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Abstract

Background: Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research
into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the
pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the
development process of drugs, as well as reducing side effects.

Results: This work integrates two approaches - machine learning algorithms and topological parameter-based
classification - to develop a novel pipeline of drug repositioning to analyze four lung cancer microarray datasets,
enriched biological processes, potential therapeutic drugs and targeted genes for NSCLC treatments. A total of
7 (8) and 11 (12) promising drugs (targeted genes) were discovered for treating early- and late-stage NSCLC,
respectively. The effectiveness of these drugs is supported by the literature, experimentally determined in-vitro
IC50 and clinical trials. This work provides better drug prediction accuracy than competitive research according
to IC50 measurements.

Conclusions: With the novel pipeline of drug repositioning, the discovery of enriched pathways and potential
drugs related to NSCLC can provide insight into the key regulators of tumorigenesis and the treatment of NSCLC.
Based on the verified effectiveness of the targeted drugs predicted by this pipeline, we suggest that our drug-finding
pipeline is effective for repositioning drugs.

Keywords: Non-small cell lung cancer, Drug repositioning, Microarray data analysis, Machine learning algorithm,
Topological parameters, Protein-protein interactions, Enrichment analysis, Connectivity Map

Background
Lung cancer is the leading cause of death globally [1]
and non-small cell lung cancer (NSCLC) accounts for
more than 85 % of all lung cancer cases; adenocarcin-
oma is the most common subtype. Many efforts have
been made to development treatments for NSCLC, and
they depend on finding suitable drugs for treating
NSCLC within an effective time and at reasonable cost.

Drug repositioning by the Food and Drug Administration
(FDA) involves approving drugs with known side effects; it
has become a major trend and seen some success. Stachnik
et al. [2] showed that bisphosphonates can potentially be
repurposed for the prevention and adjunctive therapy of
HER1-driven cancers (such as NSCLC and breast cancers).
Having constructed a drug-disease bipartite network, Chen
et al. [3] utilized two inference methods, ProbS and HeatS,
to predict direct drug-disease associations based on node
degree in the network. Lee et al. [4] integrated the shared
neighborhood scoring algorithm with a database of disease
indications, drug development, and associated proteins, to
identify new indications for known FDA-approved drugs.
In earlier studies [5, 6], based on PPI (protein-protein
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interaction) community, we established a systematic strat-
egy for identifying potential drugs and target genes for
treating NSCLC, which can be extended in several respects
that are addressed in the present study. Those two previous
studies did not use the four features of machine learning al-
gorithms that are used herein, and were proposed in our
work in 2015 on the prediction of cancer proteins [7].
The machine learning method and the topological prop-

erties of biological networks have been used separately to
identify cancer-related genes. For example, Bull et al. [8]
utilized proteins’ hydrophobicities, in vivo half-lives, pro-
pensity for being membrane-bound and the fraction of
non-polar amino acids as features in the Random Forest
classifier to predict drug targets. Carson et al. [9] utilized
topological metrics, such as betweenness centralities,
neighborhood connectivity and radiality, as features and
used an alternating decision tree (ADTree) classifier to
identify disease-associated genes. Many works on identify-
ing repositioned drugs have been based on various com-
putational methods, such as mapping gene expression
profiles using drug response profiles [10–14], the use of
side-effect-based similarities [15–17], heterogeneous net-
work clustering [18], and the graph-based inference
method [19–22]. However, most of these methods are ei-
ther disease-centric or drug-centric. To the best of the au-
thors’ knowledge, few works have addressed the problem
of drug repositioning by integrating machine learning
methods, graph theory and meta-analysis. This work inte-
grates two state-of-art methods - machine learning [7]
and the graphing of topological properties [23] - to de-
velop a new pipeline to identify potential therapeutic
drugs and targeted genes for treating NSCLC.
In solving the targeted drug problem, the following is-

sues must be addressed. First, different individuals may
correspond to different sets of differentially expressed
genes. Second, cancer is a heterogeneous disease: different
stages of cancer require different drug targets and involve
stage-specific cancer-associated genes. Third, the results
of microarray profiling vary from study to study and a
rigorous method is required to solve this problem. Fourth,
the reliability of drug finding remains to be verified.
This study deals with the above four issues. First, to re-

duce the effect of biological heterogeneity among different
individuals, tumor/adjacent non-tumor pairwise arrays for
NSCLC were used, allowing pairwise statistical testing.
Second, the samples were grouped into early-stage and
late-stage samples. Third, meta-analysis was carried out to
integrate multiple microarray profiles and results. Finally,
potential drugs were validated by performing biochemical
assays and with reference to the literature.

