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Abstract
Background: Protein-protein interactions are at the basis of most cellular processes and crucial
for many bio-technological applications. During the last few years the development of high-
throughput technologies has produced several large-scale protein-protein interaction data sets for
various organisms. It is important to develop tools for dissecting their content and analyse the
information they embed by data-integration and computational methods.

Results: Interactions can be mediated by the presence of specific features, such as motifs, surface
patches and domains. The co-occurrence of these features on proteins interacting with the same
protein can indicate mutually exclusive interactions and, therefore, can be used for inferring the
involvement of the proteins in common biological processes.

We present here a publicly available server that allows the user to investigate protein interaction
data in light of other biological information, such as their sequences, presence of specific domains,
process and component ontologies. The server can be effectively used to construct a high-
confidence set of mutually exclusive interactions by identifying similar features in groups of proteins
sharing a common interaction partner. As an example, we describe here the identification of
common motifs, function, cellular localization and domains in different datasets of yeast
interactions.

Conclusions: The server can be used to analyse user-supplied datasets, it contains pre-processed
data for four yeast Protein Protein interaction datasets and the results of their statistical analysis.
These show that the presence of common motifs in proteins interacting with the same partner is
a valuable source of information, it can be used to investigate the properties of the interacting
proteins and provides information that can be effectively integrated with other sources. As more
experimental interaction data become available, this tool will become more and more useful to gain
a more detailed picture of the interactome.
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Background
Protein functions are mediated and regulated through a
complex network of interactions [1]. In many cases pro-
teins physically bind to each other to absolve their role,
and the interaction is often mediated by the physical
binding of some of their subunits, such as domains, sur-
face patches or small regions composed of a few residues
called motifs [2-4]. Although the latter is rather frequent,
there have been few attempts to systematically explore the
information that they provide at the genomic level. Motif
recognition has proven to be very useful in many biologi-
cal contexts, but is not an easy task [3,5,6]. Motifs are
often short in length (three to twelve residues), they are
often located in disordered regions of the proteins and
their conservation is limited to closely related species.
Nevertheless the identification of shared motifs has
proven to be very useful to characterize protein interac-
tions (e.g. the binding of the SH3 domain to the PxxP
local sequence), function (DNA binding), localization
(nuclear localization signal) and domain fingerprints
(PROSITE [4]).

The recent development of high-throughput technologies
for detecting protein-protein interactions (PPIs) has pro-
duced many publicly available databases [1,7-10].
Although the accuracy of the data is not always optimal
[11,12], the information they provide is of primary
importance for formulating biologically relevant hypoth-
eses and it is therefore essential to develop tools for ana-
lysing and dissecting them. There are methods that make
use of different biological data to assess the reliability of
interactions: gene expression [13], homology [14], Gene
Ontology (GO) annotations [15], phylogenetic features
[16], synthetic lethality, domain interaction [17], and a
combination of these [18]. PPI maps have also been
mined to infer functional similarity, domain interactions
and protein motifs [5,19,20].

In this work we describe a server for simplifying the anal-
ysis of the features shared by proteins interacting with the
same partner. We show here its power by investigating the
presence of sequence motifs in yeast PPI maps and their
correlation with the presence of similar Gene Ontology
annotations (process and component) [15] and Pfam
domains [21]. The result of our analysis is that the infor-
mation that can be gained by motif detection is relevant
and coherent with functional, localization and domain
data but it is not redundant with respect to these other
sources of information. It is indeed possible to exploit the
presence of common motifs to identify mutually exclusive
interactions and to estimate the reliability of a PPI map.

Results and discussion
The MoVIN server
The MoVIN server can load experimental PPI datasets and
perform an analysis of sets of interactions sharing a com-
mon partner (Figure 1). It contains pre-computed data for
four dataset for S. cerevisiae of different size, level of cura-
tion and estimated false positive rate, which overlap only
partially (see Methods).

Given a dataset, the tool automatically extracts the groups
of proteins sharing a common interaction partner (see
Methods). These are the sets of all and only the proteins
that bind to a common protein partner. This central pro-
tein (hub) is used to identify the cluster. The user can
select the minimum size of the cluster. For each cluster,
MoVIN collates the corresponding set of protein
sequences and searches them for the presence of common
motifs using MEME [22] and MAST [23].

