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Abstract

Background: We address the problem of integratively analyzing multiple gene expression, microarray datasets in
order to reconstruct gene-gene interaction networks. Integrating multiple datasets is generally believed to provide
increased statistical power and to lead to a better characterization of the system under study. However, the presence of
systematic variation across different studies makes network reverse-engineering tasks particularly challenging. We
contrast two approaches that have been frequently used in the literature for addressing systematic biases: meta-analysis
methods, which first calculate opportune statistics on single datasets and successively summarize them, and data-
merging methods, which directly analyze the pooled data after removing eventual biases. This comparative evaluation is
performed on both synthetic and real data, the latter consisting of two manually curated microarray compendia
comprising several E. coli and Yeast studies, respectively. Furthermore, the reconstruction of the regulatory network of
the transcription factor Ikaros in human Peripheral Blood Mononuclear Cells (PBMCs) is presented as a case-study.

Results: The meta-analysis and data-merging methods included in our experimentations provided comparable
performances on both synthetic and real data. Furthermore, both approaches outperformed (a) the naïve solution of
merging data together ignoring possible biases, and (b) the results that are expected when only one dataset out of the
available ones is analyzed in isolation. Using correlation statistics proved to be more effective than using p-values for
correctly ranking candidate interactions. The results from the PBMC case-study indicate that the findings of the present
study generalize to different types of network reconstruction algorithms.

Conclusions: Ignoring the systematic variations that differentiate heterogeneous studies can produce results
that are statistically indistinguishable from random guessing. Meta-analysis and data merging methods have
proved equally effective in addressing this issue, and thus researchers may safely select the approach that
best suit their specific application.
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Background
Reverse engineering of gene regulatory network is a
vibrant research area [1], whose scope is reconstruct-
ing the biological mechanisms underlying gene activ-
ity. Several types of statistical models and algorithms
have been proposed for deriving and representing
gene interaction networks [2]. Relevance networks [3]
are one of the most basic models, where gene pairs
showing highly significant correlation in their expres-
sion values are assumed to be functionally associated.
Unfortunately, this assumption is not valid when

data from different studies are integratively analyzed.
Systematic biases across studies can originate spurious
correlations that do not actually reflect any interac-
tions among genes. On the other side, they can hide
associations that are actually present among the mea-
sured quantities [4]. These systematic variations are
usually known as “batch-effects”, and they can arise
even when all studies share the same experimental
design and measure the same quantities. The name
originates from systematic biases that are present
across “sample batches” within single studies, due to
small differences in the processing of each batch [5].
Meta-Analysis (MA, [6]) and Data-Merging (DM

[7]) are two approaches widely employed in the litera-
ture for addressing systematic variations in studies
that share the same experimental design. In MA stat-
istical methods are separately applied on each dataset
for obtaining statistics of interest, e.g., differential ex-
pression p-values. The results from each study are
then combined for creating summary statistics. The
latter approach merges samples from different studies
in a unique dataset, on which subsequent analyses are
performed. While MA methods implicitly take in ac-
count batch-effects, DM require suitable Batch-Effect
Removal (BER) algorithms [8].
In this work we compare meta-analysis and data-

merging methods in the context of retrieving gene-gene
interactions in compendia of microarray studies. To this
scope we compiled two different collections of micro-
array experiments, containing 11 and 7 studies on
Escherichia coli and Yeast, respectively. For each collec-
tion we identified candidate interactions for multiple
transcription factors by combining relevance networks
with meta-analysis and data-merging methods, in turn.
The candidate interactions are then compared against
lists of known, experimentally verified interactions, in
order to contrast the effectiveness of MA and DM
methods in retrieving actual relationships.
The comparison between the two approaches is further-

more deepened on synthetic data, where a large variety of
scenarios is simulated across different networks, levels of
systematic bias, number of considered studies and number
of samples in each study. All experimentations underlined

that batch-effects are detrimental for the analyses, and
that MA and DM prove similarly effective in addressing
issues arising from systematic variations.
Finally, we present an application on human Periph-

eral Blood Mononuclear Cells (PBMCs), for the recon-
struction of the Ikaros transcription factor regulatory
network. For this specific application we used a
Bayesian-Network, constraint-based learning approach
in place of relevance networks, providing evidences that
the results of this study transfer on more complex
network-learning approaches.

Related work
To the best of our knowledge, there is no other study that
systematically contrasts MA and DM methods in the con-
text of retrieving gene-gene interactions. Several studies
exist that evaluate the relative performances of MA
methods for gene network reconstruction [9–14]. In short,
it is not possible to rigorously come to a unique conclu-
sion regarding the best meta-analysis algorithm for net-
work reconstruction. The observed discrepancy among
these studies is a result of numerous factors, including
data complexity and heterogeneity, difficulties in deter-
mining a golden truth, and the inclusion of a limited num-
ber of meta-analysis approaches in the experimentations.
The most common MA techniques applied in the

spectrum of gene network reconstruction are based
on Fisher’s method [15, 16], vote counting approaches
[17–19], fixed and random effect sizes [20]. Segal
et al. [21] was the first one that marched towards
unlocking hidden biological knowledge by using meta-
analysis for network reconstruction. Numerous ap-
proaches then followed, as described in [22]. In all
cases, meta-analysis approaches seemed to perform
better than individual reverse-engineering methods.
Similarly, the applicability of data-merging methods in

the context of network reverse engineering has been in-
vestigated in several works [5, 23–27]. In earlier studies,
the vast majority merely used normalization methods to
merge the compendium of expression data [23, 28].
Robust Multi-Array Average method (RMA) [27–29]
seemed to outperform other normalization methods such
as linear scaling procedures based on the median signal
intensity [30], quantile normalization through MAS algo-
rithm [31], GCRMA [32], Dchip PM [33]. However, RMA
normalization proved to be ineffective in removing batch
effects which affect particular genes and may affect differ-
ent genes in different ways [5].
Recent approaches have been developed for identifying

and removing batch effects [8, 24, 34] but have not been
widely used. Such approaches include ComBat [35], Surro-
gate variable analysis (SVA) [36], Distance-weighted dis-
crimination (DWD) [37], Mean-centering (PAMR) [38],
and Geometric ratio-based method [39]. In relevant studies,
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ComBat seems to outperform these methods as it robustly
manages high dimensional data with small sample sizes. A
previous attempt to evaluate the effectiveness of batch ad-
justment methods was made by the MAQC-II project [40].
It is necessary to bear in mind that even the most effective
batch effect removal method cannot sufficiently reduce the
batch effects in cases of poor experimental design [41].
The literature regarding MA and DM application

in the context of differential expression is particu-
larly rich [6, 42–48], and a complete review is out of
the scope of the present work. We point out that we
found only a single study [49] that directly compares
the performances of the two approaches on finding
differentially expressed genes. Interestingly, this
study concludes that both approaches achieve com-
parable results.