Methods
Cancer is a multistage process that arises from mutations of
genetic sequences; early- and late- stage cancer-associated

genes potentially differ considerably. This work elucidates a
strategy for identifying stage-specific potential drugs for
treating NSCLC based on an integrated analysis based
on microarray profiling. This work proposes an in
silico strategy for narrowing down the search for lung
cancer genes. Figure 1 presents the workflow.
Microarray data for lung cancer were firstly separated into

the early- and late-stage data. Two-pair tests (based on
normal and cancer tissues from the same patient) were
performed to identify differentially expressed genes (DEGs).
A Robust Multi-array Average (RMA) was utilized to
normalize gene expression, and eBayes analysis was then
performed on the results thereof. DEGs were predicted
using an adjusted p-value of 0.05. The selected DEGs were
divided into two groups - an up-regulated group and a
down-regulated group - based on the fold-changes (FC) in
gene expression. These selected DEGs are separately filtered
using machine learning classifiers and graph theory, and
two corresponding sets of key genes are then derived. Gene
set enrichment analysis and pathway analysis were then
conducted on the two sets of key genes, and drug-gene
interaction databases and the Connectivity Map (cMap)
were used to identify potential drugs (with cMap p-value
<0.1 and enrichment score <0) for treating NSCLC. The
common enriched pathways and drugs that were returned
by both machine learning algorithms and the classification
of topological parameters were further investigated. The
predictions of targeted drugs were confirmed by IC50 exper-
iments, a review of the literature and clinical trials. Finally,
the targeted genes were prioritized for reference.

Input datasets
The input data herein were taken from previous work [6]
to enable this study to be compared with [6]. The micro-
array data for lung cancer were downloaded from GEO
[24] and summarized in Table 1. The microarray datasets
consist of data from experiments GSE7670 [25] and
GSE10072 [26], which were conducted using the HG-
U133A array; and data from experiments GSE19804 [27]
and GSE27262 [28], which were performed using HG-
U133 plus 2.0 chip.
To reduce the effect on integrating of biological het-

erogeneity among individuals, normal and cancer tissues
were taken from each patient. Two-pair tests (on these
normal and cancer tissues are taken from the same pa-
tient) were performed to identify differentially expressed
genes (DEGs). Samples were divided into early- and late-
stage samples. Early-stage samples were taken from patients
with stage I, IA or IB cancer, while late-stage data were ob-
tained from patients with stages III or IV cancer [6].

Microarray data analysis
In this study, the publicly available microarray data ana-
lysis package Bioconductor was used to identify DEGs
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Fig. 1 Workflow of this study, which consists of (1) identification of DEGs, (2) machine learning approach, (3) topological parameter-based classifi-
cation, (4) common pathway analysis, (5) common drug analysis and (6) effectiveness verification

Table 1 Summary of microarray datasets

GEO ID Organization name Number of samples (Early-stage) Number of samples (Late-stage)

GSE7670 Taipei Veterans General Hospital 8 11

GSE10072 National Cancer Institute, NIH 15 9

GSE19804 National Taiwan University 35 13

GSE27262 National Yang Ming University 25 n/a
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among a large number of gene expressions. Based on
whether the log base 2 of the fold-change (FC) values
for gene expression, log2FC, was less than or greater
than zero, the selected DEGs were divided into two
groups - up-regulated (up probes in Fig. 1) and down-
regulated (down probes in Fig. 1), respectively. The FC
value of any gene expression level with a fold change
value of less than 5.64 was set to 5.64 to facilitate the
cMap [29] search.

Machine learning algorithms
In the previous study [7], we developed a simple and ef-
fective machine learning method, based on domain-
domain interactions (DDI), weighted domain frequency
score (DFS) and cancer linker degree data (CLD) to pre-
dict cancer proteins. We used the one-to-one interaction
model to quantify the likelihood that was a cancer-
specific DDI; the weighted DFS feature is used to meas-
ure the propensity of a domain to be present in cancer
and non-cancer proteins, and the CLD feature is defined
to identify the partners with which cancer and non-
cancer proteins interact. The machine learning algo-
rithms was implemented in the Weka software tool, and
a ten-fold cross-validation test was used to train the su-
pervised model. Based on our previous studies [30, 31],
a balanced data set typically provides better performance
than an unbalanced one, so, the machine learning algo-
rithms were trained using positive and negative datasets
that contained equal numbers of data.
Experimental results revealed that the proposed ma-

chine learning method identified cancer proteins with
relatively high hit ratios (about 80 %). Five classifiers –
three with the highest F1 values – the LMT, SimpleCart
and J48 algorithms, and two with the highest AUC
values – the LWL and Ridor algorithms, were used to
identify potential cancer genes under strictly uniform
voting, meaning that only a protein that was predicted
by all five classifiers to be a cancer protein was consid-
ered. In the machine learning approach, the up- (down-)
regulated DEGs in each microarray data are processed
individually for each microarray.

Classification of topological parameters
The topological features provide valuable information
for identifying crucial genes and clusters in a biological
network. Recently, we proposed the identification of crit-
ical nodes for a network using topological parameters
[23]. The five classified groups are: group 1: degree cen-
trality; group 2: betweenness centrality; group 3: bridging
centrality; group 4: closeness centrality and eccentricity
centrality; group 5: clustering coefficient, brokering coef-
ficient and local average connectivity. This classification
enables nodes to be ranked by their topological import-
ance in the networks. To apply topological parameter

classification in this study, common up- (down-) regu-
lated DEGs for the microarray datasets must be firstly
extracted. Next, for early- and late-stage NSCLC, the
corresponding up- (down-) regulated network was con-
structed by using the common DEGs for all microarray
datasets and their neighbors in protein-protein interac-
tions. The up- and down-regulated networks for early-
and late-stage NSCLC are inputs for the topological
parameter-based classification.