MEME (vers. 3.5.3) is a tool for discovering motifs in a
group of related DNA or protein sequences. MEME takes
as input a group of sequences (in this case the sequences
of the proteins in a cluster) and outputs as many motifs as
possible according to the constraints given by the user.
MEME uses statistical modelling techniques to automati-
cally choose the best length and description for each
motif. In MoVIN we use as background distribution the
average composition of the complete set of proteins in the
map and focus on motifs with length between three and
twelve residues and with an E-value (as reported by the
output of the program) lower than a user-defined thresh-
old (default is 10e-7). To avoid that motifs with a strong
signal (e.g. fingerprints of a domain shared by some pro-
teins of the group) mask “weaker” motifs, the server
repeats this step on each cluster many times, recursively
eliminating the proteins for which a common motif has
already been identified.

In order to estimate the specificity of the motifs found by
MEME, they are mapped on all the proteins in the dataset
using MAST (vers. 3.5.3). For each motif, MAST returns a
list of proteins containing it, the position of the match in
the sequence and the corresponding E-value. Only
matches with an E-value smaller than a user-defined
threshold (default is 10e-5, i.e. 100 times larger than the
E-value threshold chosen for MEME, in order to prevent
overfitting of the motifs on the initial set of clustered pro-
teins) are retained.

Next, the server assigns to each cluster Ci and each motif
Mj a motif P value Si,j related to the over-representation of
the motif in that cluster. If the motif has been found on xij
protein in the cluster Ci of ni proteins and on Xj proteins
in the complete dataset of size N we have Sm

i,j=hgcdf(xij,
ni, Xj, N) where hgcdf is the hypergeometric cumulative
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distribution function, which measures the probability of
finding at least as many occurrences of the motif in a clus-
ter of similar size randomly extracted from the whole set
of proteins.

Finally, the previously calculated scores are assigned to
the interaction between the central protein of the cluster
and each protein in the cluster containing the motif Mj.
Different motifs can be present on a protein and one pro-
tein of a cluster can be, at the same time, the hub protein
of another cluster, therefore different scores can be associ-

ated to the same interaction. In such cases, we assign the
minimum score to the interaction.

The process P value Sp, the component P value Sl and the
domain P value Sd are computed in a similar fashion. The
GO process score and the GO component score are calcu-
lated by mapping the corresponding GO ontology terms
on each protein with the program BatchGoViewer, which
returns, given a list of proteins, the annotations (at any
level) with the lowest P values. The Pfam domain score is
calculated by analysing the presence of Pfam A Domains

Snapshot of the input page of the MoVIN serverFigure 1
Snapshot of the input page of the MoVIN server. The user can upload a Protein-protein interaction map in any of the 
accepted formats (tab or comma separated) with or without merging it with existing datasets. The minimum and maximum 
cluster size as well as the threshold E-values for MEME and MAST can be selected as well.
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on each protein. The protein-domain relationship is taken
from the Ensembl website [24].

The results of all the analyses are displayed with a user-
friendly interface, including textual search and graphics
tools. The cluster and their features are graphically visual-
ised using GraphViz. For each displayed item there are
links to several different publicly available databases.

Additionally, the user can look for the presence of known
mutations and for their position in the highlighted pro-
teins (as reported in the Protein Mutant Database) [25]. It
is possible to download and visualize experimental struc-
tures or three-dimensional models for a large fraction of
the yeast genome. Known structures are downloaded from
the Protein Data Bank [26], models are downloaded from
the ModBase database [27]. Each structure or model can
be visualised in the web browser via Jmol [28] and all the
motifs found by the MoVIN web server can be high-
lighted.

Application of the MoVIN server to the S.cerevisiae 
interactome
We used MoVIN to analyse the BioGRID, BIND, Gavin06
and Krogan datasets (Table 1). We only considered clus-
ters containing more than four proteins and used the
default values for all the parameters. A summary of the
final datasets is reported in Table 1.