Methods
Experimentation protocol
We devised a large experimentation in order to compare
MA and DM methods in several scenarios, meaning
over different biological systems, levels of systematic
bias, number and composition of available studies. For

each scenario we followed the same experimentation
protocol, detailed below and presented in Fig. 1 as well.
Let M be a collection (or compendium) of m microarray

datasets. All studies in M follow the same experimental
protocol, analyze the same type of biological specimens,
and measure the same n expression values (probesets).
However each dataset Dj includes a separate set of sj sam-
ples. This means that each study in M investigates the
same gene-regulatory network, and that the data of all
studies have been generated according to this network.
Thus, any systematic bias across datasets should be due to
(unknown) technical differences occurred during the
measurement process or to the presence of confounding
factors.
For each collection M there is a set T

= {TF1, TF2, …, TFt, …,TF|T|} of |T| transcription factors
of interest. We assume to know the list It of genes that
interact with each transcription factor TFt, i.e., It contains
all genes that are targets of TFt along with the genes that
regulate TFt.
We apply a relevance network approach for retrieving

these known interactions. In detail, for each collection M
and each transcription factor TFt the correlations among

Fig. 1 Experimentation protocol schematic representation. A collection of microarray dataset is assumed to be generated from multiple, independent
studies all following the same experimental protocol and measuring the same quantities. The studies investigate the same biological system regulated
by an unknown gene interaction network. The data collection is analyzed with two different approaches, namely Meta-Analysis and Data-Merging. In
the first approach correlations among transcription factors and genes are first calculated on each dataset and then summarized, while in the latter the
data are merge together, corrected for eventual batch-effects and the correlations are estimated on the pooled data. The correlations retrieved by the
two approaches are then compared with a set of known interactions that partly and possibly noisy reconstruct the original gene interaction network.
Meta-Analysis and Data-Merging approaches are then evaluated on the basis of their ability of assign highly-significant correlations to known interactions
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the expression values of TFt and the remaining n − 1 pro-
besets are calculated over all datasets in M, using in turn
an MA or DM approach. MA algorithms separately com-
pute the correlations on each dataset and then summarize
them, while DM methods pool together the data from all
datasets and directly compute the final correlation values.
Let Ct,i,X be the correlation between transcription factor

t and probeset i produced with the MA or DM method X,
and Pt,i,X the p-value assessing the null hypothesis H0 :
Ct,i,X = 0. The set of n − 1 correlations (p-values) for tran-
scription factor t is indicated as Ct,X(Pt,X). Both Ct,X and
Pt,X are sorted according to the absolute values of the cor-
relations, so that the most relevant associations appear at
the top of both vectors.
Relevance networks postulate that genes included in It

should be strongly correlated with TFt, therefore MA
and DM methods are evaluated with respect to their
ability of assigning highly significant correlations to
known interactions. Different metrics are used to com-
pare each Ct,X against its corresponding It, and DM /
MA approaches are ranked according to their respective
performances.
The following sections describe in detail the experi-

mental and synthetic data collections used in the experi-
mentations, along with the algorithms, correlation
measures and performance metrics included in the
analysis.
All simulations and analyses were performed in the R

software [50].

Data
Escherichia coli data compendium
The regulatory network of the Escherichia coli (E. coli)
K-12 bacterium has been extensively studied [51], and
consequently it is an ideal test bed for our experimenta-
tion. Studies in the GEO repository on E. coli compris-
ing more than twenty expression profiles and using the
Affymetrix E. coli Antisense Genome Array were taken
in consideration for inclusion in the analysis. Imposing a
single microarray platform ensures that all datasets
measure the same probesets. Studies applying experi-
mental interventions known to artificially disrupt gene-
gene interactions, as for example gene knock-out, were
excluded from the compendium. Eleven studies were in-
cluded in the collection, whose characteristics are re-
ported in the (Additional file 1: Table S1), for a total of
six-hundred eighteen samples measured under a variety
of conditions. Probesets without annotations were ex-
cluded from the analysis, leaving a total of 4088 probe-
sets, each corresponding to a specific gene (no gene was
measured by multiple probesets).
The RegulonDB database was used in order to retrieve

known TF-gene interactions in the E. coli regulation
program [52]. This database publicly and freely provides

more than 4131 transcriptional regulatory interactions,
manually retrieved and curated from the literature.
Interestingly, each interaction is assigned to an evidence
class, ranging within the levels ‘weak’, ‘strong’ and ‘con-
firmed’. The level of evidence is determined by the ex-
perimental method used in the original study reporting
the interaction. Experimental procedures where false
positives are prevalent, like computational predictions or
gene expression analysis, are catalogued as ‘weak’. Other
procedures providing evidence of physical interaction or
anyhow excluding explanations alternative to a gene-
gene interaction (e.g., site mutation [53]) are considered
‘strong’. When a regulatory relationship is supported by
multiple, independent strong evidences, then it is classi-
fied as ‘confirmed’.
Preliminary experimentation including all RegulonDB

regulatory relationships led to poor results, close to ran-
dom guessing (results not shown). We hypothesized that
large number of false positives in the weak interactions
could negatively affect the results, thus we decided to
exclude them from the analysis, leaving a total of 2475
strong and confirmed regulatory relationships.
Finally, we decided to consider only transcription fac-

tors having at least three known interactions, for a total
of 124 genes included in TEColi.

Yeast data compendium
The same criteria used for compiling the E. coli compen-
dium were used for building a collection of seven Yeast
datasets, all measured with the Affymetrix Yeast Genome
S98 Array platform and containing a total of four-hundred
twenty seven (427) samples (Additional file 1: Table S2). A
total of 4218 probesets were not associated with a given
gene name, and 149 genes were associated to more than
one probeset. We removed non-annotated genes and we
randomly selected a single probeset for genes with mul-
tiple measurements, leaving a total of 4944 probesets.
Known interactions were retrieved from Yeastract

[54], which is the largest database of this type for the
yeast organism to date, with more than 200,000 reported
gene-gene interactions. Similarly to RegulonDB, Yeas-
tract lists manually curated regulatory relationships re-
trieved from the literature, and it also provides
information about the experimental procedure used for
assessing each reported interactions. We again required
‘strong’ evidence, leaving 257 gene-gene known and reli-
able interactions in the analysis. Also for this compen-
dium genes with at least three known interactions were
included in TYeast, for a total of 44 transcription factors.

Synthetic data
Several collections of synthetic datasets were produced
for better characterizing MA and DM performances
under different scenarios.
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Data were sampled from artificial networks specifically
devised in order to resemble real-life gene regulatory
programs, following the scale-free theory introduced by
Barabási [55]. According to this theory, biological net-
works are not randomly organized, and the number of
connections incident to a node is regulated by the power
law P(k) ~ k− γ, where k is the number of interactions, γ
is a parameter whose value depends by the specific do-
main, and P(k) is the fraction of genes having k connec-
tions. In other words, real-world gene regulatory
programs have few transcription factors (hubs) that
regulate large numbers of genes, while the remaining
nodes have relatively few connections. Each synthetic
network is represented by a Direct Acyclic Graph (DAG)
composed by a set of nodes (genes) V = {1,…, n} and a
set of directed edges E = {(i, j)}. If the edge (i, j) is present
in the network, then gene i is a parent of (regulates)
gene j. The set of parents of node j is indicated as IN(j).
These artificial networks were equipped with a

parameterization suitable for the simulation of gene ex-
pression data and batch effects. Each gene i was associated
with a baseline expression value αi uniformly sampled in
the interval [0, 1], while each edge (i, j) is equipped with a
randomly generated coefficient βij ∈ [−1, − 0.5] ∪ [0.5, 1]
representing the strength of the interactions between i
and j.
Batch-effects across studies are assumed to be com-

posed of an additive and a multiplicative component,
following an approach already used in [24]. The first
component shifts the gene average value, while the
multiplicative error intensifies the sample-specific
variance.
The expression value ysjk for sample s, gene j and study

k is generated as follows:

ysjk ¼ αj þ
X
i∈IN jð Þ

βijysik þ �sj þ γ jk þ δjk�
0
sj

According to this formula, each expression value ysjk is
a linear combination of its baseline value αj and the
expression values of its regulating genes ysik, i ∈ IN(j).
The quantity ϵj is random noise distributed as N(0, 1)
(normal distribution with zero mean and unitary stand-
ard deviation) that represents unmodeled regulatory
mechanisms that concur in determining the expression
of the gene. The two factors γjk and δjkϵsj