Enrichment analysis of gene set
Given a gene list, DAVID [32] performs batch annotation
and GO [33] term enrichment analysis to highlight the
most relevant GO terms. In contrast, the Consensus-
PathDB (CPDB) [34] resource performs gene set analysis
and metabolite set analysis. To find the enriched pathways
of the proposed genetic signature for NSCLC, an over-
representation pathway analysis was performed using both
DAVID and CPDB using a p-value threshold of 0.05. Sig-
nificant pathways were ranked by p-value. Both tools were
utilized in this stage for cross-verification.

Potential target genes and drug discovery
The two sets of key genes that were obtained using ma-
chine learning algorithms and topological parameter-based
classification were grouped up- and down-regulated genes
to query the cMap database, which retained potential drugs
with p-values of less than 0.05. Drugs that were output by
cMap were mapped, and finally identified with known drug
targets in the up- or down-regulated cancer PPI network.
Combining datasets raises some issues, such as the

problem of data heterogeneity, varying sample sizes, and
the problem of data dependence. In principle, these is-
sues can be resolved using meta-analysis. Meta-analysis
[35, 36] is a set of statistical methods for summarizing
the results of several investigations as a single value. The
advantage of meta-analysis is that it can identify rela-
tionships across many studies.
In this drug prediction study, a p-value and an enrich-

ment score (ES) are obtained for each cMap drug. The
Fisher summary statistical method [36] uses the p-values,
defined as,

Fi ¼ −2
XN
j¼1

log pij
� �

ð1Þ

where Fi tests (χ2 test with 2N degrees of freedom,
where N is the sample size) the null hypothesis for gene
i, and indices i and j indicate the ith gene in the jth data-
set respectively.
The ΕS value lies between −1 and 1, and so can be

treated as a sample correlation coefficient and an index
of the size of effect in the meta-analysis [36]. In practice,
the ΕS value is converted to a value on Fisher’s z scale,
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and all analyses are performed using such converted
values. After the analyses are completed, the z values are
converted back to the original scale [6]. The ES value is
transformed to a z value by,

z ¼ 1
2
ln
1þ ES
1−ES

ð2Þ

and the variance of z is defined as Vz = 1 / (N – 3), where
N is the sample size. The variance of z is approximately
proportional to N-3 (as proved by R. A. Fisher), which is
independent of the value of the correlation among the
population from which the sample drawn [37].
The weight that is assigned to each study in a fixed-

effect model is given by,

Wi ¼ 1
VYi

ð3Þ

where Wi is the within-study variance in study i. The
weighted mean (M) is computed as,

M ¼

Xk
i¼1

WiY i

Xk
i¼1

Wi

ð4Þ

For unweighted calculations, Wi is unity. The variance
of the summary effect (VM) is given by,

VM ¼
Xk
i¼1

Wi

 !−1

ð5Þ

For unweighted calculations, the Z-score for a normal
distribution is defined as,

Z ¼ M
SEM

ð6Þ

where SEM is the standard error and equals
ffiffiffiffiffiffiffiffi
VM

p
.

For weighted calculations, the Z-score is defined as,

Z ¼

Xk
i¼1

WiY iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

Wi
2

vuut
ð7Þ

Equation (7) yields the one-tailed test p-value. The
95 % lower and upper limits on the summary effect are
computed as,

LLM ¼ M−1:96� SEM

ULM ¼ M þ 1:96� SEM
ð8Þ

The formula for the random-effects model can be found
in a monograph that was written by Borenstein [36]. The

above analyses enable the confidence interval of the ES to
be determined.
The meta-analysis involves two models - the fixed-

effect model and the random-effect mod-el [36]. In the
fixed-effect model, only one true effect size is assumed
to exist, and all differences among studies or batches are
assumed to be caused by sampling errors only. In con-
trast, the random-effect model allows the effect size to
vary among studies, and allows an effect size to be esti-
mated for each study. This work considers both models.
A test for the homogeneity of the distribution of data

was conducted. As the size of effect commonly found to
vary among studies, the meta-analysis method is used
herein. Q statistics and I2 statistics are used to quantify
the heterogeneity, to test it, and to incorporate it into
the weighting scheme. The value of I2 is defined as,

I2 ¼ Q−df
Q

� 100% ð9Þ

where df is the number of degrees of freedom, and Q is
given by,

Q ¼
Xk

i¼1
Wi Y i−Mð Þ ð10Þ

where k, W, Y and M are the number of studies, the
study weight, the size of the effect of interest in the
study and the summary effect, respectively.
A p-value of 0.1 for I2 statistics is used as the thresh-

old for statistical significance. A p-value of larger than or
equal to 0.1 indicates little variation among batches, and
that a fixed-effect model may therefore be appropriate;
otherwise, the random-effect model applies [36]. The I2

value represents the degree of heterogeneity: an I2 of less
than 25 % implies no heterogeneity, whereas a value of
larger than 75 % indicates extremely high heterogeneity.
If the studies are homogenous, then they are likely to

have tested the same hypothesis. If estimates are heteroge-
neous, then the studies probably did not test the same hy-
pothesis. Therefore, all of the study results may not be able
to be combined in a single meta-analysis. In such a case, a
separate meta-analysis, such as a meta-regression analysis,
must be performed for various subsets of studies [36].