First of all, we analysed the motif P value distribution gen-
erated by the server using as input the original datasets
and then compared them with the corresponding back-
ground distribution. Such background distribution is
obtained -for each PPI map- by randomizing the set of
interactions of the original map (written as ordered pairs)
with no duplicate (i.e. if the pair (aj, bj) is present we can
not have the pair (bj, aj)). We randomly shuffle all the sec-
ond terms of each pair and remove duplicate interactions.
By doing so, we preserve the connectivity degree of each
protein and hub proteins remain such in the randomized
map. The total number of interactions of each rand-

omized map differs by less than 1% from that of the orig-
inal map.

The difference between the original dataset P value distri-
butions and their randomized version is computed by a
permutation test on the means. We generate a global dis-
tribution by merging the original and the randomized
dataset distribution. Next, we randomly generate 100.000
distributions of the same size as the original dataset and
compute their means. The distribution of the means for
the analysed datasets is normal (D'Agostino-Pearson test,
significance=0.05), therefore we can compute the stand-
ard Z-score of our original dataset:

where Md is the mean of the distribution on the original
dataset, M is the mean and σ is the standard deviation of
the mean distribution. The randomization step was
repeated 5 times for each dataset, yielding each time sim-
ilar results (data not shown). The results (Figure 2 and
Table 2) show that the motif distributions in PPI maps are
far from random.

It is interesting to note that several parameters, such as the
percentage of interactions that can be explained by a motif
on one of the binding partners or the difference between
the occurrence of the motifs in the real map and in the
randomized one are consistent with the expected fraction
of spurious interaction present in the datasets. As shown
in Table 2, MoVIN finds more motifs in the databases
BioGRID (that is the largest available repository of PPIs)
and BIND (that only contains well annotated PPIs and is
manually-curated), while it finds far less common motifs
in the Uetz dataset (which is estimated to contain a rela-
tively larger fraction of false positives [11]). Moreover, the
effectiveness of the method increases with the dimension
of the map. The more the map covers the complete inter-
actome, the larger the number of motifs identified.

On the basis of this analysis, we generated a high-confi-
dence subset of the yeast PPI datasets (see additional files
1 and 2) that contains 17.733 interactions (see Methods).

z
M Md=
−( )
σ

Table 2: Statistical Significance of the Motif P value 
Distributions. The table reports the Z-score of the mean of the 
experimental distribution with respect to the random 
distribution of the means. The latter was obtained by computing 
the means of 100,000 distributions of the same size of the 
experimental one obtained by randomly extracting interactions 
from the original and the randomized distributions.

BIND BioGRID Gavin02 Gavin06 Krogen Uetz
33.169 127.696 26.4611 82.8494 32.3127 5.6107

Table 1: Dataset Summary. The number of interactions in each 
dataset is between 942 (Uetz) and 51,086 (BioGRID), the 
number of clusters containing more than 4 proteins is between 
100 (Uetz) and 3,963. The average number of proteins in each 
cluster ranges from 6.15 (Uetz) to 24.96 (BioGRID).

Dataset # of interactions # of clusters average cluster size

BIND 8847 1271 9.60
BioGRID 51086 3963 24.96
Gavin02 3500 522 9.78
Gavin06 19973 1738 20.94
Krogan 6699 1042 10.44
Uetz 942 100 6.15
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Such interactions, as previously stated, are likely to be
mutually exclusive.

Although the motifs that we identify are not necessarily
related to physical binding of the proteins (they could be
functional motifs or localization signals) and the motif-
selected dataset is biased towards mutually exclusive inter-
actions, it is likely that our selected subset is enriched in
true positive interactions, and can be a good candidate for
applications that need a benchmark interaction dataset.

Comparison with GO annotations and Pfam domains
The MoVIN server can also use other sources of informa-
tion commonly used to assess the reliability of interaction
data, i.e. GO annotations (process and component) and
Pfam domains. An important question is to which extent
the motif information overlaps with that given by the co-
occurrence of GO terms and the presence of similar Pfam
domain in proteins interacting with a common partner.

To address the issue, we applied the method to the same
yeast datasets described above. Here we only report the
results for the BIND dataset, the results for the other data-
sets are very similar (data not shown).

