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Abstract
Background: The explosive growth of biological data provides opportunities for new statistical and comparative
analyses of large information sets, such as alignments comprising tens of thousands of sequences. In such studies,
sequence annotations frequently play an essential role, and reliable results depend on metadata quality. However,
the semantic heterogeneity and annotation inconsistencies in biological databases greatly increase the complexity
of aggregating and cleaning metadata. Manual curation of datasets, traditionally favoured by life scientists, is
impractical for studies involving thousands of records. In this study, we investigate quality issues that affect major
public databases, and quantify the effectiveness of an automated metadata extraction approach that combines
structural and semantic rules. We applied this approach to more than 90,000 influenza A records, to annotate
sequences with protein name, virus subtype, isolate, host, geographic origin, and year of isolation.

Results: Over 40,000 annotated Influenza A protein sequences were collected by combining information from
more than 90,000 documents from NCBI public databases. Metadata values were automatically extracted,
aggregated and reconciled from several document fields by applying user-defined structural rules. For each
property, values were recovered from ≥88.8% of records, with accuracy exceeding 96% in most cases. Because
of semantic heterogeneity, each property required up to six different structural rules to be combined. Significant
quality differences between databases were found: GenBank documents yield values more reliably than
documents extracted from GenPept. Using a simple set of semantic rules and a reasoner, we reconstructed
relationships between sequences from the same isolate, thus identifying 7640 isolates. Validation of isolate
metadata against a simple ontology highlighted more than 400 inconsistencies, leading to over 3,000 property
value corrections.

Conclusion: To overcome the quality issues inherent in public databases, automated knowledge aggregation with
embedded intelligence is needed for large-scale analyses. Our results show that user-controlled intuitive
approaches, based on combination of simple rules, can reliably automate various curation tasks, reducing the need
for manual corrections to approximately 5% of the records. Emerging semantic technologies possess desirable
features to support today's knowledge aggregation tasks, with a potential to bring immediate benefits to this field.
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Introduction
The recent availability of high-throughput experimental
technologies has produced an explosive growth of biolog-
ical data. Large quantities of biological data produced by
experimental studies can be mined to discover biologi-
cally-significant patterns, and confidence in such findings
increases with their statistical support. Studies involving
thousands of database records are common in virus
research [1,2]. However, there are practical factors that
limit the scalability of data analysis studies. Because of
limited technology resources and programming knowl-
edge, most biologists manage data in an ad-hoc fashion,
often involving manual retrieval from Web-based data-
bases, and storage in spreadsheets. These information
management methods are only practical for small-scale
studies; for very large datasets, the time and effort neces-
sary for manual curation would make them prohibitively
expensive. Automation of the data gathering and prepara-
tion stages in large-scale studies offers a significant speed
improvement, and expands the scope for analysis.

Large-scale studies often present diverse data analysis
requirements, and the complexity of the data gathering
and preparations tasks is determined by a variety of fac-
tors. Heterogeneity of the source data is the main issue
affecting data gathering and preparation, and we can dis-
tinguish between three main forms: systemic, syntactic, and
semantic heterogeneity. A very large number of independ-
ent databases are available, which have been conceived
and structured to suit specific purposes [3]. The complex-
ity of biological problems often demands the aggregation
of information originating from different databases. This
systemic heterogeneity affects query and retrieval mecha-
nisms, as well as structure and semantics of the retrieved
information. Extraction methods often require the appli-
cation of data transformations to overcome syntactic heter-
ogeneity, and give the extracted knowledge its final
interpretable form. For example, a data value such as the
year of isolation of a virus may be embedded in some text,
such as "Patient infected in 1998". Perhaps most impor-
tantly, the data structure and intended purpose of the
source information may not be aligned with the desired
analysis needs. This semantic heterogeneity manifests itself
in several ways, and is evident when data is fragmented
over several fields, unconventionally structured or alto-
gether missing. Semantic heterogeneity is a well-known
quality problem in multi-database integration [4], but can
be observed within single databases when the data is man-
aged by multiple independent groups, without a com-
monly agreed understanding of data field meaning. The
most pernicious form of semantic heterogeneity is seman-
tic inconsistency: the data to be extracted is found in a
variety of forms and locations, and there are no quality
standards for its encoding and structure. Major sequence
databases, such as GenBank [5], are semi-structured, and