MTT™ cell viability test
To determine the effective cytotoxicity of screening drugs,
MTT assay was used for cell viability and proliferation. In
general, all incubated cancer cell lines (A549 and H460)
were seeded in a 96-well microplate for up to 24 h
dependent on the baseline growth rate. After incubation,
candidate drugs were added into the plate and incubated
together for 72 h. For performing the assay, 50 μl MTT
solution (2 mg/ml) per well was added and incubated at
37 °C for 2 h. The 150 μl supernatant per well was then
extracted and DMSO was filled to dissolve the recipe. The
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absorbance was set up at 570 nm and calculated by using
ELISA reader (Infinite® M1000, TECAN, Switzerland).
Ratio decrease comparing to the control group as 100 %
viable was seemed as the inhibitory effect.

Clonogenic assay
We use two different high clonogenic lung cancer cell
lines, A549 and H460 to perform the clonogenic assay.
Cells were diluted to 500 cells per well and then seeded
in 6-well plates up to 10 days according to the growth
rate. Each well contained 1.5 ml RPMI medium as cul-
ture condition and screening compounds were added
24 h after the seeding. For the longer duration of incu-
bation, medium and compounds were changed every
4 days. For performing the assay, cells were washed with
PBS, and then the attached colonies were fixed with
acetic acid (1: 3 diluted in methanol). The fixed colonies
were stained with 0.5 % crystal violet. The colonies were
then counted manually after removing the excess crystal
violet and rinsing with tap water.

Results
Microarray data analysis
In this study, multiple microarray source data were
used for analysis. The Robust Multi-array Average
(RMA) was used to normalize gene expression. DEGs
were predicted using an adjusted p-value of 0.005.
Integrating DEGs data with the BioGrid [38] PPI data
yielded a list of binary interactions among DEGs for
both up and down groups.
The fact that that the use of various microarray plat-

forms may raise the problem of heterogeneity is a con-
cern, which can be tackled in the following two steps; (i)
select common DEGs among all platforms for further ana-
lysis, and (ii) perform meta-analysis and test heterogeneity
to determine whether the fixed-effect model or the
random-effect model should be used.

Results of machine learning
In the machine learning method, every microarray
dataset is processed individually. Before conducting
the machine learning algorithms, the DEGs lacking of

domain data or PPI data were excluded from the
candidate DEGs. The input data concerned only the
remaining DEGs. After the machine learning approach
was implemented, only DEGs that were identified as
cancer proteins by all five topological parameter-
based classifiers were considered as key genes. Table 2
presents the statistical results in this stage.

Results of topological parameter-based classification
To identify key genes in the up- and down-regulated
networks respectively the following process was imple-
mented. For each group of DEGs that is classified by a
topological parameter, a DEG that ranks in the top 20 % in
that parameter will receive a score (S) of one. Clearly, a
higher score for a DEG indicates greater importance in the
network. DEGs with the highest scores in each group are
selected for key genes. The key genes are the union of the
two sets with the highest-scoring DEGs in the up- and
down-regulated networks. In this work, this stage yielded
104 and 123 key genes for the early- and late-stage NSCLC,
respectively. Focusing on the top 10 % rather than 20 %
yields only 41 and 56 key genes for the early- and late-stage
NSCLC. Relaxing the threshold to 30 % yields 170 and 200
key genes, respectively, which are too many; therefore, top
20 % of classified genes were chosen for key genes.

Enriched biological pathways
Pathways are annotated using DAVID and CPDB. Top-
ranking pathways in REACTOME [39] and KEGG [40]
with p-values of less than 0.05 are reported.
In the machine learning method, the selected DEGs

are microarray-specific. Common DEGs were collected
from all microarray datasets as the key genes for bio-
logical pathway analysis. The key genes that were se-
lected by topological parameter-based classification of
genes in up- and down-regulated networks are merged
into a single set. The two sets of key genes from the dif-
ferent approaches are submitted to DAVID and CPDB
to extract the common enriched biological pathways.
Table 3 presents the common enriched pathways for early

NSCLC that are identified by the machine learning

Table 2 The number of DEGs derived from the machine learning method for each microarray dataset

Stage GEO ID Number of DEGs Excluded Net Number of predicted key genes Common genes