' respectively
represent the addictive and multiplicative component of
the systematic bias in study k, and are both randomly
sampled from the distribution N(τ, τ). The random vari-
able ϵj

' is again distributed as N(0, 1).
During our experimentations, five independent synthetic

networks with four-thousand nodes each were created
using the barabasi.game function from the R package
igraph [56]. For each network we simulated different

compendia by varying the number of studies in [5, 10, 50],
the number of samples for each study in [5, 20, 50], and the
hyper-parameter τ controlling the level of systematic bias in
[0.1, 0.5, 1], thus obtaining 27 different scenarios for each
network and 135 in total.
Finally, for each network the list T of transcription factors

includes all genes directly connected to at least twenty
other genes. This leads to an average of 18 transcription
factors for each network, each one connected on average
with 40 genes. We consider only direct interactions in
order to ensure that the corresponding associations are
strong enough to be effectively retrieved from the data.

Relevance networks reconstruction
When a single dataset is available, the relevance network
for the transcription factor TFt can be easily recon-
structed by computing the vector Ct containing n − 1 as-
sociations between TFt and all other probesets i. These
association measures are eventually coupled with mea-
sures of statistical significance Pt, and the genes Qt be-
longing to the reconstructed network can be selected by
imposing an appropriate decision threshold θ to either
the association or the significance values. When multiple
datasets are available, the same procedure can be
followed with the vectors Ct,X and Pt,X computed
through the meta-analysis or data-merging method X
(see Fig. 1).
In our experimentations we use in turn the Pearson

and Spearman correlation measures [57, 58] for estimat-
ing the association values Ct,i. Pearson correlation quan-
tifies the association between two random variables x
and y as

ρx;y ¼
X

xi−�xð Þ yi−�yð Þ
sxsy

where �x;�y are sample means and sx, sy sample standard
deviations. The Spearman correlation uses the same for-
mula on x and y rankings. The null hypothesis H0 : ρx,y = 0
can be properly assessed for both correlation measures
[59, 60].

Performances metrics
The correlation values Ct,X and corresponding p-values
Pt,X are compared with the list of known interactions It
in order to assess X effectiveness in correctly retrieving
gene regulatory relationships. In the ideal case high cor-
relations would be assigned exclusively to actual interac-
tions, while any other gene-pair would be reported as
weakly associated. However, in real cases It is probably
incomplete and noisy, undermining a fair evaluation.
Moreover, only a handful of regulatory relationships are
usually known for each gene, while the number of pos-
sible gene-pairs is two or three order of magnitudes
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larger, dramatically increasing the possibility of retriev-
ing false positives due to mere multiple-testing issues.
In order to better characterize the performances of

each method, we adopted several metrics commonly
used in the machine-learning area of Information Re-
trieval, a field whose operational settings strictly resem-
ble the one depicted above [61].
The Receiver Operator Characteristic (ROC) Area

Under the Curve (AUC, [62]) is a metric that integrate
sensitivity and specificity information for all possible
values of the decision threshold θ. The AUC ranges in the
interval [0, 1], where one corresponds to perfect rank (i.e.,
all true interactions are at the top of Ct,X), 0.5 corresponds
to random ordering and zero to perfectly inverted predic-
tions. Interestingly, AUC values can be interpreted as the
probability of correctly ranking two randomly selected in-
teractions according to their status (true/false interaction).
The Area Under the Precision Recall Curve (AUPRC,

[63]) is similar to the AUC and summarizes precision
and recall information for varying θ. With respect to
AUC, AUPRC has demonstrated to have higher discrim-
inative power when very few positive cases (true interac-
tions) are available [64].
Both AUC and AUPRC evaluate the whole list of correl-

ation values, providing a measure of global performance.
However, researchers using network reconstruction algo-
rithms often restrict their attention to a few predicted gene-
gene interactions, the ones deemed more reliable. These in-
teractions are ideal candidate for subsequent in vitro or in
vivo experimental validation, which are usually too expen-
sive or demanding to be performed on all predictions.
Thus, we are interested in evaluating the partial per-

formances of the methods on the interactions corre-
sponding to the highest correlations in Ct,X. To this end
we use a version of AUC known as partial AUC (pAUC,
[65]), which considers a restricted region of the whole
sensitivity / specificity curve (specificity in [0, 0.2] for
our experimentations). The McClish formula [65] stan-
dardizes pAUC values in [0, 1], allowing the pAUC to
have the same probabilistic interpretation of the AUC.
We also devised a new metric that is specific for

assessing partial performances, namely the Area
Under the False Discovery Rate (AUFDR). Let Qt,X,R

be the list of R interactions with highest correlation
according to Ct,X. The AUFDR integrates the propor-
tion of correctly predicted interactions in the range

[1, R], i.e., AUFDR ¼
X
i¼1:R

Qt;X;i∩I t
i , and it is subsequently

normalized in order to assume values in [0, 1], with
one indicating that all top R predictions are known
interactions.
In all our analysis we use in turn vectors Ct,X and Pt,X

for evaluating methods’ performances. Highly signifi-
cant associations often corresponds to p-values that are

indistinguishable from zero at machine precision, lead-
ing to ties in Pt,X that severely affect performance com-
putations. In contrast, the vector Ct,X does not suffer
from this drawback, varying in ranges that seldom in-
clude particularly low values. The impact of these issues
on performance assessment is discussed in detail in the
Result section.

Integrative approaches
The meta-analysis, data-merging and baseline ap-
proaches included in the experimentation are now ex-
plained in detail. Table 1 provides a summary of the
methods.

Meta-analysis
Meta-analysis has been described as “the process of syn-
thesizing data from a series of separate studies” [66]. A
typical MA application investigates a set of statistics (e.g.,
p-values) derived in different studies and produces a sum-
mary statistic, for example a weighted average (see Fig. 1).
Other, sophisticated MA approaches exist for more com-
plex applications, for example meta-regression [67], where
differences in the design of the studies or the sampling
strategy are treated with a regression approach.
The MA methods used in this study can be thought as a

function accepting correlations Ct,i
1 , …, Ct,i

m between gene i
and transcription factor t computed over studies 1…m, as
well as their corresponding p-values Pt,i

1 , …, Pt,i
m, and pro-

ducing a single statistic and p-value:

Ct;iX ; Pt;i;X
� � ¼ f C1

t;i; …; Cm
t;i; P

1
t;i; …; Pm

t;i

� �

We selected from the literature five MA methods whose
operation matches the above definition and that are based
on different assumptions and theoretical backgrounds.

