 1 RNEA detailed workflow. RNEA, given a differential expression file (yellow node) of a genome-wide expression experiment (gray node) and
based on highly confident prior knowledge (light green nodes) and manual curation (red nodes), extracts lists (purple nodes) of regulators and
functional categories whose targets and members respectively are overrepresented among deregulated genes. Additionally, RNEA extracts the
regulatory (or functional or global) network “activated” in the specific experiment
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TFACTS human interaction set, while Oreganno had no
more than a 10 % overlap with either TRRUST or TRED-
TFACTS. In the case of the mouse reference network, for
which no data were available in TRRUST, 95 % of the in-
teractions originated from TRED and TFactS. A graphical
representation of the partitioning of interactions in our
reference networks may be seen in Fig. 2.
For all the above reasons, the interactions that had un-

known evidence or unknown target genes were excluded
from our collection, aiming to keep the most reliable
portion of the contained information. Aiming at creating
a compendium of as reliable as possible regulator-gene
target interactions, we only considered interactions
supported by manual literature curation and small-scale
experimental validation and disregarded the ones solely
based on computational approaches (e.g. automated
text-mining) or originating from high-throughput exper-
iments. Compilation of these interactions, led to the
creation of two separate flat files comprising the total
number of regulatory interactions for human and mouse
respectively. We were thus able to create an overall
“reference” regulatory network for each of the two
species. The human regulatory network contained 5154
nodes and 16351 interactions while the one correspond-
ing to mouse constituted of 1515 nodes and 3096 inter-
actions (being significantly smaller than the human one
due to the fact that TRRUST contained no mouse inter-
action data). Analysis of the constructed networks
showed them to fit well with the assumed scale-free
organization of regulatory networks in agreement with
theoretical predictions and experimental data [23, 24].

The human reference distribution of node-degree
values follows a power-law with an exponent close to −2
(see Fig. 3). At the same time, each transcriptional
regulator was coupled with the list of its gene targets
found in the network. These gene sets formed RNEA’s
regulatory grouping, used in the enrichment analysis
step in order to prioritize transcriptional regulators in
a given experiment.
Interactions between miRNA and protein coding genes

were also compiled in a way that focused on experi-
mentally validated datasets. Data were retrieved from
Tarbase [25], currently the biggest repository contain-
ing experimentally validated miRNA-gene interactions.
Tarbase also includes various types of information for
each interaction, and computational predictions of
microT [26], a computational approach for miRNA
target prediction that is based on a combination of
experimental data and sequence conservation. The
extraction of interactions from Tarbase was performed
for human and mouse in a way that excluded all
interactions which were not experimentally validated,
which resulted in two lists containing 1573 and 407
interactions respectively.
RNEA also provides standard enrichment tables for

Gene Ontology and Pathway annotations, the latest ver-
sions of which were downloaded from the corresponding
web resources. Data for GO were obtained from the
Gene Ontology Consortium (http://geneontology.org/)
and Biological Pathway annotations were retrieved from
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/kegg/).

Fig. 2 Overlap between recorded regulator-gene target interactions that were compiled for the purposes of our analyses for (a) the human and
(b) the mouse reference network
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Implementation
RNEA performs analysis at two levels. After performing
a typical enrichment analysis at the levels of GO, KEGG
Pathways, miRNA and protein transcriptional regulators
(TF), it couples the latter with a search in the corre-
sponding reference regulatory network, in order to
extract a subset of interactions and to reconstruct the
most informative regulatory subnetwork.
At a first level, RNEA employs a standard over-

representation analysis in order to calculate the enrich-
ment of deregulated genes among certain categories. In
this way, it requires defined fold-change and p-value
thresholds, which may be provided by the user. As this
is a typical example of a statistical experiment of draw-
ing an object from a finite population which has two
distinct states without replacement, the hypergeometric
test is used to calculate the significance of the enrich-
ment. RNEA differs from most tools in the sense that it
automatically performs three different types of enrich-
ments, aiming to find regulatory (TF, miRNA) or func-
tional (KEGG pathways, GO terms) components whose
members are over-represented among a) overall DE genes,
b) strictly over-expressed or c) strictly under-expressed
genes. It thus also processes information separately for
genes whose expression is increased or decreased. Report-
ing is performed through ranked lists of enrichment, after

conducting a suitable FDR correction for multiple testing.
The output is organized in a set of prioritized lists of regu-
lators and functional groups.
At a second level, RNEA builds on the list of differen-

tially expressed transcriptional regulators to create a
network of regulatory interactions. It does so by tracing a
subnetwork on the reference network, using a bottom-up
approach that aims to reconstruct a relevant hierarchy of
regulation. This includes the following steps:

1. A profile is created for each transcriptional regulator
containing all of its target genes. These first-level
regulators are called “parent” regulators.