Early GSE7670 801 350 451 259 136

GSE10072 2835 890 1945 1173

GSE19804 4614 1924 2690 1697

GSE27262 8476 3161 5315 3310

Late GSE7670 1674 608 1066 511 182

GSE10072 1656 574 1082 691

GSE19804 3391 1545 1846 1181
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algorithms and topological parameter classification. Ac-
cording to Table 3, no common pathways were identified
by DAVID, while some were found using CPDB. In KEGG,
endocytosis, glycolysis/gluconeo-genesis, hematopoietic cell
lineage and gap junction are the common enriched path-
ways for early-stage cancer. According to the literature,
these common pathways are closely related to cancer.
Among them, glycolysis/gluconeo-genesis has been identi-
fied as an enriched pathway for early-stage cancer [6].
Oncogenes and tumor suppressors are known to regulate
metabolism. The mutations of oncogenes in the up-
regulation of glucose transporters increase the consump-
tion of glucose by cancer cells, increasing the rate of
glucose metabolism [41, 42]. Endocytosis is closely related
to cell regulation and is predicted to play an important role
in human cancers [43]. Raf/MEK/ERK is typically associ-
ated with the proliferation and drug resistance of
hematopoietic cells, while the activation of the Raf/MEK/
ERK cascade is suppressed in some prostate cancer cell
lines that have mutations at PTEN and express high levels
of activated Akt [44]. Holder et al. claimed that persistent
gap junction perturbation can have chronic effects, and
various tumor promoters inhibit GJ intercellular communi-
cation [45]. Cancer cells typically have down-regulated
levels of gap junctions, and many pieces of evidence suggest
that loss of gap junctional intercellular communication is
an important step in carcinogenesis [46].
In REACTOME, cell-cell communication, glucose me-

tabolism, regulation of PLK1 activity at the G2/M transi-
tion, metabolism of nucleotides, organization of the cell
junction and platelet activation, signaling and aggrega-
tion are enriched pathways for early NSCLC. Of them,
glucose metabolism is like glycolysis/gluconeo-genesis
and has been previously determined to be related to can-
cers. Tominaga et al. [47] demonstrated that cancer-
derived extracellular vesicles (EVs), which are mediators

of cell–cell communication, trigger the breakdown of
the blood–brain barrier, which controls the migration of
cancer cells. Arid and Zhang proposed that nucleotide
metabolism causes tumor progression, and considered
how this pathway can be targeted for cancer therapy by
inducing the senescence of cancer cells [48]. Several cell
junction components have functions that are associated
with cell polarity and growth control and are specifically
disrupted in cancerous cells [49]. PLK1 seems to be in-
volved in the tumor suppressor p53-related pathways.
Evidence suggests that PLK1 inhibits the transactivation
and pro-apoptotic functions of p53 by physical interaction
and phosphorylation [50]. Additionally, in cancer growth
and dissemination, complex interactions between tumor
cells and circulating platelets are critical. Evidence sup-
ports a role for physiological platelet receptors and platelet
agonists in cancer metastases and angiogenesis [51].
Based on the pathway annotation database, REAC-

TOME in DAVID, Table 4 presents the common enriched
pathways for late-stage NSCLC that are identified by both
methods. CPDB returns more pathways than DAVID. As
noted in reference to Table 4, cell cycles are the common
path that is identified using DAVID, and this finding is
consistent with the results of our previous work [6]. Fur-
thermore, many common paths were observed using
CPDB, and these are dominated by the cell cycle. Notably,
the endocytosis pathway appears in both Tables 3 and 4,
indicating that this pathway is closely related to both
early-stage and late-stage NSCLC.
DNA replication, repair and checkpoint activation

pathways are highly regulated and coordinated. Defects
in any of these functions cause genomic instability and
may lead to cancer [52]. For example, BRCA2 partici-
pates in homologous recombination and regulating the
S-phase checkpoint, and mutations of deficiencies in
BRCA2 are strongly associated with tumorigenesis [53].

Table 3 The common pathways by using DAVID and CPDB for early-stage NSCLC (the pM-value and pT-value represent the
corresponding p-value obtained by machine learning algorithms and topological parameter-based classification)

DAVID

KEGG REACTOME

pathname pM-value pT-value pathname pM-value pT-value

NULL NULL

CPDB

KEGG REACTOME

pathname pM-value pT-value pathname pM-value pT-value

Endocytosis 0.01340 0.00045 Cell-Cell communication 0.02810 0.00432

Glycolysis/Gluconeogenesis 0.02330 0.00249 Glucose metabolism 0.02420 0.02000

Hematopoietic cell lineage 0.04060 0.03380 Regulation of PLK1 Activity at G2/M Transition 0.03700 0.03070

Gap junction 0.04700 0.03930 Metabolism of nucleotides 0.03940 0.03280

Cell junction organization 0.00765 0.03590

Platelet activation, signaling and aggregation 0.04720 0.03630
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Table 4 agrees closely with the results of our previous
work [6], which also identified cell-cycle, the mitotic
anaphase, DNA replication, the sister-chromatid segre-
gation process, the Cdc20:Phospho-APC/C-mediated
degradation of Cy-clin A, the M-phase and mitotic G1-
G1/S phases.
Although defective apoptosis is critical to the develop-

ment and progression of cancer, apoptosis is important
in the treatment of cancer as it is a popular target of
many treatment strategies [54].
Wong et al. [55] noted that PKG-Iα kinase activity is

necessary to maintaining high levels of cAMP response

element binding (CREB) phosphorylation at ser133, and
promotes the formation of colonies in NSCLC cells. The
gene expression signature of the responses of vascular
smooth muscle contraction to serum exposure is associ-
ated with a significantly poorer prognosis in cases of
human cancer, and vascular injury response is therefore
potentially linked to tumor progression [56].
According to Table 4, the mitotic process and CDC20

are involved in many enriched pathways. Mitotic progres-
sion and sister-chromatid segregation are controlled by
the anaphase promoting complex/cyclosome (APC/C).
APC/C forms a protein complex with its mitotic co-