� Fisher method [68] is one of the first known MA
approaches. Under the assumption that all
Pt,i,X
1 , …, Pt,i,X

m assess the same null-hypothesis in mul-
tiple, independent studies following an identical design,

then the quantity χ2t;i ¼ −2:
X
j

log Pj
t;i

� �
follows a χ2

distribution with 2 ·m degrees of freedom, and can be
used for calculating the summarized p-value Pt,i,Fisher.
We set Ct,i,Fisher = χt,i

2 .
� Stouffer method [69] is conceptually similar to Fisher’s,

although it combines Z-scores defined as Zt,i
j =Φ−

1(Pt,i
j ) instead of p-values. Φ− 1 is the inverse of the

standard normal cumulative distribution function, and

the statistic Zt;i ¼
X

j
Zj
t;iffiffiffi

m
p follows a standard normal

distribution that can be used for deriving Pt,i,Stouffer.
Also in this case Ct,i,Stouffer =Zt,i
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� Fixed-Effects approach [70] assumes that all studies
investigate the same correlation Ĉt,i, whose
estimation is biased by a study-specific error factor,
i.e., Ct,i

j = Ĉt,i + j, j = 1…m. On the basis of these
assumptions, Ct,i,Fixed can be computed through a
weighted mean

Ct;i;Fixed ¼
X

j
wj:C

j
t;iX

j
wj

where the weights wj are inversely proportional to the
correlations variances. Pt,i,Fixed is computed by compar-
ing Ct,i,Fixed Fisher z-transformation against its theoret-
ical normal distribution [71].

� Random-Effects models do not assume that each
study estimates the same correlation Ĉt,i; the datasets
are assumed to be enough ‘similar’ to be jointly
analyzed, but at the same time the ground truth
correlation Ĉ j

t;i may differ across studies. Particularly,
Ĉ j

t;i; j ¼ 1…m are assumed to be sampled from a
distribution with mean Ĉt,i and unknown variance τ̂ ,
while in turn each Ct,i

j is an estimation of its
corresponding Ĉ j

t;i subject to a study-specific error

j, i.e., C
j
t;i;X ¼ Ĉ j

t;i;X þ �j.
The summary correlation Ct,i,Random is estimated
with the Fixed-Effects weighted average, with the

weights wj computed as inversely proportional to
the sum of the study-specific and between-study
variance, i.e., wj ¼ 1

vjþτ̂ . Interestingly, if all studies
share the same ground truth effect (i.e., τ̂ ¼ 0), then
the Random-Effects model reduces to the Fixed-
Effects one.

� The Rank-Product method differs from the
previous approaches since it combines correlation
ranks instead of correlations or p-values [72]. The
vector Ct

j containing the correlations between the
transcription factor t and all other probesets in
study j can be easily converted in a vector of
ranks Rt

j, where higher correlations rank first. The
Rank-Product method combines ranks Rt,i

1 , …, Rt,i
m

from different studies by multiplying them:
Rt;i;Rank−Product ¼

Y
j
Rj
t;i. True gene-gene interac-

tions are then expected to be placed on the top
of the vector Rt of combined ranks.
The Rank-Product is actually a special case of a larger
family of rank-based methods [73], differing among
each other mainly for the formula used for combining
the single ranks (e.g., summation, average, product).
Some authors have reported that rank-based methods
can provide more reliable results than classical MA
methods when heterogeneous datasets are analyzed
together [74].
A common drawback of these methods is that
statistical significance must be assessed through

Table 1 MA, DM and baseline methods included in the experimentations. For each method a synthetic description is provided
describing its main characteristics

Approach Method Description

Meta-Analysis Fisher Combines p-values in a statistic that follows a χ2 distribution.

Stouffer Transforms p-values in Z-scores and merges them with a weighted average

Fixed-Effects Assumes all studies measure the same effect and combines estimates with a
weighted average

Random-Effects Combines estimated effects by assuming that each study measures a biased
version of the true effect

FR-Effects Estimates whether Fixed or Random-Effects assumptions hold and use one of
the two methods accordingly

Rank-Product Combines statistics’ ranks by multiplication.

Data-Merging SVA Provides surrogate variables that approximate the effect of confounding factors
and batch-effects present in the data

Combat Assumes additive and multiplicative batch-effects and estimates them by pooling
information across genes

RMA Normalizes data across expression profiles using Quantile Normalization

RMA-Combat Applies RMA and Combat one after the other

Scaling Scales the value of each gene in each study to have zero mean and unitary
standard deviation

No-Correction Merges samples from all studies in a single dataset without any correction

Baseline Single-Datasets Computes the performance that is expected by analyzing a single, randomly
chosen dataset

Random-Guessing Produces randomly sampled correlation values
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permutation-based procedures, which usually are
quite computationally demanding. However, in this
study we adopt a recently introduced formula [75] for
computing approximate, yet accurate p-values for the
Rank-Product results.

These five approaches were implemented in R and
included in the analyses. Moreover, we included one
further method, namely the FR-Effects model, based
on a combination of Fixed and Random-Effects
models. In short, the FR-Effect model first estimates τ̂ ,
and if the between-study variance is significantly different
from zero (Cochran’s Q test [76] p-value < 0.1) the
Random-Effects model is used, otherwise the Fixed-
Effects is used.

Data-merging
In contrast with meta-analysis, the data-merging approach
pools all data together and then estimates statistics on the
resulting dataset. Expression profiles measured in different
studies, or even in the same study but in different batches,
present systematic variations in their distribution [8], and
these variations are detrimental for the analysis. Batch-
effect removal methods attempt to alleviate this problem,
by identifying and removing systematic biases. We
selected five different DM approaches, among the ones
most often used on microarray data:

� Combat is a method specifically devised for removing
batch effects in gene-expression data [35]. This method
assumes the batches to be known, and that systematic
variations follow an additive-multiplicative model

ysjk ¼ αj þ Xβj þ γ jk þ δjk�
0
sjk

where ysjk is the expression of gene j in sample s in batch
k, aj is the overall gene expression of j, X and βj are re-
spectively the design matrix and the gene-specific coeffi-
cients vector, while the remaining terms are the additive
and multiplicative batch effects, respectively. These ef-
fects are estimated through an approach that uses
hyper-priors and pool information across all available
probesets. We used the Combat implementation of the
R package sva in all analyses.

� RMA (Robust Multi-array Average, [23]) is an algo-
rithm for background correcting, normalizing and
summarizing microarray data. The normalization
phase is carried out with the Quantile Normalization
method, that substitutes the expression value of each
probe t with the average expression calculated over
all probes that rank equally across all available pro-
files. In our experimentation we used the RMA
function of the R package affy.

� RMA-Combat. We also include the hybrid solution
RMA-Combat, consisting in a pipeline that first ap-
plies the RMA method and then Combat.