sequence feature annotations are determined by the sub-
mitting authors. The recorded features often focus on key
findings from individual studies, rather than provide a
generic set of properties for the submitted sequence. This
increases the breadth of recorded information, at the
expense of decreasing the proportion of structured data
within the record. The most extreme form of semantic het-
erogeneity is represented by free text, but even structured
databases can be plagued by quality issues related to
semantic heterogeneity.

The extent to which heterogeneity issues hinder data gath-
ering automation depends on the data requirements of
any given study. In this paper, we consider the knowledge
aggregation needs of a large-scale sequence analysis study
of influenza A virus. The study's aim is to identify
sequence properties for potential diagnostics and vaccine
applications, through the analysis of tens of thousands of
protein antigens. The annotation of more than 90,000
records of influenza A proteins from NCBI enabled several
systematic comparative analyses, leading to the identifica-
tion of 17 characteristic amino acid sites within the PB2
protein that characterize human-to-human virus trans-
missibility [2]. This metadata-enabled analysis nearly
doubles the number of previously known characteristic
sites.

Case study: large-scale viral sequence analysis of influenza 
A
The identification of characteristic sites was conducted as
part of a multi-experiment study, aimed at determining a
number of genetic, evolutionary and immunological
properties of the influenza A virus, by analyzing as many
protein sequences as possible, retrieved from public data-
bases. Eleven large separate multiple sequence alignments
(MSA) were created, one for each of the proteins expressed
by this virus. The alignments were analyzed to identify:

1. protein regions that were conserved (i.e. did not
mutate) for certain subtypes of the virus (e.g. H5N1,
H3N2) over given periods of times [6];

2. alignment positions where adaptation to a given host
(e.g. human or swine) produced specific differentiation
from the natural avian form of the virus [2];

3. mutations associated with specific geographical areas or
periods of time;

4. alignment positions that co-evolve in different proteins
(i.e. when one of the positions mutates, the other mutates
simultaneously).

Such analyses can only be automated if sequences are
accompanied by descriptive metadata (i.e. "data about the
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data" [7], since amino acid sequences constitute the main
data). Our study required the following fields: the subtype
of the virus, the protein name for the sequence, the isolate
name (used to associate multiple proteins for studying co-
evolution), the host organism from which the virus was
isolated, and the year and origin (country) of isolation.
Comparative analyses were conducted by selecting
sequences with the desired metadata values from the mas-
ter MSAs.

The study data was retrieved from the two major public
databases at NCBI: GenBank (a nucleotide database) and
GenPept (a protein database). In September 2006, over
90,000 relevant records were available, although the
actual number of unique sequences was much lower. In
most cases, each GenBank record has a corresponding
record in GenPept, containing the nucleotide sequence's
translation. GenPept also contains alternative versions of
its own records, mirrored from other public databases.
NCBI records provide semi-structured metadata, which is
frequently and plagued by inconsistent encoding and
quality issues, as reported in other studies [8,9]. We found
that records documenting the same sequence do not nec-
essarily carry the same metadata, and sometimes provide
conflicting information. Metadata is frequently missing,
and the choice of record field for encoding a given meta-
data property is often arbitrary and inconsistent. Metadata
values can be difficult to extract even when their location
can be correctly identified – for example, because of free
text embedding, misspellings and inaccuracies, or non-
standard granularity (e.g. a city specified rather than a
country).

Semantic technologies for knowledge aggregation
A technology platform that meets the knowledge aggrega-
tion needs of large-scale studies, while catering for users
with limited technology capabilities, must combine a
number of characteristics, such as:

• Structural independence of knowledge representa-
tion. Because of its diverse provenance, aggregated knowl-
edge is structured according to a variety of schemas. An
aggregation system must therefore be schema-agnostic.