Table 4 The common paths using DAVID and CPDB for late-stage NSCLC (the pM-value and pT-value represent the corresponding
p-value obtained by machine learning algorithms and topological parameter-based classification)

DAVID

KEGG REACTOME

pathname pM-value pT-value pathname pM-value pT-value

Cell cycle 0.03800 0.00140 Cell Cycle Checkpoints 0.00760 0.00872

Cell Cycle, Mitotic 0.00100 0.02186

CPDB

KEGG REACTOME

pathname pM-value pT-value pathname pM-value pT-value

Cell cycle 0.00632 0.00004 Regulation of mitotic cell cycle 0.01500 0.00000

Inflammatory mediator regulation
of TRP channels

0.03960 0.00048 APC/C:Cdc20 mediated degradation of mitotic proteins 0.01500 0.00000

Endocytosis 0.00051 0.00153 Activation of APC/C and APC/C: Cdc20 mediated degradation
of mitotic proteins

0.00663 0.00001

Thyroid hormone synthesis 0.01560 0.00662 Cell Cycle Checkpoints 0.00729 0.00001

Salivary secretion 0.03120 0.01370 Cell Cycle 0.00007 0.00001

Long-term depression 0.04420 0.02330 Regulation of APC/C activators between G1/S and early anaphase 0.00177 0.00001

cGMP-PKG signaling pathway 0.02210 0.02740 G1/S Transition 0.01030 0.00002

Vascular smooth muscle contraction 0.00497 0.03440 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 0.00837 0.00004

Cell Cycle, Mitotic 0.00485 0.00014

APC:Cdc20 mediated degradation of cell cycle proteins prior
to satisfaction of the cell cycle checkpoint

0.00182 0.00014

Mitotic G1-G1/S phases 0.00541 0.00016

G2/M Checkpoints 0.02590 0.00023

M Phase 0.00298 0.00119

DNA Replication 0.00813 0.00153

Resolution of Sister Chromatid Cohesion 0.00103 0.00297

Mitotic Prometaphase 0.00230 0.00399

Apoptotic cleavage of cellular proteins 0.00067 0.00572

S Phase 0.01500 0.00762

Mitotic Anaphase 0.02040 0.00875

Mitotic Metaphase and Anaphase 0.00035 0.01140

Apoptotic execution phase 0.00036 0.01170

Synthesis of DNA 0.03370 0.01760

Separation of Sister Chromatids 0.00540 0.01760
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activator, CDC20, which controls mitotic progression.
CDC20 protein level may directly influence the fate of
cells during prolonged mitotic arrest and its turnover rate
may critically affect the response of a cancer patient to
anti-mitotic therapies [6].
In summary, combining machine learning methods

with the classification of topological parameters reveals
many cancer related pathways, which are well supported
by the literature, providing insight into key regulators of
the tumorigenesis of NSCLC.

Potential drugs for treating NSCLC and their targeted
genes
Both sets of key genes that were identified by machine
learning algorithms and topological parameter-based clas-
sification were analyzed using cMap to discover potential
drugs. For the set of key genes from machine learning ap-
proach and individual microarray, meta-analysis was per-
formed using the p-values that were obtained from cMap
for an individual microarray. For example, in early-stage
NSCLC, cMap outputs 1309 drugs for key genes from the
microarray GSE7670. These 1309 drugs are then filtered
to find those with cMap p-value <0.1, and 168 drugs are
identified. For cMap p-value <0.1, the numbers of
remaining drugs for the four microarray datasets of early-
stage NSCLC are 168, 139, 149 and 85 respectively. A
meta-analysis is then performed to integrate the four
groups of remaining drugs, and nine drugs are finally
extracted. IC50 experiments verified the therapeutic effect-
iveness of four of these drugs. The alternative method be-
gins by extracting the drugs from cMap under the
constraint ES < 0, yielding 597 drugs from the 1309 drugs
for microarray GSE7670. Next, the meta-analysis is per-
formed, and 383 drugs are filtered out of the 597 drugs.
Finally, 60 drugs with a meta-analysis p-value (pMA-value)
of less than 0.1 are kept. Table 5 shows all of these results.
In Table 6, the first row presents the early- and late-

stage ES and p-value that is used in the meta-analysis.
The upper-diagonal includes the Jaccard Index (JI) score

of the corresponding effect size and NSCLC stage. Given
two sets A and B, JI(A,B) is defined as |A∩B|/(|A|∪|B| -
|A∩B |), where |A∩B|, |A| and |B| denote the cardinality
of A ∩ B, A and B respectively. In contrast, entries in the
lower diagonal are the number of common drugs for the
corresponding effect size and NSCLC stage. For early-
stage NSCLC, there are five common drugs (JI is 0.078)
predicted under the two kinds of effect size, whereas, 13
common drugs (JI is 0.152) are identified for treating
late-stage NSCLC.
The drugs that are predicted by the machine learning