� Surrogate Variable Analysis (SVA). The SVA
approach introduced by Leek and Storey [36]
attempts to identify and remove all confounding
factors negatively affecting the analysis, including
eventual batch-effects. Similarly to Combat, this
method explicitly takes in account the study design.
In the common case–control scenario, the SVA
model is the following:
ysj ¼ αj þ βjxs þ

X
k
γ jkgks þ �sj, where ysj is the ex-

pression of gene j in sample s, aj is the overall gene
expression of j, xs is a binary variable indicating
whether sample s is a case or a control, βj represents
the average difference in expression between the two
conditions in gene j, and ϵsj is a random error. The

term
X

k
γ jkgks represents the cumulative effect on ysj

of K unknown confounding factors gks, multiplied by
their gene-specific coefficients γjk. SVA attempts to es-
timate confounding factors’ global effect by deriving a
set of surrogate variables h1, h2, …, hK whose span
covers the same linear space spanned by the vectors gk.
These surrogate variables can then be used as covari-
ates in all subsequent analysis in order to rule out the
effect of the unknown confounding factors.
To the best of our knowledge, no previous study
applied SVA on gene-network reconstruction, and a
detailed discussion about how to adapt SVA for this
task is reported in the Additional file 2. Briefly, as-
suming that each TFi has a significant effect only on
a restricted subset of genes, all major systematic var-
iations involving a large portion of transcripts should
be due to experimental factors, batch-effects or con-
founding factors. Given this assumption, for the data
collections used in this study the SVA model be-
comes: ysj ¼ αj þ

X
k
γ jkgks þ �sj. From a computa-

tional perspective this formulation implies that the
surrogate variables are estimated by applying a Sin-
gular Value Decomposition to the expression matrix,
after having centered each gene on its mean. The es-
timated surrogate variables are then used for com-
puting the vectors Ct,SVA and Pt,SVA. This means that
Ct,i,SVA is a partial correlations [77], quantifying the
linear association between the transcription factor
TFt and gene i given the information embedded
within the surrogate variables.

� Scaling the expression values of each dataset so that
all genes have the same mean and standard
deviation is a further suitable approach. In
particular, we scale the expression of each probeset
in each dataset to zero mean and unitary standard
deviation.
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� No-correction. The naïve solution of pooling all data
together without removing systematic variations is
included in the analysis as well, in order to contrast
the effectiveness of the other methods.

Baseline approaches
A relevant question is whether employing complicate
statistical techniques in order to co-analyze several data-
sets actually provides any advantage with respect to
analyze a single dataset in isolation. DM and MA
methods heavily process the data, following assumptions
that are not always satisfied. Consequently, these
methods may induce biases rather than remove batch-
effects. To answer this question we adopted a Single-
Dataset approach, consisting in separately analyzing
each dataset and then averaging the performance within
each data collection. More in detail, let πΠ

1 … πΠ
m be the

performances obtained on datasets D1, …, Dm in collec-
tion M by using the metric Π. The Single-Dataset ap-

proach calculates a weighted performance πΠ ¼
X

s j:πj
ΠX
sj

, that can be interpreted as the result to be expected if a
single dataset randomly chosen from the collection is
analyzed.
Finally, we also include a Random-Guessing approach

consisting in randomly sampling Ct,i from a uniform dis-
tribution. Theoretically, we expect this method to
achieve the lowest performances among all other
algorithms.

Reconstruction of the Ikaros interaction network on
PBMC data
Generalizing the results of this work to any network
learning algorithm is out of the scope of this paper.
However, we perform a proof-of-concept application in
order to provide initial evidence that the results obtained
in the context of relevance networks, arguably the sim-
plest type of reverse engineering networks, are also valid
when more complicated algorithms are used.
To this purpose, we analyze a set of Peripheral Blood

Mononuclear Cells (PBMC) gene expression datasets ex-
tracted from GEO. We attempt to reconstruct the regu-
latory network of the Ikaros transcription factor by
applying the SES (Statistically Equivalent Signatures) al-
gorithm [78]. The predictions were validated against a
list of experimentally determined Ikaros targets as re-
trieved from the literature [79, 80]. The IKZF1 gene en-
codes the transcription factor that belongs to the family
of zinc-finger DNA proteins [81]. Ikaros displays crucial
functions in the fetal and adult hemo-lymphopoietic sys-
tem. It functions as a regulator of lymphocyte differenti-
ation and its loss has been connected with the
development of lymphoid leukemia.

The following sections describe in detail the used data
and the analysis pipeline.

PBMC Compendium and Ikaros known regulatory
relationships
We assembled a compendium of seven public micro-
array gene expression datasets of human PBMC. PBMC
are the populations of blood cells having a round nu-
cleus that constitute a pivotal part of the peripheral im-
mune system. These include lymphocytes (T cells, B
cells and NK cells), monocytes, macrophages, dendritic
cells. Their abundance and the simplicity of their extrac-
tion (an intravenous injection is sufficient for collecting
a sample) render them interesting candidate for scien-
tific studies. Note that the selection of human micro-
array datasets serves for further testing the validity of
our results in the spectrum of human subject studies.
For assembling this compendium, only studies com-

prising randomly-selected healthy-control subjects were
taken in consideration. In particular, for each study only
the control group was retained for our analysis. The idea
is that control groups formed by randomly chosen
healthy individuals can be considered as independent
sampling from the same population, and are thus suit-
able for being analyzed through MA and DM methods.
In total, the collection counts 181 expression profiles all
measured with the Affymetrix Human Genome U133
Plus 2.0 Array (41245 probesets). The expression of
Ikaros is measured by nine of these probesets. We used
in turn each of these probesets and we merged together
their respective networks.
Finally, a list IIkaros of Ikaros regulatory relationships

was built from literature information and computational
analyses. Particularly, we built a list IIkaros containing
2658 unique interactions by merging together 2497
Ikaros targets identified through Chip-seq and micro-
array analysis [79] along with 137, 115, 133 and 154
Ikaros-gene interactions found in CD43- (young mature
B-cells) CD19+ (mature B-cells), T-naïve and T-reg cells,
respectively. These latter lists were derived from the
analysis of DNAse-seq data from the ENCODE project
[80], following the approach presented in [82]. Briefly,
DNase hyper-sensitive regions (DHS) were identified
using Hotspot v4 [83], and DHS peaks were subse-
quently scanned for footprints of DNA-binding proteins
by the Wellington algorithm using pyDNase [84]. Tran-
scription start sites (TSS) were obtained from the Uni-
versity of California, Santa Cruz (UCSC) Genes Track,
and the region flanking 5Kb upstream to 5Kb down-
stream of the TSS was defined as the promoter region.
The footprints within the promoters were subsequently
scanned for identifying binding motifs specific for 483
transcription factors, using the TRANSFAC database
[85] and the Match algorithm [86]. Genes whose
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promoter contained a motif instance were considered as
potential regulatory targets. This allowed identifying (a)
candidate regulators and (b) candidate targets for each
TF, including Ikaros.