• Structural adaptability of knowledge representation.
As analysis needs change, so does the structure of the ana-
lyzed knowledge. Adding and removing fields is a
straightforward operation in a spreadsheet, but consider-
ably more complex when using constrained structures and
grammars, such as in relational databases or in fixed-
schema XML documents.

• Low infrastructure requirements. Tasks should be per-
formed on standard desktop equipment, without requir-
ing complex server setups.

• Easy interchange. Information should be easy to
exchange, publish, and process using standard software.

• Intuitiveness. Most domain experts are not trained to
write applications using programming language. Simple,
intuitive mechanisms for specifying their desired task are
preferred.

• Tool integration. Most bioinformatics analysis software
in use can only process raw input data (such as DNA
sequences). Metadata-savvy tools will be important in
large-scale analysis, because they enable rapid ad-hoc
selection of data subsets.

The current platform that most closely meets these
requirements is the collection of standards and technolo-
gies known as semantic technologies, which are coordinated
under a common integrated platform, known as the
Semantic Web [10]. It is envisaged that the Semantic Web
will form a complex interlinked network of knowledge
sources, traversed by intelligent agents that are capable of
reasoning over knowledge gleaned from multiple sources.
Although the Semantic Web holds much promise for bio-
medical discovery [11], it is currently only a vision [12].
By contrast, semantic technologies form a coherent multi-
layer architecture, with solid foundations, capable of solv-
ing real-life problems today. An introduction to the
semantic technology stack is provided in [13]; hereby we
have highlighted the features that are applicable to our
case study:

• Separation of structure encoding. The basic knowledge
encoding format is XML [14], which can be parsed and
processed by standard software, irrespective of the
domain knowledge or the data schema. XML addresses
database heterogeneity, since documents from different
sources can be processed by the same software, in spite of
their different data structure.

• Universal knowledge structure. Knowledge is expressed
using the Resource Description Framework (RDF) [15],
which "de-structures" data, organizing it into a simple
network of statements. This structure can be augmented or
reorganized with ease. RDF supports the open world
assumption (OWA), which assumes knowledge to be
incomplete, and therefore supports extending existing
data with data from external sources, without the source
being affected.

• Reasoning. The simple structure imposed by RDF
allows programs to apply semantic rules that analyze and
manipulate the knowledge automatically. These rules can
be expressed in a variety of ways, and executed by stand-
ard software tools called reasoners. In many cases, the syn-
tax for expressing semantic rules consists of direct
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statements, and is arguably simpler to learn than the pro-
gramming necessary to achieve similar results.

• Ontologies. To provide vocabularies for expressing
knowledge, RDF supports the definition of ontologies
(shared domain-specific models and vocabularies) [16].
The OWL standard [17] provides a mechanism for defin-
ing the classes of domain objects (for example, sequences,
genes, etc.), their properties (e.g. country of isolation),
specific instances (e.g. the HOX gene), and description logic
(DL) which describe aspects of their semantics (e.g. "a
sequences can only have a single country of origin").
Description logics are akin to semantic rules in that that
are processed by reasoners, and can be used to validate the
consistency of the knowledge model. Ontologies can be
shared, and used for reasoning over the data.

The set of semantic technologies used in this study can be
used on a desktop platform; the data files are text-encoded
and easily interchangeable.

Purpose of this study
We applied semantic technologies to the knowledge
aggregation task of our influenza case study in two sepa-
rate stages. First, we defined a framework for automati-
cally extracting sequence metadata from public database
records. We used a simple approach, based on the appli-
cation of a number of XML-based structural rules for each
property, which were effective in reconstructing a large
proportion of the desired metadata. The structural rule
approach automated most of the metadata curation task,
making the analysis viable (full manual curation of such
a vast volume of records would have been prohibitively
expensive). After applying structural rule extraction, many
records still had incomplete or conflicting metadata, and
had to be manually corrected. Even with the help of pro-
ductive tools, two expert curators were required to work
intensively for two weeks to manually complete and verify
the annotations. The resulting metadata was used to per-
form the comparative analyses which led to the identifica-
tion of the PB2 characteristic amino acid sites [2]. In
addition, we used this metadata to analyze the perform-
ance of structural rules, and quantify the extent of seman-
tic heterogeneity and inconsistencies, both within and
between the two popular GenBank and GenPept, as
reported in this paper.