method are the union of the drugs that are predicted
under the four conditions in Table 5. In contrast, the
drugs that are predicted by the topological parameter-
based classification are direct outputs of the cMap with
a p-value of less than 0.05. Machine learning algorithms
(topological parameter-based classification) identified 60
(17) potential drugs for treating early-stage NSCLC,
among which eight (two) were validated as effective by
MTT or clonogenic assay, and are presented in Table 7.
Machine learning algorithms (topological parameter-

based classification) identified 49 (37) potential drugs for
treating late-stage NSCLC, of which were five (five) were
validated as effective by MTT or clonogenic assay, and
are presented in Table 8.
Table 9 lists the common drugs that were identified by

both machine learning algorithms and topological
parameter-based classification. Of these, two (trichostatin
A and vorinostat) were determined by IC50 to be effective
against both early- and late-stage NSCLC, respectively.
These common drugs are consistent with the findings of
Ref. [5]. Seven drugs, including trichostatin A, vorinostat,
MS-275, scriptaid, perhexiline, (−)-MK-801, and rifabutin,
of the 18 predicted potential drugs for treating NSCLC
had been reported in Ref. [5]. Interestingly, the first four
drugs are HDAC inhibitors. Also, we found trichostatin A
also among the 18 predicted potential drugs for treating
NSCLC [6]. Notably, trichostatin A is the common drug

Table 5 The number of potential drugs filtered by meta-analysis
for early- and late- stage NSCLC using the enrichment score (ES)
and cMap p-value (less than 0.1) for meta-analysis

Early-stage Late-stage

Potential
drugs

IC50
verified

Potential
drugs

IC50
verified

ES < 0 & cMap
p-value <0.1

9 4 31 5

ES < 0 & cMap
p-value <0.5

12 4 81 8

ES < 0 & pMA-value
<0.05

25 2 23 1

ES < 0 & pMA-value
<0.1

60 8 49 5

Table 6 The number of common drugs and JI score for early- and
late-stage using the enrichment score (ES) and cMap p-value
(less than 0.1) for meta-analysis

Effect
size

ES < 0 & pMA-value
<0.1

ES < 0 & cMap
p-value < 0.1

Effect size Early-
stage

Late-
stage

Early-
stage

Late-
stage

ES < 0 & pMA-value
<0.1

Early-
stage

0.557 0.078 0.152

Late-
stage

39 0.074 0.194

ES < 0 & cMap
p-value < 0.1

Early-
stage

5 4 0.143

Late-
stage

12 13 5
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that was identified in all of the above studies. Five com-
mon drugs, including 4,5-dianilinophthalimide, perhexi-
line, puromycin, trichostatin A, and vorinostat, are
identified for treating both early-stage and late-stage
NSCLC in this study, suggesting that they may be stage-
independent drugs.
Some of the above common drugs have been

undergoing clinical trials for NSCLC treatment, in-
cluding mepacrine (clinical trial NCT01839955), MS-
275 (clinical trial NCT02437136) and Vorinostat
(clinical trial NCT00667082). The results in this
study are consistent with our previous work [5]; both
studies identified nine drugs, of which had cytotoxic
effects that were validated by IC50 experiments.
These three drugs are trichostatin A, vorinosta and
nortriptyline. The potential use in lung cancer

treatment warrants further exploration. Notably, Ref.
[5] treated the early stage and late stage on the same
footing, it is not stage-specific.
The machine learning approach has similar hit ratio to

the topological parameter-based approach (early-stage:
8/60 vs. 2/17; late-stage: 5/49 vs. 5/37), as supported by
in vitro IC50 measurements. Combining the machine
learning approach with the topological parameter-based
classification yielded the best hit ratio. The current
method has a higher prediction accuracy (early-stage: 2/
7 vs. 1/7; late-stage: 2/11 vs. 7/65) than the method of
Ref. [6], consistent with the IC50 measurements.
The common drugs were submitted to DrugBank [57]

and NCBI to search for their corresponding targeted
genes. Among these targeted genes, we kept only those
which are also key genes, finally yielding a total of 8 and
12 targeted genes for early- and late-stage NSCLC re-
spectively, as shown in Table 10, which are the potential
therapeutic targets for future lung cancer clinical trials.
For each targeted gene in Table 10, the number in par-
entheses is the number of associated cMap drugs, and
could be regarded as a metric for prioritizing the genes
in the list. The ADRB2 gene ranked top of the lists for
both early- and late-stage NSCLC.
Whether a particular gene is related to most of the tar-

geted genes in Table 10 is of interest. Therefore, net-
works of the targeted genes and their adjacent genes in
PPI for early- and late- stage NSCLC were constructed.
Figure 2a and b display the top three genes that exhibit
the largest, the second largest and the third largest