2. If any of the target genes is also a regulator, it is
linked to both its “parent” regulator and its
“daughter” targets, thus creating a series of
second-level interactions.

3. This two level profile is then used in order to extract
nodes and interactions from the reference network
according to three simple rules:

o A regulator is included in the subnetwork if it is
differentially expressed.

o First-level targets of the regulator are included
in the subnetwork if they are differentially
expressed.

Fig. 3 a A graph of a subset of the Human Reference Network containing regulator and gene-target interactions as compiled by TRED and TFactS
only. b Node-degree rank distribution of this network shows an extensive linear relationship on a double logarithmic scale which is a hallmark of
“small world”, scale-free networks. The shape and exponent of this plot do not change significantly when the complete reference network is taken
into account
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o First-level targets of the regulator are included
in the subnetwork even if they are NOT
differentially expressed as long as their “parent”
regulator and a second-level “daughter” target
are both differentially expressed

In this way, a possibly “hidden” layer of regulation is
included in the network based on the inference of
combined differential expression that is assumed to be
hierarchical (see Fig. 4 for details).

4. The size of the profile and the number of deregulated
genes in the profile are used for the statistical
calculation of the enrichment as described above.

Our final goal is to capture the hierarchical structure
of gene expression regulation and impart more depth in
the regulatory network extracted. We chose to constrain

our analysis to two hierarchical levels for two reasons:
One is that a significant proportion of interactions
(~70 % for human) are 1st-level interactions that lead
directly from a regulator to a leaf end node in the
network. It is thus reasonable to expect that a two-level
approach will encompass the overwhelming majority of
interactions. The second reason is that, by attempting to
track the small proportion of higher-level (>2) interac-
tions, we would inevitably incorporate a great number of
cyclic-interactions in the parsing of the network. This
would bring about a significant slowing down of the
whole process. Restricting our analysis to two levels we
thus achieve the most efficient ratio of retrieved infor-
mation over processing time. RNEA progressively builds
a flatfile, which contains a subset of the initial reference
“super-network”. This may be directly visualized through
open-source network visualization and analysis plat-
forms. Images presented in this paper were produced

Fig. 4 Workflow of the regulatory network inference. For each TF, a two-step profile of its targets is created. This profile includes the TF’s targets
and its targets’ targets. If a TF is differentially expressed the regulatory subnetwork inferred consists of two types of interactions. First, the TF/target
gene pairs when both TF and target gene are differentially expressed (e.g. Regulator-B interaction) and the TF/target-gene/target-of-target-gene
when TF and target of target are differentially expressed, regardless of the expression status of the first-level target (e.g. Regulator-B-B2, Regulator-C-C1).
See Methods for more details

Chouvardas et al. BMC Bioinformatics 2016, 17(Suppl 5):181 Page 325 of 415



with Cytoscape [22]. One of the advantages of RNEA
compared to other similar approaches is that it may
incorporate protein and miRNA regulators in the same
network. This is achieved via the incorporation of infor-
mation from both transcriptional regulator and miRNA
interactions.

Running RNEA
RNEA is implemented as an R package which may be
downloaded from https://sites.google.com/a/fleming.gr/
rnea/home. It only requires one additional R package
called “SortableHTMLTables” which is used in order to
report the results in HTML format. RNEA currently ac-
cepts HUGO and RefSeq gene names as gene identifiers.
It is also advised that users report differential expression
as log2(fold-change) values in accordance with standard
software. Nevertheless, the user may analyze data sets
with non-standard differential expression values as long
as he suitably adjusts the corresponding parameters.
Both fold-change and p-value thresholds are set by the
user, since quite often criteria need to be relaxed or
made stricter in order to result in a reasonable number
of differentially expressed genes that is sufficient for a
statistical functional analysis.
The selection of the type of the identifier is done by

the user with the use of an argument (Identifier) which
can either be “GeneName”(default) or “Refseq”. Default
usage produces tables of enriched GO categories, KEGG
Pathways, Transcription Factors and miRNA that may
be directly visualized on a browser as html files. Net-
work reconstruction may be conducted in two different
ways:

1. A “global” network that includes TF, miRNA and
functional categories connected with their respective
gene members that are enriched in differentially
expressed genes. The goal of this approach is to
extract central regulatory or functional components
with the use of Network properties. The combined
regulatory/functional network is extracted with the
use of the network = “global” argument.