The correlations between log10 (Motif P value) and the P
values for GO process, GO component and Pfam (Table

3) are positive in all cases and range from 0.25 (motif vs
component P value) to 0.56 (motif vs domain P value).
This indicates that the information obtained from the
motif analysis is consistent, but not completely redun-
dant, with the other sources of information here consid-
ered.

An example: function prediction using motif analysis
The method that we described for the analysis of PPI maps
can almost naturally be extended to become a tool for
protein functional assignment, on the basis of the hypoth-
esis that two proteins interacting with the same partner
and sharing a common motif are likely to have some func-
tional similarity as well. Here we will just describe one
instructive example of the potential of the approach, both
in assigning functions and in detecting erroneous or out-
dated annotations.

Table 3: Correlation coefficient between Motif, Process, 
Component and Domain P values

BIND Motif Process Component

Motif 1.00 0.30 0.26
Process 0.30 1.00 0.80
Component 0.26 0.80 1.00
Domain 0.57 0.40 0.37

Motif P Value Distributions for yeast datasetsFigure 2
Motif P Value Distributions for yeast datasets. We report the number of interactions with Motif P value lower than the 
threshold (reported on the × axis in logarithmic scale) for the experimental datasets (blue) and for its randomized version 
(red). The interactions for which no motif was found are reported as bars in the origin. The Motif P value distribution for the 
experimental datasets contains a larger fraction of interactions with respect to the random datasets and is shifted towards 
lower P values. (A) BIND, (B) BioGRID, (C) Gavin06 and (D) Krogan datasets.
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We found a motif shared by 5 among 7 proteins in the
YKL074C cluster (BIND dataset). An alignment of the
sequences is reported in Figure 3. The motif displays sev-
eral conserved residues and does not match any pattern
found in the PROSITE database [4].

The hub protein YKL074C and 4 proteins in the group
(YDL043C, YML046W and YLR117C, where the latter two
contain the motif) have a GO process annotation that is
related to the spliceosome. Another protein (YLR357W)
has an annotation (double-strand break repair via nonho-
mologous end joining) which is consistent with the splic-
ing pathway. The two proteins YBR172C and YPL105C are
homologous and both contain the motif. The second pro-
tein is not annotated, while the first has a GO process
annotation “Cytoskeleton organization and biogenesis”.
Interestingly, more recent experimental evidence supports
the hypothesis of its involvement with RNA splicing [29].
It is reasonable to suggest that YPL105C should be tenta-
tively annotated as involved in RNA splicing and that the
GO annotation for YBR172C should be verified.

Conclusions
We have described here a tool for the analysis of protein
interaction maps, able to correlate the co-occurrence of
sequence motifs, common GO annotations and similar
Pfam domains with interactions sharing a common part-
ner. Furthermore, we have investigated the relationship
between the presence of common motifs and the presence
of shared functional, component and domain data. The
information given by the presence of common motifs is
coherent and complementary to that present in other data
sources. All these sources could be integrated to generate
a large high-confidence yeast PPI dataset.

As further developments of the server we are extending the
approach to the search for discontinuous motifs brought
together by the three-dimensional structures of the inter-
acting proteins.

Methods
Data sources
We analysed yeast (Saccharomyces Cerevisiae) PPI maps
obtained from different datasets: the databases BIND [7]
and BioGRID [9], the experimental datasets Gavin02 [30],
Gavin06 [31], Krogan [32] and Uetz [33]. We filtered out
the data for which it was not possible to precisely identify
both interacting partner (e.g. multi-protein complexes).

The BIND dataset contains 8.847 yeast interactions, man-
ually curated and annotated. BioGRID contains 51.086
interactions extracted from the literature and obtained
with different experimental methods. The datasets from
Gavin and Krogan are from three different tandem affinity
purification (TAP) experiments and contain respectively
3.500 (Gavin02), 19.973 (Gavin06) and 6.699 (Krogan)
interactions. The Uetz dataset contains 942 interactions
derived from a Yeast 2 Hybrid experiment.

Protein sequences were downloaded from the Ensembl
Genome Browser website on July 7th 2006).

To assign the GO terms, we used the annotation files
downloaded from the GO website and only used IDA
(Inferred from Direct Assay), IGI (Inferred from Genetic
Interaction), IMP (Inferred from Mutant Phenotype) and
TAS (Traceable Author Statement) annotations as to avoid
low-confidence or indirect annotations.