In the second stage of this study, we investigated how
additional techniques, based on semantic technologies,
could lessen the burden of manual curation. In particu-
larly, we focussed on relating multiple sequences from the
same isolate, to verify their metadata consistency, and fill
gaps. Leveraging on RDF's structural flexibility, we devel-
oped a reasoning task based on semantic rules, to recon-
struct the relationships between sequences and isolates.

The resulting model was then validated using the descrip-
tion logic of a simple OWL ontology, to assess the quality
of the restructured metadata, and determine the amount
of manual curation needed. In the final process step, the
curated isolate metadata was used to re-annotate the
sequence records. The proposed process therefore impacts
the curation process in three ways: it finds inconsistencies
in the extracted metadata; it transfers the manual curation
process from sequence records to isolates (fewer in
number); and it fills missing sequence metadata from iso-
late annotations.

This paper reports the results of this study, discusses les-
sons learnt, and suggests future improvements.

Results
Sequence metadata extraction
We measured the yield and accuracy of property value
extraction from both GenBank and GenPept. Yield was
defined as the fraction of documents from a given data-
base that produces a value from structural rules, while
accuracy was computed as the percentage of extracted val-
ues that matches the manually curated property value (i.e.
the property value at the end of full manual curation of
the dataset by two independent domain experts). The
results are summarized in Fig. 1. The yield difference
between the two databases (approximately 9% for origin
and host) indicates that GenBank records have more
detailed annotation, justifying the decision to aggregate
records from both databases. The two databases provided
values with almost identical accuracy (within 1% for most
properties), indicating that their priority order was not
critical to the outcome of the extraction task. Accuracy rat-
ings exceeded 96%, except for the host property, which
produced accuracies of 89% for GenPept and 91% for
GenBank. Although this might still seem a high level of
accuracy, it resulted in some 4,000 host annotations
requiring manual correction.

The low accuracy of the host property is related to its low
yield (79.5%–88.8%), primarily cause by a high propor-
tion of human sequences, which frequently lack the host
annotation. Isolate naming standards are not adequate for
automating metadata extraction, since they allow the host
to be omitted from identifiers of human isolates, making
the extraction of this property very problematic. In this
study, we chose not to assume that an isolate identifier
without host name necessarily implies a human virus.
Such an assumption would have produced much higher
yields, but also a much higher risk of introducing incor-
rect annotations. In these cases, we resorted to manual
curation, which can be expedited considerably by the
spreadsheet-like interface of the ABK tool (see "Meth-
ods").
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Each property required a number of structural rules to be
applied, each rule defined to extract a relevant value from
a different location in the source document. The perform-
ance of the structural rules used (listed in Table 1) was
analyzed, and Fig. 2 shows the percentage of documents
for which a given rule was the "winning" rule for a given
property, i.e. the highest-priority structural rule that pro-
duced a value. The performance diagrams display several
interesting features. First, they clearly show the extent of
semantic heterogeneity in public databases: although the
most productive structural rule can be identified for each
property, contributions from other rules can constitute up
to 35% of the extracted values. Second, it is evident that a
human expert does not always rank the rules by their pro-
ductivity, but rather by their perceived accuracy. Finally,
the charts for properties isolateName, origin and year clearly
show that identical rules produced values more frequently
from GenBank, although documents from the two data-
bases are identically structured. This clearly indicates that
GenBank records are often more thoroughly annotated by
submitters. Extraction from many GenPept records fre-
quently has to rely on lower-priority rules, and sometimes
does not yield any value at all. This clearly has a negative
impact on studies of protein sequences, since researchers
may limit their data gathering to the GenPept database,
thus omitting significant proportions of the metadata.