2. Only functional or only regulatory networks can be
extracted with the use of the respective setting
“functional”, or “regulatory” of the network
argument. Given that RNEA’s main aim is producing
concise and summarized regulatory networks,
“regulatory” is the default argument.

Other parameters include the species from which
expression values have been obtained (“Human”,
“Mouse”) and the output type (“html” or “csv”).
More details may be found here: https://sites.google.com/

a/fleming.gr/rnea/manual.

Results
Inferring important regulators from genome-wide
expression experiments is a complex problem. There are
only a couple of available tools which may help in the
definition of master regulators mostly by finding over-
represented binding motifs in deregulated genes. TFactS
is the only tool using a similar enrichment approach to
ours, but it has significant limitations in terms of the
number of studied regulators. TRRUST [16] represents a
recent attempt to provide a golden standard, against
which regulatory networks may be tested. Nevertheless,
the variability of expression programs is immense and
the underlying complexity of gene regulation suggests
that very different networks may be produced with even
mild changes in cellular conditions. In this sense, already
available networks can only serve as providing the “refer-
ence” interactions, among which each condition may
choose combinatorially. RNEA’s aim is providing a
framework for revealing such combinations of known
interactions. Its distinguishing features are that a) it
focuses on well-documented regulatory interactions b) it
aims at capturing the hierarchical structure of the net-
work by the two-level scanning of regulator profiles and
c) that it incorporates miRNA and protein regulators in
a common regulatory network (see Methods). From the
application’s point of view, RNEA is rather straightfor-
ward and in principle can be run with only a small list
of prerequisites.
RNEA is able to infer, in a single run, both regulatory

and functional enrichments from raw differential expres-
sion data. To date there are only a couple of similar
methodologies whose scope however differs from RNEA.
SPIA [27] implements a perturbation analysis to infer
the significance of a given pathway based on the differ-
ential expression of its genes, while taking into account
the topology of the pathway network. In this sense, it
aims at a better and more accurate assessment of path-
way deregulation based on the reported interactions and
its final output is a list of deregulated pathways. PARA-
DIGM [28] employs a similar approach through the
additional incorporation of multiple omics and genetic
data. Finally GGEA [29] is similar to our approach in
terms that it combines gene expression and regulatory
interactions aiming at an initial refinement of differen-
tially expressed genes list, which it then uses for a gene
set enrichment analysis. Compared to the above, our
method’s distinguishing characteristic is that it projects
DE gene lists on a reference map of regulatory interac-
tions to infer a subnetwork of relevance to the particular
gene expression profile. Providing the subnetwork re-
construction as primary output is thus RNEA’s particular
feature, but the lack of similar approaches makes its
cross-validation quite difficult. In order to assess its
predictive power we have here applied it in cases of
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well-defined systems, for which there is documented
knowledge of the underlying regulatory program. This is
an approach also undertaken by the aforementioned
methods [27, 29]. In this context, we chose to validate
our methodology in two publicly available datasets ori-
ginating from the two species for which RNEA provides
information, a genome wide expression profile of cancer-
ous versus normal human colon tissue samples and a
gene profile of mouse RAW264.7 macrophage cells,
stimulated with LPS.
In the following section, we briefly present the results

of the analysis of the 2 test cases conducted with RNEA.
As our method focuses primarily on transcriptional
regulation we were more interested in assessing the
robustness of the regulatory networks. In this sense, we
attempted to validate the primary nodes of the deduced
networks from the existing literature.