Deconvolution of PBMC and outlier identification
The presence of different cell-types in the PBMC sam-
ples implies that expression values are averaged over a
mixture of different distributions. Subjects included in
each study may have significantly different cell propor-
tions, and this in turn may generate correlations among
probesets that do not reflect any underlying gene-gene
interaction [4]. In order to avoid this scenario, we esti-
mate the cell-proportions for each sample through a de-
convolution approach and then we eliminate subjects
that appear to be outliers and that may prejudice the
analysis. We use the deconvolution method introduced
by Abbas and co-authors [87] and implemented in the
CellMix R package [88]. This approach uses a fixed set
of expression signatures characterizing the expression
profiles of seventeen different cell types in order to esti-
mate the proportion of these cell types in the PBMC
data. The multivariate outlier detection was conducted
by using the PCout [89] algorithm from the “mvoutlier”
R package [90]. This algorithm utilizes simple properties
of principal components and is particularly effective in
high-dimensional data.

SES algorithm
The SES algorithm [78] as implemented in the ‘MXM’ R
package was used in order to reconstruct Ikaros regulatory
network. The SES algorithm attempts to identify highly
predictive signatures for a given target. In this context, a
gene expression signature consists of the minimal set of
gene expression measurements that is necessary in order
to predict the value of Ikaros. As demonstrated in [91],
the signature of a target corresponds, under broadly ac-
cepted assumptions, to the variables that are adjacent to
the target in the Bayesian Network representing the data
distribution at hand. Consequently, these gene expression
signatures also correspond to the set of potential regula-
tors/targets of Ikaros in the context of the available mea-
surements. Lack of statistical power may make two or
more signatures statistically indistinguishable. The SES al-
gorithm is specifically devised in order to cope with this
problem and to attempt to retrieve statistically equivalent
signatures.
SES belongs to the class of constraint-based, Bayesian

Network reconstruction algorithms [92]. While rele-
vance networks assess the presence of gene-gene
interactions through simple pairwise correlations,
constraint-based algorithms use tests of conditional
independence in order to find variables that are
associated to the target given any subset of other

measurements. This implies that SES should return
only genes whose association with Ikaros is not medi-
ated by any other measured gene. In contrast, rele-
vance network cannot distinguish among direct and
indirect associations.
SES requires the user to set a priori two hyper-

parameters, a threshold for assessing p-values signifi-
cance and the size of the maximum conditioning set. In
our analyses these hyper-parameters were set to 0.01
and 5, respectively. The signatures found on single pro-
besets were merged together, as well as the results re-
trieved on the nine different probesets measuring Ikaros.

Network reconstruction and validation
Based on our previous findings, we picked the Combat
and Fixed-Effects methods as representatives for the DM
and MA approaches, respectively. We also used the No-
Correction and Single-Dataset approaches in order to
characterize the scenarios where batch-effects are ig-
nored or a randomly chosen dataset of the PBMC collec-
tion is analyzed in isolation. For the Combat and No-
Correction approaches the deconvolution and outlier de-
letion steps were performed on their respective merged
datasets, while for the Fixed-Effects and Single-Datasets
methods the two pre-processing steps were performed
independently for each study of the PBMC collection.
Network reconstruction performances were measured

in terms of precision, recall and odds ratio. Let QIkaros,X

be the list of Ikaros interactions retrieved using SES
couple with the MA or DM method X, and ¬ IIkaros the
list of genes that are not part of Ikaros regulatory net-

work (|IIkaros ∪ ¬ IIkaros| = n). Precision is defined as PRE

CX ¼ QIkaros∩I ikarosj j
QIkaros

, and indicates the proportion of actual

interactions that are present in the retrieved signature.
Recall (or sensitivity) is computed as

RECALLX ¼ QIkaros∩I ikarosj j
I Ikaros

, that is the proportion of genes

that are in the Ikaros regulatory program and are classi-
fied as such.
The odds ratio quantifies the likelihood that a given

proportion of regulatory relationships is retrieved by
chance, and is computed as OddsRatioX ¼ PRECX

PRECTrivial
,

where PRECTrivial ¼ I Ikaros
n represents the sensitivity

achievable by classifying all n genes as belonging to the
Ikaros regulatory program. An odds ratio of one indi-
cates performances that are indistinguishable from ran-
dom guessing, and we used a hypergeometric test [93] in
order to assess the null hypothesis H0 :OddsRatioX = 1.

Results
E. coli and Yeast compendia
Figure 2 and Additional file 1: Tables S4 – S5 report the
results on the E. coli and Yeast compendia computed
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using the Pearson correlation. Results based on Spear-
man correlation follow similar patterns and are reported
in the (Additional file 1: Figure S1). Panels in the top
row present the results obtained on the E. coli compen-
dium, while findings on the Yeast collection are summa-
rized in the other two subplots. Each panel reports two
different performance metrics. The panels on the left
side summarize global performance metrics, having the
AUC on the x-axis and the AUPRC on the y-axis. Sub-
plots on the right side report partial performances, with the
pAUC on the x-axis and the AUFDR on the y-axis. MA,
DM and baseline methods correspond to circular, triangu-
lar and square markers, respectively. In each panel, the size

of each marker is directly proportional to average between
the Coefficients of Variation (CV) computed on the x and
y-axis metric. The CV is a convenient way for representing
variability with respect to the order of magnitude of the
measurements, and is computed as the ratio between
standard deviation and average value. Non-filled markers
indicate methods that are statistically significantly different
from both methods that perform best in the two metrics
(p-value < 0.05, one-tailed paired t-test).
All four panels present a similar picture, with several

DM and MA methods clustering together and achieving
comparable performances, while the Random-Guess,
Single-Dataset and No-Correction approaches usually

Fig. 2 Results of the experimentations on E. coli and Yeast compendia using the Spearman correlation. Panels on the left side report global
performance metrics (x-axis: AUC, y-axis: AUPRC), while panels on the right report partial performance information (x-axis: pAUC, y-axis: AUFDR).
Results in the top row are computed on the E. coli dataset compendium, while results on the Yeast dataset collection are reported in the other
two panels. MA, DM and baseline methods are indicated with circular, triangular and square markers, respectively. Non-filled markers indicate
methods that are statistically significantly different with respect to the best performing ones in both metrics (p-value < 0.05, one-tailed paired
t-test). The size of each marker is directly proportional to the Coefficient of Variation (CV) between its respective metrics
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providing significantly worst results. Best performing
methods usually present a variability that is smaller than
the one of the outperformed methods.
All in all, the results show that systematic biases across

studies must be taken into account for retrieving gene-gene
interactions, and that both MA and DM approaches are
effective in dealing with such systematic variations.
Retrieving gene-gene interactions in the Yeast dataset

collection have proven to be harder than in E. coli. Per-
formances were generally poorer, with AUC and pAUC
values up to 5 point inferior than the corresponding per-
formances in the E. coli compendium, and both AUPRC
and AUFDR ranging far below 0.05.

