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Abstract
Background: Metastases are responsible for the majority of cancer fatalities. The molecular
mechanisms governing metastasis are poorly understood, hindering early diagnosis and treatment.
Previous studies of gene expression patterns in metastasis have concentrated on selection of a
small number of "signature" biomarkers.

Results: We propose an alternative approach that puts into focus gene interaction networks and
molecular pathways rather than separate genes. We have reanalyzed expression data from a large
set of primary solid and metastatic tumors originating from different tissues using the latest
available tools for normalization, identification of differentially expressed genes and pathway
analysis. Our studies indicate that regardless of the tissue of origin, all metastatic tumors share a
number of common features related to changes in basic energy metabolism, cell adhesion/
cytoskeleton remodeling, antigen presentation and cell cycle regulation. Analysis of multiple
independent datasets indicates significantly reduced oxidative phosphorylation in metastases
compared to primary solid tumors.

Conclusion: Our methods allow identification of robust, although not necessarily highly
expressed biomarkers. A systems approach relying on groups of interacting genes rather than single
markers is also essential for understanding the cellular processes leading to metastatic progression.
We have identified metabolic pathways associated with metastasis that may serve as novel targets
for therapeutic intervention.

Introduction
Metastasis (originating from Greek μετισταναι, to
change) is the single most important event changing the

course of cancer from manageable to fatal. For metastasis
to occur, tumor cells must acquire the ability to detach
from the original tumor, relocate through the blood or
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lymphatic circulation and start a new colony in a different
part of the organism [1]. In spite of intensive research [2-
11] there is no consensus regarding the origin of metas-
tases. According to one model, metastatic transformation
can be triggered in primary solid tumors by certain condi-
tions, while another model links metastatic potential to a
very rare subtype of tumor cells, occurring on the order of
one in many millions. Genetic background is also viewed
as an important determining factor in metastatic transfor-
mation [10,11]. This difference is important for both diag-
nostic and prognostic purposes.

Early cancer is clinically heterogeneous, and many
patients can have an "indolent" disease course that does
not significantly affect their survival. Once metastatic dis-
ease is documented clinically, the majority of patients die
from their tumors as opposed to other causes [12]. This
has led some researchers to consider the disease as a series
of "states" that include clinically localized tumors and
those that have metastasized, as a framework to assess the
clinical and biological factors associated with specific phe-
notypes and outcomes [13]. However, there are other
plausible concepts. Analysis of relations between different
molecular subtypes of cancer and identification of genes
specific to such subtypes is important for understanding
the biological basis for this clinical heterogeneity and thus
is critical in assessing prognosis, selecting therapy, and
evaluating treatment effects. Metastatic transformation is
a multi-stage process involving complex interactions
between tumor cells and the host [14]. Cells from primary
tumors must detach, invade stromal tissue, and penetrate
blood or lymphatic vessels by which they disseminate.
They must survive in the circulation to reach a secondary
site in which they lodge because of physical size or bind-
ing to specific tissues. To form clinically significant
tumors, metastatic cells must also adjust their metabolism
and signaling systems to proliferate in the new microenvi-
ronment. Tumor cells growing at metastatic sites are con-
tinually selected for their growth advantage. This is a
complex and dynamic process that is expected to involve
alterations in many genes and transcriptional programs.

Considerable amounts of gene expression data have been
deposited in public databases and/or are available upon
request from other investigators. Analysis of these data is
generally limited to one set at a time. However, recent
years have seen multiple attempts to conduct meta-analy-
sis across independent data sets. Among the more success-
ful of these is a study by Ramaswamy et al. of molecular
signatures of metastasis in primary solid tumors aiming to
elucidate the molecular nature of metastasis [7]. The
authors analyzed the gene-expression profiles of 12 meta-
static adenocarcinoma nodules of diverse origin (lung,
breast, prostate, colorectal, uterus, ovary) and compared
them with the expression profiles of 64 primary adenocar-

cinomas representing the same spectrum of tumor types
obtained from different individuals. They identified 128
genes differentially expressed between primary and meta-
static adenocarcinomas. A similar pattern was found in
some primary tumors, which suggests that a gene expres-
sion program for metastatic transformation is present in
some primary solid tumors. Further refining produced a
subset of 17 unique genes that the authors presented as
the most significant contributors to the difference
between primary and metastatic tumors and thus the
most likely diagnostic markers for the metastatic poten-
tial.

In this work, we present an alternative analysis of gene
expression data based on a holistic approach integrating
fragmented biological evidence and strengthening the
unreliable conclusions by bringing more data rather than
cutting straight to a few most consistent observations. We
start with the analysis of the same meta-set of metastatic
and primary tumors utilized by Ramaswamy et al., but
supplement the analysis by algorithms, methodology and
data not available to the original authors.

Data
The Ramaswamy et al. meta-set combines genes repre-
sented by different probes across multiple distinct micro-
array platforms (Affymetrix U95A, Hu6800 and Hu35K
oligonucleotide microarrays as well as Rosetta inkjet
microarrays) traced through by mapping to UniGene
build #147. The data have been scaled to account for dif-
ferent microarray intensities in a given set. Each column
(sample) has been multiplied in the data set by 1/slope of
a least-squares linear fit of the sample versus a reference
(the first sample in the data set) using only genes that had
'Present' calls in both the sample being re-scaled and the
reference. A typical sample (that is, one with the closest
number of 'Present' calls to the average over all samples in
the data set) was chosen as reference.