Human test case
Colorectal cancer is the third most common type of
cancer and the second most common cause of cancer
death in the human population [30]. Despite a consider-
able amount of evidence delineating biological pathways
related to the disease, the characterization of regulatory
networks in cancer remains an open problem due to the
great number of disease subtypes and the overall
variability of the phenotypes.
In an attempt to predict a regulatory subnetwork for

colorectal cancer, we obtained genome-wide expression
data from 104 patients and 46 healthy individuals, that
were normalized with robust multi-array average (RMA)
and presented in a form suitable for RNEA analysis
(log2(FC) of gene expression alongside the correspond-
ing p-values) from [31] (GEO Accession: GSE21510).
Patients with distant metastases were selected in order
to assess the metastatic potential conferred to the
disease by candidate gene markers. Using standard fold-
change and p-value thresholds we obtained 148 DE
genes. The functional analysis conducted with RNEA re-
sulted in a number of deregulated GO terms and KEGG
pathways that may be accessed in Additional file 1.
Below we focus on the regulatory analysis.
The resulting global network, (including transcrip-

tional regulators, miRNA and GO categories) is depicted
in Fig. 5a. A major module of regulators that is central
to the network is formed by STAT1, KLF4 and TP53,
(node size and color is dependent on the betweenness
centrality of each node). This figure is representative of
the detail that most existing tools of functional analysis
may confer, the degree of which makes the interpret-
ation of the results rather complex difficult. In Fig. 5b,
we present the subnetwork obtained from regulatory in-
teractions alone. In this, we see a positive feedback loop
between TP53 and STAT1 being in close connection

with KLF4. STAT1 has been shown to stimulate inflam-
mation in tumor cells and to trigger anti-proliferative
and pro-apoptotic response [32] a role that is compatible
with its interaction with TP53 and its well-known anti-
oncogenic activity [33]. STAT3, another member of our
network has also been heavily involved in cancers where
STAT1 is upregulated. KLF4 is also particularly interest-
ing as it is known to be an epithelial-specific transcrip-
tion factor that is mainly active in the gastrointestinal
tract [34]. The fact that it holds a central position in our
network may come as a strong indication of RNEA’s
ability to infer tissue-specificity from gene expression
profiles. At another level, KLF4 upregulation has been
shown to correlate with the degree of differentiation of
normal cells to cancerous ones [34] and has been
considered a marker of poor survival in CRC patients
[35] which makes it even more important in the exam-
ined setting, where the majority of the cases involved
distant metastases.
At the periphery of our network, apart from a set of

rather expected regulators whose relation to cancer is
well known (FOS, JUN, EGR1 and MYC) we find a set
of secondary metabolism related genes including
HSD17B2, a gene that is involved in lipid biosynthesis
that has been shown to have a prognostic role in colo-
rectal cancer [36]. At the same time all of the reported
miRNA in the network have been reported to have a role
in colorectal cancers. In particular, hsa-miR-26b-5p has
been shown to exhibit a tumor suppressive role [37],
hsa-miR-590-3p has been also known to have increased
expression in colorectal cancers [38] while hsa-miR-
374a-5p has been reported to be beneficial for the
prognosis [39]. An important aspect of RNEA may be
seen here. RNEA by default performs a dual enrichment
analysis separately for over- and under-expressed gene
targets. As expected, all miRNA-genes with significant
enrichments in this setting are enriched primarily to-
wards under-expressed targets. We consider this feature
of great importance since a number of existing methods
merely report enrichment on the basis of differential
expression, regardless of the direction of regulation (acti-
vation or suppression). In certain cases however (miRNA
regulation being a very clear one) this direction should
be taken into account.

Mouse test case
We next analyzed a test case for the mouse genome. We
chose a well-described process of an external stimulus
that is expected to show an inflammatory response,
which we indeed observe through our functional ana-
lyses. We examined an experiment that aimed to analyze
the differences in gene expression of the inflammatory
response in RAW264.7 murine macrophage cells under
stimulation by LPS [40] (GEO Accession: GSE63889).
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Fig. 5 (See legend on next page.)
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Using relatively stringent criteria on differential ex-
pression fold-change and p-value (absolute log2FC > =1,
p-value < =0.05) we ended up with 121 differentially
expressed genes, which were shifted towards over-
expression with a ratio close to 2:1. This is to be expected
given that LPS stimulation of immune cells is known to
bring about an acute generalized response through the
activation of a number of pathways. Functional analysis at
the level of GO and KEGG pathways showed these path-
ways to match the expectations. In this way, inflammatory
pathways including the TNF-NFkB signaling axis, cytokine
and TLR signaling and a range of various infection-
responsive pathways were strongly enriched in upregu-
lated genes (see Additional file 2 for the complete lists).
The resulting regulatory subnetwork for this experiment