Isolate-based restructuring and reasoning
Following the application of structural rules, the metadata
was encoded in RDF using a simple OWL ontology, to
enable restructuring by a reasoner. Reasoning based on
semantic rules was applied to all records that had an iso-
lateName property value (38,474 record), producing a

total of 7,640 distinct isolate records associated to one or
more sequence records. Fig. 3 shows the distribution of
the isolates according to the number of sequences linked
to the isolate. The predominance of isolates associated to
10 or 11 protein sequences, accounting for about 63% of
all sequences, indicates that most sequence records were
submitted by full-genome studies (older genome sets only
include 10 proteins, due to the relatively recent character-
ization of the PB1-F2 protein). At the other end of the
scale, about 12.5% of sequences belong to isolates repre-
sented by only one or two sequences, usually submitted
by studies that focus on one or two proteins (hemaggluti-
nin and neuramidase are more intensely studied than any
other influenza proteins). Several individual sequences
could not be associated to the correct isolate, because of
errors in isolate name that could not be corrected by our
name normalization task (e.g. misspellings). Finally,
4.8% of sequences were associated to isolates associated
to more than 11 proteins. This is largely due to sequences
being used in multiple studies, and thus resubmitted to
the databases, sometimes as a fragment of the original
sequences. The identification of such duplicates is not a
simple task with the semantic rule language we used,
because of its limited string processing capabilities.

The isolate metadata inferred by the reasoner by applying
semantic rules was subsequently validated against the
OWL ontology by an OWL DL reasoner, which identified
a number of errors and inconsistencies. Multiple variants
of isolateName were found for 388 isolates, most often due
to upper/lower case differences; 98 isolate names con-
tained additional symbols, such as spaces or dashes. For
the subtype property, 22 isolates were reported as conflict-

Retrieval performances of the NCBI nucleotide and protein databasesFigure 1
Retrieval performances of the NCBI nucleotide and protein databases. Each chart shows 5 pairs of bars, one for 
each extracted property. The first (darker) bar of each pair shows the performance for the GenBank database while the sec-
ond (lighter) bar shows the value for GenPept. The first chart shows the percentage of source documents from which a prop-
erty value could be extracted, while the second graph shows the percentage of accurate values extracted, measured against the 
manually annotated dataset.
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Table 1: Structural rules employed for the extraction of sequence record properties from GenBank and GenPept. For each structural 
rule, the priority (lower numbers indicate higher priority) and XPath expression are given. The proteinName property was only 
extracted from GenPept.

Property Priority Xpath expression

proteinName 1 /GBSeq/GBSeq_definition
2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='gene']/GBQualifier_value

subtype 1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='strain']/GBQualifier_value
2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolate']/GBQualifier_value
3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='organism']/

GBQualifier_value
isolate 1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='strain']/GBQualifier_value

2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolate']/GBQualifier_value
3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='organism']/

GBQualifier_value
host 1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='specific_host']/

GBQualifier_value
2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='strain']/GBQualifier_value
3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolate']/GBQualifier_value
4 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='organism']/

GBQualifier_value
origin 1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='country']/

GBQualifier_value
2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolation_source']/

GBQualifier_value
3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='strain']/GBQualifier_value
4 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolate']/GBQualifier_value
5 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='organism']/

GBQualifier_value
6 /GBSeq/GBSeq_references/GBReference/GBReference_title

year 1 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='note']/GBQualifier_value
2 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolation_source']/

GBQualifier_value
3 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='strain']/GBQualifier_value
4 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='isolate']/GBQualifier_value
5 /GBSeq/GBSeq_feature-table/GBFeature/GBFeature_quals/GBQualifier [GBQualifier_name='organism']/

GBQualifier_value

ing. In 13 cases, we found that the same name had been
used for two separate isolates, which required manual
separation; in the remaining cases, one or more sequences
were ambiguously annotated and had to be discarded.
The majority of the 22 isolates with multiple host values
contained values of different specificity (e.g. "AVIAN" and
"DUCK"), which demonstrated once more the inconsist-
ent standard of annotation. Similarly, 28 of 70 issues
identified for origin were conflicts between overlapping
regions (e.g. "CHINA" and "HONG KONG"). More cru-
cially, origin annotation had to be manually verified for all
protein sequences isolates from turkeys, since the host
organism was often confused with the country of origin:
181 isolates had to be corrected. Although corrections
were substantial in number and complexity, the advan-
tage of our approach is that isolate metadata corrections
are back-propagated to multiple sequences, thus signifi-
cantly reducing the manual curation effort.