The authors performed thresholding using a ceiling of
16,000 units and a floor of 20 units then subjected gene-
expression values to a variation filter that excluded genes
with minimal variation across the samples being analyzed
by testing for a fold-change and absolute variation over
samples, comparing max/min and max - min with prede-
fined values and excluding genes not obeying both condi-
tions. The resulting data are available at http://
wwwgenome.wi.mit.edu/cancer/solid_tumor_metastasis.

Colorectal cancer data sets
The GDS756 dataset provided insight the progression of
cancer from primary tumor growth to metastasis by com-
parison of gene expression in SW480, a primary tumor
colon cancer cell line, to that in SW620, an isogenic met-
astatic colon cancer cell line. Both cell lines were derived
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from one individual. The GDS1780 set reflects compari-
son of polysomal RNA from isogenic cell lines established
from a colorectal cancer (CRC) patient [6]. The cell lines
constitute a cellular model of CRC transition from inva-
sive carcinoma to metastasis. The RNA samples were sub-
mitted to microarray analysis using the HG-U133A chip
from Affymetrix, (Santa Clara, CA). Three biological repli-
cates were carried out for each cell line and six hybridized
arrays obtained. Raw data were analyzed using two micro-
array analysis software packages, dChip (13) and R-
Robust Microarray Analysis (R-RMA) (14). We have
downloaded and used these data sets from GEO (GDS756
and GDS1780). Each data set contains 22283 features
(probesets) and 6 columns (samples) representing two
contrast classes, each with three replicate experiments.

Breast cancer data
The data set we used in this study was downloaded from
the GEO database (GDS2617); it contains 22283 probe
sets. Tumorigenic and non-tumorigenic breast cancer cells
were compared. Tumorigenic breast cancer cells were con-
sidered those expressing cell-surface proteins CD44 and
CD24. Tumorigenic breast cancer cells isolated from 6
individuals were compared with normal breast epithe-
lium derived from 3 individuals. In terms adopted by the
authors of the original paper [4], tumorigenic cancer sam-
ples are those with invasive potential, resulting in meta-
static progression.

Methods
Overview of the analysis pipeline
The general overview of the analysis pipeline is given in
Supplemental Figure 1 (Additional File 1). Our pipeline
includes most of the standard analysis steps, but has a few
important differences. We extend the analysis to maxi-
mize the advantage of pathway analysis. The genes impor-
tant for understanding the biological processes involved

in metastatic transformation are selected not solely by the
difference in signal emitted by microarray probes. Instead,
we concentrate on the "group behavior" of genes, their
ability to interact and pre-existing annotation placing the
genes into the same biological pathway, linking to the
same cellular function. Thus, the inference is done with
very liberal selection criteria and not adjusted for multiple
testing. We select a large list of potentially differential
genes which may contain a large number of false-posi-
tives. We then select biological pathways, molecular func-
tion and GO terms which are over-represented in the
initial intensity-based list. The benefits of the use of path-
way and ontological analyses of microarray data have
been presented previously [15,16]. More recent GSEA [17]
and SAFE [18] methods can be very effective in highlight-
ing the joint effect of a group of genes which may not be
significantly differential if considered one by one. How-
ever, these methods require additional assumptions that
may not be correct in every study. The significance of bio-
logical pathways is estimated through a variation of
Fisher's exact test as implemented in Metacore or IPA and
adjusted for multiple testing using Benjamini-Hochberg
FDR analysis (which is a build-in function of GeneGo
Metacore software). Single genes that do not map into any
statistically significant pathway (i.e. missing all regulators,
downstream targets, ligands and other components neces-
sary for a functional molecular mechanism) may be still
considered significant if reproducible and independently
validated in additional experiments. However, in our
analysis pipeline we leave such genes out regardless of
their individual difference between primary and meta-
static samples in a particular experiment. Our approach is
based on collective effects of the groups of genes inter-
linked by functional relationships, which is inapplicable
to some genes lacking information on function, regula-
tion and interaction with other genes.

Biological pathways significantly overrepresented in the shortlist of genes differentially expressed between primary solid and metastatic tumors (Ramaswamy et al. data set)Figure 1
Biological pathways significantly overrepresented in the shortlist of genes differentially expressed between primary solid and 
metastatic tumors (Ramaswamy et al. data set).
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Normalization
The data were normalized using a quantile algorithm sim-
ilar to one described by Bolstad et al. [19]. We applied our
own C++ software for normalization, available from A.
Ptitsyn upon request. Box-plots for pre-normalized and
normalized expression value distributions are shown in
Supplemental Figure 2 (Additional file 1).

Preliminary selection of differentially expressed genes
A set of differentially expressed genes was selected using
University of Pittsburgh Gene Expression Data Analysis
suite (GEDA, http://bioinformatics.upmc.edu/GE2/
GEDA.html). For selection, we applied the standard J5
metric with threshold 4 and optional 4 iteration of Jack-
knife procedure to reduce the number of false-positive dif-
ferential genes [20]. Both J5 metric and threshold
parameter are standard pre-set values recommended by
the developers. We did not attempt to estimate the confi-
dence level of individual genes and used J5 not as a statis-
tical test, but as a selection procedure providing a shortlist
of genes deviating from the expected average value and
enriched with differential genes. The MA plot showing
selected differential genes is presented in Supplemental
Figure 3 (Additional File 1). Notably, the plot shows a bal-
anced representation of moderately and highly expressed
genes, i.e. the categories most appropriate for selection of
diagnostic biomarkers. Application of selection proce-
dures biased away from highly expressed genes may reveal
truly differential genes, but fewer suitable biomarker can-
didates. We then applied DAVID web-based tools to per-
form functional annotation of all potentially differential
genes selected by GEDA. The complete annotated lists for
analyzed data sets are given in the Supplemental Materials
(Supplemental Tables 2, 3, 4 and 5 found in Additional
File 1).