may be seen in Fig. 6. As in Fig. 5b, it only contains tran-
scriptional regulators and miRNAs. The network is smaller
than the one obtained in the human case for two reasons.
Firstly because the mouse reference network, from which
interactions are selected, is smaller than the human one
(almost 3.5 times smaller). Secondly, it is reasonable to ex-
pect that the stimulation of macrophages by LPS brings
about a much more concentrated response than the overall
changes taking place in a complex disease such as cancer.
The central role of Tnf is obvious in this network, as is a
strong feed-forward loop between Tnf and Egr1. Such an
interaction has been reported [41] for the same sort of LPS
activation we are analyzing here. After Tnf, another import-
ant node (of high degree) in the network corresponds to
Jun which has been known to mediate the effect of Nfkb in
the activation of the inflammatory response [42]. More per-
ipheral nodes in the network include Nfkb itself, Rel and
Lif all of which are related to the cytokine-related response.
miRNA genes with enriched targets in this network include
mmu-miR-17-5p and mmu-miR-9-5p. Both of these miR
species have been shown to be implicated in the mediation
of inflammatory signaling although their role appears to be
contradictory [43, 44].

Discussion
Reconstructing the hierarchy of gene regulation is an
open question of great importance in modern molecular
biology, one that has not been effectively answered by
the advent of next-generation sequencing technologies
and genome-wide interrogation of gene expression. The
main reasons for this, besides the inherent complexity
of this dynamic process have been a) the scarcity of

high-quality data (or -in contrast- the considerable
amount of noisy information) connecting transcription
factors and their gene targets and b) the lack of user-
friendly methods summarizing the output of genome-
wide expression experiments in a way that will allow
for a fast and meaningful, first-level inspection of the
data. The main goal of the presented work lies on
these two axes: On one hand it aims to produce a
compendium of transcription factor–target genes
interactions that would be as reliable as possible, on
the other, to implement these relationships, alongside
other meaningful, functional information in a simple
approach that would allow biologists to perform a
quick overview of a gene expression experiment, pri-
oritizing their results and putting the spotlight on
highly significant regulatory interactions.
A major limitation of genome-scale experiments

has, since very early, been a lack of summarization in
their analysis. The production of enormous lists of
genes, enriched processes and functions often results
in complicating, rather than assisting in, their inter-
pretation. Key aspects in the process of extracting
knowledge from a large-scale experiment are related
to a) efficient summarization, i.e. compiling the useful
and significant information from a functional point of
view and b) prioritization, the ranking, that is, of the
relevant pieces of information in a way that will help
focus on the most important facets of the results.
RNEA addresses the problem of extensive lists by
producing regulatory networks that combine
prioritization and summarization of the observed
enriched relationships. In this way, it reveals the genes
that are important in the process of transcriptional
regulation in the particular experimental setting. This may
be done either through the assessment of the statistical
enrichment of TF targets’ profiles or by evaluating
network characteristics of the extracted regulatory subnet-
work. Our work’s distinguishing feature is the output of
an “active regulatory subnetwork”, which constitutes the
most probable network of transcription factors being ac-
tive in the studied condition, based on the gene expression
values of their target genes. This also represents the major
advantage of our pipeline, whose main goals are to detect
and report regulatory information in the shape of regula-
tory networks that are of modest sizes, therefore allowing
the user to easily interpret results and plan follow-up
experiments.

(See figure on previous page.)
Fig. 5 a Global (regulatory/functional) network for the human test case colorectal cancer. It includes the regulatory network extracted (as described in
Fig. 1) and the functional categories (GOs and Kegg pathways) which are enriched (P-value Cutoff = 0.05) in DE genes. Node color and size and node
label font size are visualized based on Betweenness centrality, which is an indicator of the centrality of a node in a network. b Regulatory network for
the human test case of colorectal cancer. Node color and size and node label font size are visualized based on betweenness centrality, which is a
measure of the centrality of a node in a network
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When compared to other similar approaches (such as
TFactS or Enrichr) our method’s main differences are
related with the way it infers the regulatory hierarchy.
RNEA does this by employing a two-level hierarchical
approach, by adding at each TF profile the targets of its
targets, if available. In this way TFs which are “higher”
in the known hierarchy will have more targets in their
profile and if an enrichment is found, it will add
significance to the TF lying higher in the hierarchy.
In addition, by checking for enrichment in both up-