Following manual curation, sequences were automati-
cally re-annotated by semantic rule-based reasoning, and

the results are summarized in Fig. 4. The re-annotation of
sequences affected over 1200 records, filling in gaps and
correcting errors. Although the numbers of records may
seem small (2–3% of the total), manual curation is time
consuming, tedious and error-prone, and these results
translate to a significant impact for the curation workflow.
It is notable that only 70.1% of isolates were annotated
with the host property, a lower percentage than in
sequence record annotations. This indicates that full-
genome submissions tend to contain more complete
annotations, probably because they are produced by large
sequencing or surveillance studies, with stringent quality
guidelines [18].

Discussion
Semantic heterogeneity is a serious obstacle in the produc-
tion of annotated datasets, and semi-automated
approaches are currently the only practical solution when
studies need to process thousands of records. We have
shown that a standard platform of semantic technologies,
well supported with tools, can recover a very high propor-
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Associations of sequences to isolatesFigure 3
Associations of sequences to isolates. The left chart shows a count of identified isolates, according to the number of 
sequences they are associated to. On the left, we show the distribution of sequences according to the number of sequences 
associated with their isolates.
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Performance of structural rules for five metadata propertiesFigure 2
Performance of structural rules for five metadata properties. Bars show the percentage of records for which a given 
structural rule produced the final property value. Rules are numbered according to their priority, matching the priorities 
shown in Table 1.
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tion of the necessary metadata, through the application of
a mixture of structural and semantic rules.

Our case study presented relatively humble metadata
needs: a small number of highly relevant fields, with little
structural complexity. Yet, we have shown that the NCBI
databases, arguably the most important primary data
sources used in bioinformatics, are incompletely and
inconsistently annotated to the extent that meeting even
such simple requirements is a major challenge for auto-
mated tasks. One might argue that the problem could be
solved by simply choosing for each property the most pro-
ductive source database field, and discarding those
records that do not yield a value. The results in Fig. 2 sug-
gest that this approach may fully annotate up to 65% of
records, which would still form a large-scale dataset. How-
ever, such a draconian mechanism would introduce major
biases: since large influenza surveillance projects tend to
cover specific geographies (e.g. North America), and pro-
vide more complete metadata, discarding records based
on metadata quality would eliminate mostly records that
are submitted by smaller projects, and thus greatly
decrease the diversity of the dataset. Such bias would
undermine the statistically-supported results of large-scale
studies. To put it simply, metadata that is hard to recover
is sometimes more valuable than metadata that is easily
accessed.

The large proportion of data from influenza surveillance
projects should also be considered when reviewing the

results of our isolate-based restructuring task. The number
of inconsistencies in isolateName may appear surprising
low (only 5% of the 7,640 unique isolate names), but
most of the credit goes to the high discipline and consist-
ency of large-scale project that every year submit large
numbers of new sequences isolated in specific geogra-
phies. None of the 388 isolate name corrections involved
records from large surveillance projects; the vast majority
of the corrected records involved animal sequences, con-
firming that the techniques used were beneficial for
improving dataset diversity.

Structural rule-based extraction can deliver the intelli-
gence necessary to reconstruct metadata for a great pro-
portion of records. Automated recoveries of the order of
90–95% make it possible to complete the annotation
process manually for the remaining records lacking meta-
data. XPath-based structural rules could achieve most of
this metadata recovery in this study. Structural rules are a
very powerful means for extracting annotations, yet sim-
ple to set up even for researchers with low technical skills,
and highly generic since they can process data encoded in
any database schema.

The contribution of RDF, semantic rules and description
logic affects a smaller proportion of records, but produces
sophisticated and fully automated results, reducing the
effort required for time-consuming and error-prone man-
ual annotation.