Functional annotation and pathway analysis
Analysis of biological pathways was performed using Met-
aCore software (GeneGo Inc.), Ingenuity Pathways Analy-
sis (Ingenuity Systems Inc.) and free DAVID tools [21].

Results and discussion
Analysis of the Ramaswamy et al. meta-set identified 741
genes differentially expressed between 64 primary solid
tumor samples and 12 metastatic tumor samples. The
complete list of these genes with functional annotation is
given in Supplementary Table 1 (Additional File 1). As
expected (see explanation in Methods section), this list is
much larger than the original 128 genes identified by
Ramaswamy et al. It is likely that there are some false pos-
itive differential genes mixed in, however the exact
number is not relevant to the analysis. Instead, we focused
on the biological function of the genes on the selected
shortlist. This function can be estimated through the anal-
ysis of the biological pathways, canonic interaction maps

and gene ontology categories found within the shortlist.
Analysis of statistically overrepresented pathways in the
shortlist of differential genes revealed 19 canonic pathway
maps (by GeneGo Metacore version) with confidence
level p = 0.05 (adjusted for FDR). The chart of overrepre-
sented metabolic maps is given on Figure 1. Analysis of
the same shortlist of differential genes with the DAVID
Functional Classification tool [21] also reveals 6 clusters
of gene functions with 3 to 6 members-functional catego-
ries (GO terms, PIR keywords, etc.) significantly overrep-
resented with p < 0.05 after FDR (Benjamini-Hochberg)
adjustment. These results, presented in Supplemental
Table 1 (Additional File 1), are based on algorithms and
knowledge bases different from those of GeneGo Meta-
core. However, scrutinizing the contents of these results
allows reconstruction of the underlying biological proc-
esses, which are common, robust and reproducible in
experiments.

The most remarkable among the pathways differentially
represented between primary and metastatic tumors are
extracellular matrix/cell adhesion/cytoskeleton remode-
ling and oxidative phosphorylation. The most common
pathways break into three classes: a) related to remode-
ling of internal cellular structure; b) related to alterations
in cellular metabolism; and c) alternations in cell surface,
antigen presentation and cell adhesion. Pathways related
to cell cycle regulation are also found among differential
genes.

Detailed analysis of each overrepresented pathway would
be far beyond the scope of this study. However, it is appro-
priate to comment on key processes reflected by the met-
abolic maps.

One of the most strongly and consistently altered path-
ways in all evaluated datasets involves glucose utilization,
specifically down-regulation of major components of oxi-
dative phosphorylation (Figure 2) and up-regulation of
genes in the glycolytic pathway (Figure 3). Down-regu-
lated genes included mitochontrial ATPase pathway
members, cytochrome oxidase, and NADH dehydroge-
nases. The phenomenon of prefential use of glycolysis for
ATP generation in tumors was first observed by Otto War-
burg in the first half of the 20th century (as early as 1925)
[22-24]. However, more recent studies have demonstrated
that exaggeration of the Warburg phenomenon through
inhibition of mitochondrial function may promote
metastasis via enhancement of tumor cell invasion and
reduced sensitivity to apoptosis [25-27]. Furthermore,
other groups have recently demonstrated reduction in oxi-
dative phosphorylation-related genes in metastases versus
primary tumors using genomic methods [28,29] and cor-
relation of reduction in ATP synthase function with out-
come in patients with lung and colorectal cancer [30,31].
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Genes differentially expressed between primary and metastatic cancers in the oxidative phosphorylation pathwayFigure 2
Genes differentially expressed between primary and metastatic cancers in the oxidative phosphorylation path-
way. Relative change and direction of change in transcript abundance of differentially expressed are marked with color flags. 
Red color designates higher and blue color designates lower transcript abundance compared to average between primary 
tumor (1) and metastatic samples (2). The legend for GeneGo pathway maps is given in Supplemental Figure 6 (Additional File 
1).
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In addition to providing a potential novel marker for met-
astatic potential, the broad conservation of alterations in
bioenergetic pathways in metastatic tumors across tumor
types and datasets suggests that interference with glyco-
lytic pathways might be a viable therapeutic strategy for
the prevention of metastasis. Glycolytic pathway analogs
such as 2-deoxyglucose and 3-bromopyruvate are show-
ing promise as therapeutic agents targeting hypoxic pri-
mary tumor cells [32], but have been poorly evaluated as
antimetastatic drugs. However, a recent study demon-
strated inhibition of pancreatic cancer metastasis in mice
treated with 3-bromopyruvate when combined with a
heat shock protein 90 inhibitor [33]. Furthermore, epige-

netic therapies such as histone deacetylase and DNA
methyltransferase inhibitors have been shown to reacti-
vate expression of oxidative phosphorylation genes [34],
conceivably reducing metastatic potential and suggesting
that some alterations in this pathway may be epigeneti-
cally regulated.

Another critical pathway in our analysis that was differen-
tially expressed robustly in primary versus metastatic
tumors involves the extracellular matrix, cell adhesion,
adhesion-mediated signal transduction and cytoskeletal
organization, all of which are cooperatively important in
the metastatic cascade.