regulated and down-regulated genes in two different
calculations, RNEA enables the investigation of
possible dual roles for given TF, while at the same
time to safeguard against contradictory annotation
evidence that often assign inconsistent roles for a TF
based on the literature.
Currently RNEA only supports human and mouse

datasets. Given their relevance from the biomedical
perspective these two organisms (human for obvious
reasons and mouse due to the fact of being the most

Fig. 6 Regulatory network for the mouse test case of LPS-induced macrophages. The layout of the network is hierarchical. Node color and size
and node label font size are visualized based on betweenness centrality, which is an indicator of the centrality of a node in a network
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widely-used mammalian model organism) represent
more than 90 % of the public repositories of gene inter-
action data. Their share of mammalian genome-wide
expression profiles in gene expression databases is prob-
ably even higher. It was therefore reasonable to aim at
the construction of reference networks for these two at a
first level. Nevertheless, the incorporation of information
on other organisms within the RNEA framework is
expected to be quite straight-forward, given that a
sufficient number of experimentally verified regulatory
interactions are reported.
As a final comment, we should point out that RNEA

deduces gene regulatory interactions directly from their
noisy, highly complex end-product which is the relative
abundance of mRNA molecules. In this regard, it is
expected that the predicted networks will also be partly
noisy and contain a reasonable amount of false positives.
We, nonetheless believe, that being able to visualize a
relevant network of interactions in a single step from
your differential expression experiment makes up for a
positive trade-off.

Conclusions
RNEA is a framework for functional analysis of gene
expression experiments, with a primary focus on gene regu-
latory relationships. It is easy to apply on standard gene
expression read-outs, readily producing ranked lists of vari-
ous functional groupings. Its key idea, though, is the deriv-
ation of a network of regulatory interactions. By creating
regulatory subnetworks, RNEA enables a better overview of
the regulatory process through direct visualization. RNEA
benefits from (and also depends on) the accuracy of the
prior knowledge used and the originality of network recon-
struction. Most of the existing functional analysis tools
mainly rely on computational predictions (through PWM)
for the calculation of transcription factor target enrich-
ments, while very few also employ experimental data from
ChIP that are, however, still limited.
The main advantage of RNEA is the originality of the

network approach. To our knowledge this is one of the
few functional analysis tools that aims at the extraction
of a regulatory subnetwork. Most of the existing
approaches in this regard have been implemented in a
sort of ‘personalized’ way, aiming at the interpretation of
specific experiments, instead of proposing a generalized
approach. Further validation of RNEA can mostly take
place with extended use by the community, while refine-
ments in the original reference networks are bound to
increase its potential.

Availability and requirements
Project name: Regulatory Network Enrichment Analysis
(RNEA)

Project home page: https://sites.google.com/a/fleming.
gr/rnea/home
Operating system(s): Multiple platforms
Programming language: R
Other requirements: R package “SortableHTMLTables”
(http://cran.r-project.org/web/packages/SortableHTMLTables/
index.html)
License: GNU GPLv3
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Human Test case results. Additional file 1 is a folder
containing the detailed results of the Human Test case in HTML format.
Each file includes the respective calculated enrichments for TFs, miRNAs,
KEGG pathways, KEGG pathway categories and GO terms. In order to
view the results a standard web-browser is needed (Chrome and Mozilla
Firefox have been tested). The HTML must be opened from inside the
folder because additional files (images and javascripts) which are needed
for the correct view of the results are included. (ZIP 90 kb)

Additional file 2: Mouse Test case results. Additional file 2 is a folder
containing the detailed results of the Mouse Test case in HTML format.
Each file includes the respective calculated enrichments for TFs, miRNAs,
KEGG pathways, KEGG pathway categories and GO terms. In order to
view the results a standard web-browser is needed (Chrome and Mozilla
Firefox have been tested). The HTML files must be opened from inside
the folder because additional files (images and javascripts) which are
needed for the correct view of the results are included. (ZIP 83 kb)
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