Results are further summarized in Fig. 3 through a
Rank-Product analysis. The combination of both E. coli
and Yeast compendia with the two correlation measures
and the four different metrics provides a total of 16 dif-
ferent ways to rank MA and DM methods according to
their performances. These sixteen ranks are synthesized
with the Rank-Product method and the final results are
reported in the top panel of Fig. 3. All methods are listed
on the x-axis, ordered from left to right according to
log-transformed Rank-Product score (reported on the y-
axis). Higher scores characterize methods that consist-
ently achieve the top positions across all ranks. Rank
statistical significance is assessed with the methods

Fig. 3 Rank-product analysis of MA and BER methods. Methods are ranked according to their performances, separately for each combination of
data compendium (E. coli and Yeast), correlation measure (Pearson and Spearman) and performance metric (AUC, pAUC, AUPRC, AUFDR), for a
total of 16 different ranks. These ranks are then combined using the Rank-Product method, and the statistical significance of the ranks are evaluated with
the method reported in [75]. The negative logarithm of the Rank-Product score is reported on the y-axis, while methods are listed on the x-axis. Triangular
markers indicate BER methods, round markers MA methods, square markers baseline approaches. The color of each marker is directly proportional to the
Coefficient of Variation (CV) of the respective log-transformed rank-product score (lighter color corresponds to higher variability). Methods that tend to be
consistently ranked in the top positions are placed on the top-right of the plots, while poorly performing methods remain the in the bottom-left corner. The
plot on the top report the global, final rank of both MA and BER methods, while the two plots on the bottom focus on BER and MA methods, respectively
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reported in [75], and p-values < 0.05 are indicated with
filled markers. The coefficient of variability for each
method determines the color of the corresponding
marker, with lighter color corresponding to higher CV.
The SVA, Combat, RMA-Combat, Fixed-Effect and

Scaling methods are confirmed as the best performing
methods, occupying the first position in the Rank-
Product analysis. SVA shows a relatively high variance,
indicating that sometimes it fails in reaching the top po-
sitions in terms of performances. The Random-Guess
approach is stable in last position, followed by the
Single-Dataset, Stouffer and No-Correction methods.
The two bottom panels in Fig. 3 restrict the Rank-
Product analysis to the DM and MA methods, respect-
ively. The SVA, RMA-Combat and Combat method

should be the methods of choice within the DM ap-
proaches, while Fixed-Effects, Rank-Product and Fisher
excel among the MA methods.
Similar figures restricting the Rank-Product analysis to

Global and Local performances only, as well as Pearson
and Spearman correlations and E. coli versus Yeast are
available in the Additional file 1. The conclusions that
can be drawn from these figures are in close agreement
to the ones discussed until now.
Figure 4 reports the performances computed using the

vector of p-values Pt,X instead of the correlation values
Ct,X. In E. coli there is a dramatic worsening in perfor-
mances for most of the methods. A decrease in perfor-
mances can also be observed for the Yeast compendium,
although to a lesser extent. A possible explanation for

Fig. 4 Results of the experimentations on E. coli and Yeast compendia using the Spearman correlation p-values. Details as in Fig. 2. Methods generally
achieve lower performances when p-values are used instead of correlations for ranking candidate gene-gene interactions. This is mainly due to the
prevalence of close-to-zero p-values that create ties negatively affecting the performance metrics
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these patterns is the presence of several high-significant
correlations, whose corresponding p-values are exactly
zero or too low to be distinguished at machine precision.
These zero p-values create ties that severely affect the
ranking of the candidate interactions and consequently
the evaluation of the performances.
A close inspection of the results seems to confirm this

hypothesis. Table 2 reveals that methods showing a large
performance decrease in E. coli between the Ct,X and Pt,X

-based results have a large percentage of p-values that are
exactly zero. SVA, Rank-Product and Fixed-Effects
methods do not produce zero p-values, and they do not
suffer any performance loss. However, Random-Effects
and FR-Effects do not produce zero p-values as well, and
they still achieve worse performances when Pt,X is used in-
stead of Ct,X. The answer to this issue lays in the fact that
there is not a bijective correspondence between Ct,X and
Pt,X for the Random-Effects methods, and consequently
neither for the FR-Effects one. In other words, if Ct,i >Ct,j

holds, then Pt,i < Pt,j holds as well if the correlations are
computed with the Fixed-Effects model, but not if they
are computed with the Random-Effects method. The stat-
istical significance of correlation in the Random-Effects
approach depends on the estimation of the between-study
variance τ̂ , and this variance is separately estimated for
each correlation. Consequently, candidate interactions are
ranked differently by the Random-Effect model depending
whether correlations or p-values are used, and the results
seem to indicate that the ranking provided by the correl-
ation values better reflects the actual underlying gene-
gene interactions.

Synthetic data
The results on simulated data for the AUC metric are re-
ported in Figs. 5 and 6. Results on other metrics follow
similar patterns, and the respective Figures are reported in
the Additional file 1. The numerical results for all simu-
lated scenarios are in Additional files 3 and 4. As ex-
pected, results improve for increasing number of studies
or samples, while larger level of systematic bias corre-
sponds to worse performances. The Single-Dataset ap-
proach is systematically outperformed by MA or DM
methods in all scenarios. The No-Correction approach
also achieves poor performances for high level of batch-
effects, even though it is quite competitive for mild sys-
tematic biases. AUC ≈ 0.5 for the Random-Guess ap-
proach in all cases. The remaining MA and DM methods
achieve comparable performances, both in terms of aver-
age performance and respective variance. SVA seems to
be an exception, thought, achieving quite lower perfor-
mances. Quite surprisingly, SVA performances drop sig-
nificantly with the maximum total sample size, i.e., when
50 studies with 50 samples each are analyzed (2500 total
sample size). Concomitantly, the number of surrogate var-
iables estimated in these setting is ~60, versus ~5-10 when
the total sample size is lower. We argue that such an ele-
vated number of surrogate variables negatively affects the
computation of conditional correlations, leading to a
worsening in performances.
Also for the synthetic data results computed using the

p-value vectors Pt,X show a decrease in performance
(Additional files 3 and 4). Particularly, across all simula-
tion scenarios, correlation functions and performance
metrics results based on correlations outperform the
corresponding results based on p-values 52 % of the
times. The average difference in performance varies de-
pending on the metric: 0.001 for AUC, 0.12 for AUPRC,
0.01 for pAUC and 0.1 for AUFDR. Interestingly, this ef-
fect becomes more marked with increasing sample size
and decreasing systematic bias (Additional file 1: Figures
S10 – S41), confirming that the performance loss is due
to an excess of statistical power that generate zero or
close to zero p-values.

Reconstruction of the Ikaros interaction network on
PBMC data
Table 3 summarizes the results of the reconstruction of
the Ikaros regulatory program on PBMC data. Combat
achieved the best performances, followed by the Fixed-
Effect method, the Single-Dataset approach, and No-
Correction. All methods achieved odds ratio statistically
significantly different from one at the 0.05 level. For the
Single-Dataset approach, the results actually varied de-
pending on the specific study, ranging from highly signifi-
cant (p-value <0.0001) to random guessing (p-value: 0.66).
We correlated the odd ratios and p-values achieved on

Table 2 Proportion of p-values being exactly zero for E. coli
and Yeast, Pearson correlation results

E. coli Yeast

Rank-Product 0 % 0 %

FR-Effects 0 % 0 %

Random-Effects 0 % 0 %

Fixed-Effects 0 % 0 %

Fisher 32.5 % 19.1 %

Stouffer 9.5 % 11.7 %

SVA 0 % 0 %

RMA-Combat 9.0 % 2.5 %

Combat 9.4 % 2.8 %

Scaling 9.1 % 2.7 %

RMA 15.6 % 13.4 %

No-Correction 85.6 % 98.7 %

Random-Guess 0 % 0 %

The majority of DM methods assigns a zero p-value to some percentage
of the predictions, while only the Fisher and Stouffer MA methods do so.
These percentages are higher in E. coli than in Yeast, suggesting that in
the first compendium the statistical associations are stronger or more
detectable due to higher statistical power
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each dataset with the sample size, and interestingly no as-
sociation was detected (correlation p-value > 0.25).
Figure 7 reports the Ikaros regulatory program recon-

structed on the PBMC data using SES coupled with Com-
bat. Yellow nodes indicated genes included in IIkaros.