Glycolysis pathwayFigure 3
Glycolysis pathway. In spite of the fragmentary nature of the composed meta-set, the Warburg effect is still reflected in the 
pathway map through increased abundance of lactate dehydrogenase (LDHB). Relative change and direction of change in tran-
script abundance of differentially expressed are marked with color flags. Red color designates higher and blue color designates 
lower transcript abundance compared to average between primary tumor (1) and metastatic samples (2). The legend for 
GeneGo pathway maps is given in Supplemental Figure 6 (Additional File 1).
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Alterations in extracellular matrix proteins included
reductions in collagen, fibronectin, and a shift in keratin
isoform expression (Figure 4). These reductions in cell
matrix proteins could theoretically facilitate cell motility
and enhance extravasation. The cell adhesion molecules
CD63 and CD151 were upregulated in metastatic tumors
as well. Experimental and clinical literature demonstrates
a role for CD151 in metastasis [35,36]

Differential expression of some key proteins responsible
for adhesion-mediated cell signaling (RhoA, talin,
moesin, ezrin, SPARC) was also observed (Figure 5).
Encouragingly, up-regulation of some well-characterized

metastasis-associated genes such as RhoA and ezrin was
observed. RhoA plays a key role in regulating the actin
cytoskeleton and controlling cell motility, cell-cell interac-
tions and intracellular trafficking [37]. Upregulation of
RhoA has been associated with metastasis and/or negative
outcome in carcinomas of the liver, kidney, esophagus,
and urinary tract [38-40]. Upregulation of ezrin has been
implicated in metastasis of diverse tumor types, such as
osteosarcoma, soft-tissue sarcomas, pancreatic carcinoma,
and head and neck carcinoma among others [41-46].

Significant upregulation of important cytoskeletal com-
ponents such as actin, tubulin and vimentin was also

Alterations in extraceullular matrix and secreted proteins associated with metastatic cancerFigure 4
Alterations in extraceullular matrix and secreted proteins associated with metastatic cancer. Relative change and 
direction of change in transcript abundance of differentially expressed are marked with color flags. Red color designates higher 
and blue color designates lower transcript abundance compared to average between primary tumor (1) and metastatic samples 
(2). The legend for GeneGo pathway maps is given in Supplemental Figure 6 (Additional File 1).
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Alterations in adhesion-mediated signaling and cytoskeleton remodeling in metastatic cancerFigure 5
Alterations in adhesion-mediated signaling and cytoskeleton remodeling in metastatic cancer. Relative change 
and direction of change in transcript abundance of differentially expressed are marked with color flags. Red color designates 
higher and blue color designates lower transcript abundance compared to average between primary tumor (1) and metastatic 
samples (2). The legend for GeneGo pathway maps is given in Supplemental Figure 6 (Additional File 1).
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observed. These proteins play a key role in cell motility,
invasion, cell division and intracellular transport, and dif-
ferential expression of these members has been impli-
cated in human tumor progression as well [47,48].
Increased vimentin is a well-defined phenotypic indicator
of epithelial-mesenchymal transition, which has a known
association with carcinoma aggressiveness [48].

Several components of the extracellular matrix – cell
adhesion – adhesion-mediated signaling – cytoskeleton
pathway have the potential for "druggability". For exam-
ple, small molecule inhibitors of RhoA are in develop-
ment [49,50], and rapamycin and its analogs have been
shown to inhibit the ezrin-associated metastatic pheno-

Alterations in the antigen presentation pathway observed in metastatic tumorsFigure 6
Alterations in the antigen presentation pathway observed in metastatic tumors. Relative change and direction of 
change in transcript abundance of differentially expressed are marked with color flags. Red color designates higher and blue 
color designates lower transcript abundance compared to average between primary tumor (1) and metastatic samples (2). The 
legend for GeneGo pathway maps is given in Supplemental Figure 6 (Additional File 1).
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type through inhibition of downstream AKT-mTOR sign-
aling [51].

The antigen presentation pathway in Figure 6 also reflects,
in part, cytoskeleton remodeling: metastatic samples
show increased expression of beta-2-microtubulin in the
endoplasmic reticulum. All other elements of the antigen
presentation pathway found in the differential genes
shortlist are down-regulated. Remarkably, the most
down-stream elements of the pathway, the final effectors,
are the most down-regulated. Immune avoidance is
thought to be another key component in successful metas-
tasis; tumor cells must be able to survive in the circulation
and avoid immune destruction upon arrest in the end-
organ. Furthermore, evidence exists for epigenetic sup-
pression of antigen presentation in tumor cells, and
potential reactivation of expression through drugs block-
ing histone deacetylase and/or DNA methyltransferase,
leading to enhanced tumor cell immunogenicity [52-54].

How reproducible are the results of computational analy-
sis of an artificial meta-set of primary and metastatic
tumors? We cannot possibly repeat the sample collection,
RNA extraction and hybridizations. However, since the
time Ramaswamy et al. have published their results there
have been quite a few publications reporting microarray
analysis of primary vs. metastatic tumors, and the data are
available from the public databases such as GEO http://
www.ncbi.nlm.nih.gov/geo. We have extracted and ana-
lyzed a few of these new data sets [4,6] using the same
analysis pipeline. The final results of these analyses are
lists of statistically significant pathways, molecular func-
tions and GO terms within the shortlist of potentially dif-
ferential genes. These lists show remarkable agreement in
all studies. Comparison of the pathways represented in
these lists reveals none unique to any of the 3 data sets,
only common and similar (Supplemental Figure 4 in
Additional File 1). Overall, the Ramaswamy et al. meta-set
produces a shorter list of potentially differential genes and
further analysis yields fewer significant pathways. This
result is not surprising taking into account that many
small differences reproducibly observed in each single-tis-
sue experiment have been leveled in composing the meta-
set. However, the essential features reflecting the meta-
bolic changes between primary and metastatic tumors are
apparent in every analyzed data set. The oxidative phos-
phorylation pathways with most components down-regu-
lated, cytoskeleton remodeling and cell adhesion-related
pathways are always found among the longer lists of sig-
nificant pathways in the specific colon and breast cancer
datasets. Remarkably, the suppressed oxidative phospho-
rylation pathway is always near the top of the most statis-
tically significant pathways.