Table 7 IC50 values of potential drugs for early-stage NSCLC

Machine learning algorithms

cMap drug name MTT (μM) Clonogenic (μM)

mebendazole <1

vorinostat <1

pyrvinium <0.1

niclosamide >5

nortriptyline <10

piperlongumine >5

trichostatin A

trioxysalen >5

Topological parameter-based classification

cMap drug name MTT (μM) Clonogenic (μM)

trichostatin A <1

vorinostat <1

Table 8 IC50 values of potential drugs for late-stage NSCLC

Machine learning algorithms

cMap drug name MTT (μM) Clonogenic (μM)

trichostatin A <1

Vorinostat <1

withaferin A <1

mebendazole <1

piperlongumine >5

Topological parameter classification

cMap drug name MTT (μM) Clonogenic (μM)

acepromazine <10

nortriptyline <10

propafenone <10

trichostatin A <1

vorinostat <1

Table 9 The common drugs identified by both two methods

Early-stage NSCLC

4,5-
dianilinophthalimide

mepacrine
(quinacrine)

meptazinol perhexiline

puromycin trichostatin A vorinostat

Late-stage NSCLC

(-)-MK-801 4,5-
dianilinophthalimide

MS-275
(Entinostat)

perhexiline

puromycin quinostatin rifabutin scriptaid

trichostatin A vorinostat Y-27632

Table 10 The targeted genes identified by the common drugs
derived from both two methods (the parentheses represent the
number of associated cMap drugs)

Early-stage NSCLC

ADRB2 (4) CASP1 (3) KAT2A (2) SNCA (1)

ARRB1(1) PSIP1 (1) PAFAH1B3 (1) GAPDH (1)

Late-stage NSCLC

ADRB2 (6) ARRB1 (3) NCOA1 (3) PSIP1 (3)

SMARCA2 (3) GAPDH (3) CPT1A (1) AURKB (1)

IRAK1 (1) GRK5 (1) SRPK1 (1) AURKA (1)
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degree in early- and late-stage networks, respectively. In
the early-stage network, the UBC gene directly interacts
with all of the 8 targeted genes, as shown in Fig. 2a,
while the other genes (such as TUBB) connect to no

more than 5 targeted genes. Similarly, in the late-stage
network, the UBC gene connects to all of the 12 tar-
geted genes as shown in Fig. 2b, while the others (such
as HSP90AA1) connect to at most 7 targeted genes. This

Fig. 2 The top three genes (squares) which connect to the largest, the second largest and the third largest degree of targeted genes (circles) for
a early-stage; b late-stage network
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finding is in agreement with the findings of [5]. Al-
though the UBC gene is neither a key gene nor a tar-
geted gene, it dominates all of the targeted genes;
whether this fact implies that the UBC gene acts as a
master regulator in the cancer pathway deserves further
experimental investigation.
A concern arises regarding how the p-values that are

obtained by different methods are combined. In fact, only
the p-values and the enrichment scores (ES) that were ob-
tained from cMap are combined in meta-analysis. Please
refer to the workflow in Fig. 1. Four p-values were
obtained by (1) identification of DEGs, (2) gene set enrich-
ment analysis, (3) cMap drug analysis and (4) meta-
analysis of cMap drugs.
The p-values that were obtained in the DEG analysis are

used to identify significant DEGs. Also, the p-values that
were obtained in (2) and (3) are not related to each other,
and they do not have to be combined. Since different
microarray datasets yielded different drug predictions,
meta-analysis was conducted using the cMap p-values and
ES to achieve results in which confidence is high.
Some missense mutations and non-synonymous SNPs

(nsSNPs) may damage protein functions, disrupting the
drug actions. Our future work will account for this ef-
fect. Numerous web-based tools are available to facilitate
such analysis. PolyPhen2 [58] is a tool that predicts the
impact of an amino acid substitution on the function
and structure of a protein using sequence-based and
structure-based features. SNPdryad [59] is a web-based
tool that elucidates the effect of nsSNPs based on multiple
sequence alignments of orthologous proteins. Mutation-
Taster [60] is another tool that uses NGS data to elucidate
the effect of missense mutations on the expression and
function of proteins.

Conclusion
In this study, two methods - machine learning algorithms
and topological parameter-based classification - are com-
pared and combined to identify potential reliable drugs
for treating NSCLC, and meta-analysis is used to solve the
problem of data heterogeneity. Since cancer is a multi-
stage progressive disease, early- and late-stage cancer-
related genes potentially differ substantially. Therefore,
the proposed method was used to identify stage-specific
DEGs, biological pathways and potential drugs. Some of
the extracted biological pathways are supported by the lit-
erature, and some of the results herein concerning the
identified drugs are supported by IC50 experiments. Seven
and 11 potential drugs are discovered for treating early-
and late-stage NSCLC, respectively, and warrant further
investigation. Among them, perhexiline and trichostatin A
are supported by the previous research. Interestingly, the
UBC gene dominates all of the targeted genes associated

with early- and late-stage NSCLC, so its role in the cancer
pathway warrants further investigation.
Integrating machine learning algorithms and topological

parameter-based classification herein increased drug
prediction accuracy over that achieved in any previous re-
search. This improvement is confirmed by IC50 experi-
ments. The overlap of our discovered drug candidates
with those that are undergoing clinical trials or are identi-
fied in the literature demonstrates the effectiveness of the
proposed methods. The performance of the proposed
methods can be further improved by incorporating more
microarray datasets or verified gene-drug associations. In
summary, many techniques were integrated to develop a
novel pipeline of therapeutic drugs for NSCLC, and the ef-
ficiency of this pipeline was investigated. The approaches
that were developed in this work are expected to inspire
future studies, and the pipeline may be extended to the
treatment of other diseases.
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