The high-confidence PPI dataset (MOVIN_1) was gener-
ated by merging all the interactions that, at least in one

Alignment of the motif present in 5 out of the 7 proteins binding to YKL074CFigure 3
Alignment of the motif present in 5 out of the 7 proteins binding to YKL074C. The first protein (YBR172C) is anno-
tated as “Cytoskeleton organization and biogenesis”, the second (YPL105C) does not have any GO annotation. The last three 
(YML046W, YLR117C and YLR357W) are annotated with terms related to the spliceosome activity.
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dataset, were reported to have a motif P value smaller than
10e-4. Such dataset contains 17.733 interactions and can
be downloaded from http://arianna.bio.uniroma1.it/
MOVIN

A second high-confidence PPI dataset (MOVIN_2) was
generated by merging all the interactions that, at least in
one dataset, were reported to have a significant sequence
motif and at least a GO function or a GO component P
value smaller than 10e-4. This dataset contains 14.103
interactions and can be downloaded from http://ari
anna.bio.uniroma1.it/MOVIN
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Additional file 1 – MOVIN1.list
List of all interactions between proteins interacting with the same partner 
and containing a motif with a P value <10e-4. (CSV file).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-S2-S11-S1.csv]

Additional file 2 – MOVIN2.list
List of all the interactions between proteins interacting with the same part-
ner, containing a motif with a P value <10e-4 and sharing a process or 
component GO term with a P value <10e-4. (CSV file).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-S2-S11-S2.csv]
Page 7 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-S2-S11-S1.csv
http://www.biomedcentral.com/content/supplementary/1471-2105-9-S2-S11-S2.csv
http://arianna.bio.uniroma1.it/MOVIN
http://arianna.bio.uniroma1.it/MOVIN
http://arianna.bio.uniroma1.it/MOVIN
http://arianna.bio.uniroma1.it/MOVIN
http://www.biomedcentral.com/1471-2105/9?issue=S2
http://www.biomedcentral.com/1471-2105/9?issue=S2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16279839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16279839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16962311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16962311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11522820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11522820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11731503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11820254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11820254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11820254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15833142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15838136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15838136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16845028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608235


BMC Bioinformatics 2008, 9(Suppl 2):S11 http://www.biomedcentral.com/1471-2105/9/S2/S11
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

25. Kawabata T, Ota M, Nishikawa K: The Protein Mutant Database.
Nucleic Acids Res 1999, 27(1):355-357.

26. Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H,
Westbrook J: The Protein Data Bank and the challenge of
structural genomics.  Nat Struct Biol 2000, 7(Suppl):957-959.

27. Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A,
Marti-Renom M, Karchin R, Webb BM, Eramian D, et al.: MOD-
BASE: a database of annotated comparative protein struc-
ture models and associated resources.  Nucleic Acids Res 2006,
34(Database issue):D291-295.

28. Jmol: an open-source Java viewer for chemical structures in
3D   [http://www.jmol.org]

29. Andoh T, Azad AK, Shigematsu A, Ohshima Y, Tani T: The fission
yeast ptr1+ gene involved in nuclear mRNA export encodes
a putative ubiquitin ligase.  Biochem Biophys Res Commun 2004,
317(4):1138-1143.

30. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM, Cruciat CM, et al.: Functional organ-
ization of the yeast proteome by systematic analysis of pro-
tein complexes.  Nature 2002, 415(6868):141-147.

31. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau
C, Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey
reveals modularity of the yeast cell machinery.  Nature 2006,
440(7084):631-636.

32. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu
S, Datta N, Tikuisis AP, et al.: Global landscape of protein com-
plexes in the yeast Saccharomyces cerevisiae.  Nature 2006,
440(7084):637-643.

33. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M, Pochart P, et al.: A comprehen-
sive analysis of protein-protein interactions in
Saccharomyces cerevisiae.  Nature 2000, 403(6770):623-627.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381869
http://www.jmol.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	The MoVIN server
	Application of the MoVIN server to the S.cerevisiae interactome
	Comparison with GO annotations and Pfam domains
	An example: function prediction using motif analysis

	Conclusions
	Methods
	Data sources

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