Taken together, there are dramatic changes in gene expres-
sion between primary and metastatic tumors; some are
quantitative whereas others reflect a new pattern of
expression. But how consistently are those changes
revealed by a loose non-parametric J5 procedure? This
selection procedure gives no estimation of confidence
level for the individual genes. In turn, estimation of signif-
icance for the biological pathways is very approximate at
best: it does not fully account for interdependencies in
gene expression. Pathway maps include genes arbitrarily
and the database of gene interactions is filled manually by
multiple experts scanning the peer-reviewed literature, i.e.
prone to errors and contradictions. These databases and
associated tools for pathway analysis have improved sig-
nificantly in recent years, but quantitative estimation of
pathway significance still needs additional validation. In
order to select only the most reliably over-represented
pathways, we performed a bootstrap analysis randomly
re-sampling 50% of the short-listed genes. Comparative
analysis of over-represented pathways in the randomly re-
sampled and original shortlists is given in Supplemental
Table 6 and Supplemental Figure 5 (Additional File 1).
The main pathways are remarkably robust. The genes
(putative biomarkers) diagram is dominated by "similar"
pathways, i.e. belonging to the same pathway map or
involved in the same cellular function. There are also
some "common" genes (i.e. genes representing the same
pathway, which is still statistically significant in the ran-
domly selected half-list) and no "unique" genes (i.e. rep-
resenting unique, but statistically significant pathways).
This observation leads to important conclusions: a)
microarray experiments may yield extensive variation in
specific differentially expressed genes, but are robust and
reproducible in elucidating differentially expressed path-
ways; b) random re-sampling of the large list of differen-
tially expressed genes provides no proof of true difference
for any single gene, but the list in general has few (if any)
false-positive genes. The latter statement is controversial
since the common goal of the inference in microarray
analysis is to reduce the dimensionality of the feature
space and select a small number of truly differential genes.
After selection of a shortlist using a t-test or one of its var-
iants, the number of differentially expressed genes is fur-
ther reduced by application of a False Discovery Rate
procedure (typically Benjamini-Hochberg) [55,56]. Some
authors even claim that microarrays are not optimal for
pathway analysis because of poor reproducibility of the
resulting pathways [57]. Our study suggests the opposite.
The previously discussed problem of pathway reproduci-
bility is caused by the misconceived methodology, more
specifically in the strategy of microarray data analysis.
Apparently, applying stricter criteria for selection of differ-
entially expressed genes results in a very small number of
candidates that are further reduced by FDR adjustment.
The few remaining candidate genes have a much better
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chance of being successfully reproduced in another micro-
array experiment and validated by other techniques such
as real-time RT-PCR or immunohistochemistry. On the
other hand, a shorter list of candidate genes undermines
the basis for the pathway analysis, rendering overrepre-
sentation statistics powerless. This may explain the poor
reproducibility of pathway analysis in some studies [57].
Such a stringent approach to biomarker selection relies
entirely on the signal intensity and associated statistics.
This approach can be very effective in cases of lethal muta-
tions, congenital disorders and other diseases caused by a
single or few factors. However, in complex multifactorial
diseases, the most highly expressed genes and most repro-
ducible differences in gene expression often turn out to be
non-specific final effectors, downstream of important
switches and regulators in biological pathways. Cancer in
general and metastasis in particular are the examples of
such multifactorial diseases. Application of a systems biol-
ogy approach, considering not just the effect of single
mutated/healthy genes, but entire networks of interlinked
and constantly interacting genes is required not only for
understanding the mechanism of disease, but also for the
selection of diagnostic and prognostic markers, as well as
potential therapeutic targets. As we have demonstrated,
the pathways are sufficiently reproducible and robust to
serve this purpose. The prevailing methodology in micro-
array analysis has an internal contradiction: it calls for a
strict selection of candidate genes that can be independ-
ently verified one by one, but systems biology calls for
analysis of large numbers of genes. Furthermore, the
number of replicates affordable for a typical microarray
study is usually insufficient for reliable reproduction of
expression in low-expressed genes. However, important
biological functions specific to disease are often per-
formed by low-expressed genes. Pathway analysis has the
power to identify such signal transducers and key tran-
scription factors only if a large enough number of candi-
date genes are input. To resolve this contradiction, we
propose an extension of the current prevailing methodol-
ogy.

First, the analysis pipeline has to be extended to incorpo-
rate functional annotation and pathway analysis. Second,
selection of the candidate genes cannot be performed
based solely on the intensity of signal and its change in
the experiment. Instead, we propose to consider this step
a pre-selection and relax the criteria for "differential"
genes. Third, FDR correction should not be applied to a
pre-selected "long list" of candidate genes. Combined
with a relaxed selection threshold, this will inevitably cre-
ate an influx of false-positive genes, which can be
addressed subsequently. Fourth, the "long list" is analyzed
in order to identify statistically overrepresented biological
pathways, GO terms, molecular functions (as imple-
mented in DAVID, IPA and MetaCore software) and gene

set enrichment (for example, using GSEA or SAFE meth-
ods [17,18]). It is at this stage of analysis that multiple
testing adjustments (Bonferroni, or better FDR) should be
applied. Most available software, both free (DAVID tools
[21]) and commercial (such as IPA and Metacore) have at
least one method of false-positive control implemented.
However, we still recommend additional techniques, such
as the bootstrapping experiment described above, for
computational validation of significant pathways. Finally,
the discovered statistically significant pathways, gene sets
and molecular functions should be used to reverse-engi-
neer the molecular mechanism of disease and select one
or more potential biomarkers and drug targets. In our
approach, it is important to combine numeric analysis
with biological reasoning and deduction.