Discussion
In the present work we have compared two different ap-
proaches, Data-Merging and Meta-Analysis, on the recon-
struction of relevance networks in collection of microarray,
gene-expression data. The comparison has been performed
on two compendia of studies retrieved from the literature,
on Escherichia coli and Yeast, respectively. Further analyses

on simulated data have been used for strengthening and
deepening the conclusion of the comparison. Finally, a con-
trived case-study on human PBMC data have been pre-
sented for showing how the results of this study might
transfer on more sophisticated network reconstruction
approaches.
The results on both simulated and real data provide

coherent conclusions, which can be summarized in the
following points:

1. Batch-effects must be carefully taken into
consideration for retrieving gene-gene interactions
from microarray data. The naïve solution of

Fig. 5 AUC results on simulated data for different number of studies using Pearson Correlations. Each row reports the results obtained on the data
collections including 5, 10 and 50 studies, respectively. For each row the performances of each method are reported for level of systematic bias τ equal to 0.1,
0.5 and 1. All results are averaged over five different synthetic networks and different sample sizes (5, 20 and 50 samples). Standard deviations are indicated
by the whiskers at the top of each plot. SD stands for Single-Dataset, while FEM, REM and FREM stand for Fixed, Random and FR-Effects method, respectively

Fig. 6 AUC results on simulated data across different sample sizes using Pearson Correlations. Each row reports the results obtained for a given
sample size (5, 20 and 50 samples in each study, respectively). For each row the performances of each method are reported for level of systematic bias τ
equal to 0.1, 0.5 and 1. All results are averaged over five different synthetic networks and different numbers of studies included in each collection (5, 10
and 50 studies). Standard deviations are indicated by the whiskers at the top of each plot. SD stands for Single-Dataset, while FEM, REM and FREM stand
for Fixed, Random and FR-Effects method, respectively
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ignoring systematic biases (No-Correction approach)
was outperformed by the other methods in all
experimentations. This result supports our claim
that batch-effects can hide actual dependencies
between the measured quantities or create
spurious associations between elements that
are not functionally related.

2. DM and MA methods are equally effective in
contrasting batch-effects. According to the results it
is not possible to state that one approach is
universally better than the other one. However,
within their respective approaches, and
acknowledging that the results vary across the
performed experimentations, the SVA/Combat/
RMA-Combat and the Fixed-Effects methods have
usually achieved the best performances. In contrast,
the Single-Dataset method usually provides poorer

results, supporting the hypothesis that integratively
analyzing multiple datasets leads to improved and
more robust findings.

3. Correlation statistics should be preferred to p-values
in ranking associations. Performances have proven to
drastically change depending on whether they are
computed on correlations or p-values. We have ob-
served that this effect is mainly due to ties generated
by zero or close to zero p-values.

This study presents a number of limitations that
should be carefully considered when implementing the
recommendations above. First, within-study batch-
effects were only partially addressed, by pre-processing
each single dataset with RMA. While the Quantile
Normalization step included in the RMA algorithm
should have removed at least part of the within-study

Table 3 Reconstruction of Ikaros regulatory program in PBMC data collection. For each method the number of predicted and
correctly retrieved interactions is reported, along with the odds ratio, precision and recall performances (see text for further details
on these metrics)

Method # Predicted interactions # Retrieved interactions Odds ratio Odds ratio significance Precision Recall

Combat 82 21 2.2726 0.00022 0.2561 0.0093

Fixed-Effect 102 21 1.827 0.00440 0.2059 0.0093

Single-Dataset 387 70 1.6513 [<0.0001 - 0.65914] 0.1861 0.0310

No-Correction 113 21 1.6491 0.01435 0.185841 0.0092

Odds ratio statistical significance is assessed through the hypergeometric test. For the Single-Dataset approach distinct performances and significance p-values
were computed for each dataset, summarized here as a weighted average of the performance and with the interval spanned by the p-values, respectively

Fig. 7 Ikaros regulatory program as reconstructed by applying the SES and Combat algorithms on PBMC data. Correctly retrieved interactions are
marked in yellow
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biases, it is known that this approach is not optimal [5].
This is also demonstrated by our results, where the
RMA method never achieved the best performances.
Secondly, the design of the comparison slightly advantages
DM method, particularly because all datasets belong to the
same data collection and thus measure the same probesets.
When this is not the case (e.g., when data from different
microarray platforms are co-analyzed), DM method are
not easily applicable, while MA methods can be
straightforwardly used. Finally, we also notice that in our
experimentations we did not explore joint uses of correla-
tions and p-values for ranking gene-gene interactions. A
possible practice is to filter the candidate interactions by
using the p-values and then raking the most significant
gene-pairs according to their correlation values.
The SVA method merits a separate note. To the best

of our knowledge, this is the first study employing this
methodology in the context of retrieving gene-gene in-
teractions. Adapting SVA for this task has required a
dedicated sub-study, reported and commented in the
Additional file 2. Despite the excellent performances ob-
tained on the real data, we notice that this method per-
formed quite poorly on the synthetic data. This drop in
performances is particular evident for large samples
sizes. A possible explanation might be the inclusion of
several irrelevant surrogate variables when large data-
sets are analyzed: out of 60 surrogate variables produced
when 2500 samples are available in the merged dataset,
only 3 explain more than 1 % of variance. These noisy
variables might in turn make the estimation of partial
correlations and respective p-values quite inaccurate.
Further studies are needed in order to better investigate
this phenomenon.
Future work will also focus on the generalization of the

present results towards more sophisticated network re-
construction algorithms, particularly Bayesian and Causal
Networks [94]. We already presented a first, contrived
case-study where we have reconstructed (part of) the
regulatory network of the Ikaros transcription factor from
human PBMC data. This case-study presented several
characteristics that made it harder to solve than the recon-
struction of the E. coli and Yeast regulatory networks:
different cell-type proportions across subjects, a many-to-
many correspondence between genes and probesets, the
list of known interactions was partially derived from ani-
mal models instead than human data. Moreover, we used
a constraint-based network reconstruction algorithm in-
stead of relevance networks. Despite all these difference
both Combat and Fixed-Effects method demonstrated to
be able to retrieve subsets of genes significantly enriched
for known Ikaros interactions and to outperform both the
No-Correction and Single-Dataset approach, as expected
from the results of the comparison presented in this
study.

Conclusions
Batch-effects should be carefully taken into account when
retrieving gene-gene interactions, and researchers can
adopt either a DM or MA approach depending on the spe-
cific application at hand. Correlation statistics should be
preferred over p-values for assessing and comparing the
strength of associations, especially for large sample sizes.
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