The proposed analysis strategy is not yet implemented in
a single analysis tool, although all the components have
been developed and some of the software packages (such
as ArrayTrack [58]) offer partial integration; pathway anal-
ysis packages, although independent, can be easily
invoked from within the microarray analysis software. In
the future, we would like to unite all the tools used for sys-
tems biology analysis of biomarkers in a single automated
software pipeline.

Systems biology approaches to analysis of existing public
data reveal a large number of new features overlooked in
the original analyses. Meta-analysis and cross-examina-
tion of a few data sets allows identification of prospective
markers and drug targets. The present day databases avail-
able for systems biology empower the researchers beyond
the dreams of only a few years ago. Now for each identi-
fied significant pathway, we may also correlate expression
data with known conserved transcription factor binding
sites, and employ siRNA-mediated gene knockdown and
known pharmacologic inhibitors (pharmacoprobes) to
interrogate the phenotypic effects of interference with
identified pathways. The systems approach described here
allows identification of a number of key pathways that
may serve as therapeutic targets for controlling the meta-
static transition of primary solid tumors.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AAP has collected the data, developed the algorithms, the
software and performed data analysis. AAP, MMW and
DHT interpreted the results and wrote the paper.
Page 11 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 9):S8 http://www.biomedcentral.com/1471-2105/9/S9/S8
Additional material

Acknowledgements
Dr. Thamm is supported by American Cancer Society grant RSG-04-219-
01-CCE.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 9, 2008: Proceedings of the Fifth Annual MCBIOS Conference. Sys-
tems Biology: Bridging the Omics. The full contents of the supplement are 
available online at http://www.biomedcentral.com/1471-2105/9?issue=S9

References
1. Onn A, Fidler IJ: Metastatic potential of human neoplasms.  In

Vivo 2002, 16(6):423-429.
2. Fidler IJ: The pathogenesis of cancer metastasis: the 'seed and

soil' hypothesis revisited.  Nat Rev Cancer 2003, 3(6):453-458.
3. Fidler IJ, Kripke ML: Metastasis results from preexisting variant

cells within a malignant tumor.  Science 1977,
197(4306):893-895.

4. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G,
Lewicki J, Shedden K, Clarke MF: The prognostic role of a gene
signature from tumorigenic breast-cancer cells.  N Engl J Med
2007, 356(3):217-226.

5. Parker B, Sukumar S: Distant metastasis in breast cancer:
molecular mechanisms and therapeutic targets.  Cancer Biol
Ther 2003, 2(1):14-21.

6. Provenzani A, Fronza R, Loreni F, Pascale A, Amadio M, Quattrone A:
Global alterations in mRNA polysomal recruitment in a cell
model of colorectal cancer progression to metastasis.  Car-
cinogenesis 2006, 27(7):1323-1333.

7. Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signa-
ture of metastasis in primary solid tumors.  Nat Genet 2003,
33(1):49-54.

8. van 't Veer LJ, Dai H, Vijver MJ van de, He YD, Hart AA, Mao M,
Peterse HL, Kooy K van der, Marton MJ, Witteveen AT, et al.: Gene
expression profiling predicts clinical outcome of breast can-
cer.  Nature 2002, 415(6871):530-536.

9. Fidler IJ: Modulation of the organ microenvironment for
treatment of cancer metastasis.  J Natl Cancer Inst 1995,
87(21):1588-1592.

10. Hunter K: Host genetics influence tumour metastasis.  Nat Rev
Cancer 2006, 6(2):141-146.

11. Crawford NP, Hunter KW: New perspectives on hereditary
influences in metastatic progression.  Trends Genet 2006,
22(10):555-561.

12. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Ger-
ald WL: Comprehensive gene expression analysis of prostate
cancer reveals distinct transcriptional programs associated
with metastatic disease.  Cancer Res 2002, 62(15):4499-4506.

13. Scher HI, Heller G: Clinical states in prostate cancer: toward a
dynamic model of disease progression.  Urology 2000,
55(3):323-327.

14. Fidler IJ: Molecular biology of cancer: invasion and metastasis.
In Cancer Principles and Practice of Oncology Edited by: DeVita VT, Hell-
man, S, Rosenberg SA. Philadelphia: Lippincott-Raven; 1997:135-152. 

15. Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA: Glo-
bal functional profiling of gene expression.  Genomics 2003,
81(2):98-104.

16. Manoli T, Gretz N, Grone HJ, Kenzelmann M, Eils R, Brors B: Group
testing for pathway analysis improves comparability of dif-
ferent microarray datasets.  Bioinformatics 2006,
22(20):2500-2506.

17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gil-
lette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al.: Gene
set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles.  Proc Natl Acad
Sci USA 2005, 102(43):15545-15550.

18. Barry WT, Nobel AB, Wright FA: Significance analysis of func-
tional categories in gene expression studies: a structured
permutation approach.  Bioinformatics 2005, 21(9):1943-1949.

19. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of
normalization methods for high density oligonucleotide
array data based on variance and bias.  Bioinformatics 2003,
19(2):185-193.

20. Patel S, Lyons-Weiler J: caGEDA: a web application for the inte-
grated analysis of global gene expression patterns in cancer.
Appl Bioinformatics 2004, 3(1):49-62.

21. Huang da W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J,
Stephens R, Baseler MW, Lane HC, Lempicki RA: The DAVID
Gene Functional Classification Tool: a novel biological mod-
ule-centric algorithm to functionally analyze large gene lists.
Genome Biol 2007, 8(9):R183.

22. Warburg O: Uber den Stoffwechsel der Carcinomzelle.  Klin
Wochenschr 1925, 4:534-536.

23. Warburg O: On the origin of cancer cells.  Science 1956,
123:309-314.

24. Warburg O: On respiratory impairment in cancer cells.  Science
1956, 124:269-270.

25. Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C,
Shephard HM, Avadhani NG: Mitochondrial stress-induced cal-
cium signaling, phenotypic changes and invasive behavior in
human lung carcinoma A549 cells.  Oncogene 2002,
21(51):7839-7849.

26. Harris MH, Vander Heiden MG, Kron SJ, Thompson CB: Role of oxi-
dative phosphorylation in Bax toxicity.  Mol Cell Biol 2000,
20(10):3590-3596.

27. Dey R, Moraes CT: Lack of oxidative phosphorylation and low
mitochondrial membrane potential decrease susceptibility
to apoptosis and do not modulate the protective effect of
Bcl-x(L) in osteosarcoma cells.  J Biol Chem 2000,
275(10):7087-7094.

28. Gmeiner WH, Hellmann GM, Shen P: Tissue-dependent and -
independent gene expression changes in metastatic colon
cancer.  Oncol Rep 2008, 19(1):245-251.

29. Lin HM, Chatterjee A, Lin YH, Anjomshoaa A, Fukuzawa R, McCall JL,
Reeve AE: Genome wide expression profiling identifies genes
associated with colorectal liver metastasis.  Oncol Rep 2007,
17(6):1541-1549.

30. Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM,
Beer DG: The bioenergetic signature of lung adenocarcino-
mas is a molecular marker of cancer diagnosis and progno-
sis.  Carcinogenesis 2004, 25(7):1157-1163.

31. Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G,
Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC: The bioen-
ergetic signature of cancer: a marker of tumor progression.
Cancer Res 2002, 62(22):6674-6681.

32. Airley RE, Mobasheri A: Hypoxic regulation of glucose trans-
port, anaerobic metabolism and angiogenesis in cancer:
novel pathways and targets for anticancer therapeutics.
Chemotherapy 2007, 53(4):233-256.

33. Cao X, Jia G, Zhang T, Yang M, Wang B, Wassenaar PA, Cheng H,
Knopp MV, Sun D: Non-invasive MRI tumor imaging and syner-
gistic anticancer effect of HSP90 inhibitor and glycolysis
inhibitor in RIP1-Tag2 transgenic pancreatic tumor model.
Cancer Chemother Pharmacol 2008 in press.

34. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Carde-
nas E, de la Cruz-Hernandez E, Herrera LA: Valproic acid as epi-
genetic cancer drug: Preclinical, clinical and transcriptional
effects on solid tumors.  Cancer Treat Rev 2008, 34(3):206-222.

35. Hong IK, Jin YJ, Byun HJ, Jeoung DI, Kim YM, Lee H: Homophilic
interactions of Tetraspanin CD151 up-regulate motility and
matrix metalloproteinase-9 expression of human melanoma
cells through adhesion-dependent c-Jun activation signaling
pathways.  J Biol Chem 2006, 281(34):24279-24292.

36. Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG: CD151 protein
expression predicts the clinical outcome of low-grade pri-
mary prostate cancer better than histologic grading: a new

Additional file 1
Supplementary figures 1–6 and Supplementary tables 1–6.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-S9-S8-S1.zip]
Page 12 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-S9-S8-S1.zip
http://www.biomedcentral.com/1471-2105/9?issue=S9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12494885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12778135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12778135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=887927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=887927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17229949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17229949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12673112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12673112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16531451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16531451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16531451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12469122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12469122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7563201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7563201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16491073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16889869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16889869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12620386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12620386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16895928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16895928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16895928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15647293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15647293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15647293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16323966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16323966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17784955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17784955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13298683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13351639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12420221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12420221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12420221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10702275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10702275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10702275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18097602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18097602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18097602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17487416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17487416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12438266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12438266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17595539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17595539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16798740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16798740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16798740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15533898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15533898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15533898


BMC Bioinformatics 2008, 9(Suppl 9):S8 http://www.biomedcentral.com/1471-2105/9/S9/S8
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

prognostic indicator?  Cancer Epidemiol Biomarkers Prev 2004,
13(11 Pt 1):1717-1721.

37. Merajver SD, Usmani SZ: Multifaceted role of Rho proteins in
angiogenesis.  J Mammary Gland Biol Neoplasia 2005, 10(4):291-298.

38. Wang D, Dou K, Xiang H, Song Z, Zhao Q, Chen Y, Li Y: Involve-
ment of RhoA in progression of human hepatocellular carci-
noma.  J Gastroenterol Hepatol 2007, 22(11):1916-1920.

39. Takami Y, Higashi M, Kumagai S, Kuo PC, Kawana H, Koda K, Miya-
zaki M, Harigaya K: The activity of RhoA is correlated with
lymph node metastasis in human colorectal cancer.  Dig Dis
Sci 2008, 53(2):467-473.

40. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H: Sig-
nificant association of Rho/ROCK pathway with invasion and
metastasis of bladder cancer.  Clin Cancer Res 2003,
9(7):2632-2641.

41. Chai LX, Sun KL, Guo LP, Zhang HT, Lu SX: Expression of ezrin
and CD44-v6 in human esophageal squamous cell carcinoma
and its clinical significance.  Zhonghua Zhong Liu Za Zhi 2007,
29(9):685-688.

42. Torer N, Kayaselcuk F, Nursal TZ, Yildirim S, Tarim A, Noyan T, Kar-
akayali H: Adhesion molecules as prognostic markers in pan-
creatic adenocarcinoma.  J Surg Oncol 2007, 96(5):419-423.

43. Kobel M, Gradhand E, Zeng K, Schmitt WD, Kriese K, Lantzsch T,
Wolters M, Dittmer J, Strauss HG, Thomssen C, et al.: Ezrin pro-
motes ovarian carcinoma cell invasion and its retained
expression predicts poor prognosis in ovarian carcinoma.  Int
J Gynecol Pathol 2006, 25(2):121-130.

44. Yeh TS, Tseng JH, Liu NJ, Chen TC, Jan YY, Chen MF: Significance
of cellular distribution of ezrin in pancreatic cystic neo-
plasms and ductal adenocarcinoma.  Arch Surg 2005,
140(12):1184-1190.

45. Weng WH, Ahlen J, Astrom K, Lui WO, Larsson C: Prognostic
impact of immunohistochemical expression of ezrin in highly
malignant soft tissue sarcomas.  Clin Cancer Res 2005,
11(17):6198-6204.

46. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung
C, Gorlick R, Hewitt SM, Helman LJ: The membrane-cytoskele-
ton linker ezrin is necessary for osteosarcoma metastasis.
Nat Med 2004, 10(2):182-186.

47. Kelley LC, Shahab S, Weed SA: Actin cytoskeletal mediators of
motility and invasion amplified and overexpressed in head
and neck cancer.  Clin Exp Metastasis 2008 in press.

48. Mandal M, Myers JN, Lippman SM, Johnson FM, Williams MD, Rayala
S, Ohshiro K, Rosenthal DI, Weber RS, Gallick GE, et al.: Epithelial
to mesenchymal transition in head and neck squamous car-
cinoma: association of Src activation with E-cadherin down-
regulation, vimentin expression, and aggressive tumor fea-
tures.  Cancer 2008, 112(9):2088-2100.

49. Xue F, Zhang JJ, Qiu F, Zhang M, Chen XS, Li QG, Han LZ, Xi ZF, Xia
Q: Rho signaling inhibitor, Y-2 inhibits invasiveness of metas-
tastic hepatocellular carcinoma in a mouse model.  Chin Med
J (Engl) 7632, 120(24):2304-2307.

50. Evelyn CR, Wade SM, Wang Q, Wu M, Iniguez-Lluhi JA, Merajver SD,
Neubig RR: CCG-1423: a small-molecule inhibitor of RhoA
transcriptional signaling.  Mol Cancer Ther 2007, 6(8):2249-2260.

51. Wan X, Mendoza A, Khanna C, Helman LJ: Rapamycin inhibits
ezrin-mediated metastatic behavior in a murine model of
osteosarcoma.  Cancer Res 2005, 65(6):2406-2411.

52. Khan AN, Magner WJ, Tomasi TB: An epigenetic vaccine model
active in the prevention and treatment of melanoma.  J Transl
Med 2007, 5(1):64.

53. Khan AN, Gregorie CJ, Tomasi TB: Histone deacetylase inhibi-
tors induce TAP, LMP, Tapasin genes and MHC class I anti-
gen presentation by melanoma cells.  Cancer Immunol
Immunother 2008, 57(5):647-654.

54. Manning J, Indrova M, Lubyova B, Pribylova H, Bieblova J, Hejnar J,
Simova J, Jandlova T, Bubenik J, Reinis M: Induction of MHC class
I molecule cell surface expression and epigenetic activation
of antigen-processing machinery components in a murine
model for human papilloma virus 16-associated tumours.
Immunology 2008, 123(2):218-227.

55. Benjamini YaH Y: Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing.  J Roy Stat Soc B
1995, 57:289-300.

56. Storey JD, Tibshirani R: Statistical methods for identifying dif-
ferentially expressed genes in DNA microarrays.  Methods Mol
Biol 2003, 224:149-157.

57. Adrian Mondry ML, Alessandro Giuliani: DNA expression micro-
arrays may be the wrong tool to identify biological pathways.
Nature Preceedings 2007.

58. Tong W, Cao X, Harris S, Sun H, Fang H, Fuscoe J, Harris A, Hong H,
Xie Q, Perkins R, et al.: ArrayTrack – supporting toxicogenomic
research at the U.S. Food and Drug Administration National
Center for Toxicological Research.  Environ Health Perspect 2003,
111(15):1819-1826.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15533898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16900393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16900393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17914970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17914970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17914970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17597401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17597401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18246799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18246799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18246799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17874463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17874463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16633060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16633060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16633060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16365240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18324357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18324357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18324357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17699722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17699722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18070359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18070359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18046553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18046553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18046553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17725605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17725605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12710672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12710672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14630514
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Introduction
	Data
	Colorectal cancer data sets
	Breast cancer data

	Methods
	Overview of the analysis pipeline

	Results and discussion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