Isolate annotation and resulting correctionsFigure 4
Isolate annotation and resulting corrections. The left chart shows the percentage of created IsolateRecord objects with 
a value for each of the five properties. For the host and origin property, the low yield of isolate annotations would indicate that 
isolates with a full complement of proteins (10 or 11 sequence records per isolate) are generally better annotated than isolates 
with a small number of sequences. The chart on the right shows the number of property values that were automatically modi-
fied (or added, in the case of sequence records for which structural rules did not yield a value).
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Alternative approaches to metadata restructuring and
quality validation could be used: the use of a relational
database, appropriate queries and string manipulation
could reconstruct the viral isolates and identify and cor-
rect inconsistencies. Such an approach, however, require a
non-trivial programming effort, and significant infrastruc-
ture (such as running a database), beyond the skill of
most biological researchers. Semantic technologies use a
simple, file-based infrastructure, and a very flexible way of
defining schemas with RDF and OWL. Although our
experiments demanded a certain amount of program-
ming, all domain-specific functionality was embedded
into the ontology and the rules employed, indicating that
generic tools could support this class of task, leaving biol-
ogists the flexibility of structuring metadata according to
their needs. In addition, the relative simplicity with which
semantic reasoning rules are specified adds utility to this
approach. Many software applications (such as email cli-
ents or network firewalls) provide user interfaces for
expressing rules of various kinds, and it may be possible
to provide similar intuitive mechanisms to support
sophisticated rule-based data preparation and cleaning
tasks.

The conversion of primary public data repositories to RDF
has been advocated by proponents of the Semantic Web
vision, and even prototyped for a small number of data-
bases (for an example, see the UniProt-RDF project, http:/
/www.isb-sib.ch/~ejain/rdf/). Our results, however, sug-
gests that a straightforward format conversion would not
solve the more fundamental semantic heterogeneity
issues, whose causes are found in data submission prac-
tices that sacrifice quality to achieve greater scalability.
Since NCBI sequence records are submitted by research-
ers, without a curator as an intermediary, different inter-
pretations of metadata field meanings give rise to
discrepancies. Even if these process defects were
addressed, the metadata structure imposed by large pri-
mary data repository is unlikely to match the individual
needs of different analysis tasks. This fundamental issue
explains the emergence of a vast number of smaller-scale
"boutique" databases in recent years, offering richer and
more highly curated metadata, while the structure of large
primary databases has remained substantially unchanged.
Since small specialized databases are often the result of
manual annotation of primary sources such as GenBank,
the RDF-encoded metadata output of our knowledge
aggregation tasks seems highly suitable as a data ware-
housing product. In other words, it might be more useful
to provide simple mechanisms for researchers to make
their high-quality metadata available in a versatile format
such as RDF, than to try to convert large and mature pri-
mary repositories. Such capillary supply of well-curated
metadata could fuel a "grassroots" level adoption of
semantic technologies, especially once trust and prove-

nance concerns are addressed [19]. In turn, this could
drive the development of analysis tools that understand
RDF metadata and can integrate it in the analysis process.

The stack of semantic technologies is developing gradu-
ally. The foundation layers such as XML and RDF are solid
and well-understood, while reasoning capabilities are still
in the various stages of deployment and present early
adopters with scalability concerns. We have found that
our simple semantic rules, when applied to tens of thou-
sands of records, cannot be executed on-line within rea-
sonable waiting times on a current fully-featured desktop
computer. For certain tasks, we were able to increase per-
formance dramatically with a divide-and-conquer
approach, by splitting the input data into separate files of
around 6,000 records each. However, this approach is
only viable for tasks that do not require reasoning over of
multiple interlinked resources. Although some perform-
ance gains may also be achieved by choosing alternative
data storage and programming platform options, scalabil-
ity issues eventually emerge, given sufficiently complex
reasoning demands. Further research is needed on reason-
ing strategies that exploit dataset characteristics, and on
the distribution of the computational load, for example
by means of grid-enabled reasoners, or external Web Serv-
ices. Scalability is also affected by the ontology used: large
ontologies contain a vast number of DL semantics, which
will unavoidably impact performance if the reasoning
strategy applies them indiscriminately. "Right-sizing"
ontologies, to suit the problem in hand, can mitigate
these problems, although this strategy may conflict with
the goal of adopting standard ontologies that will support
data sharing. These scalability issues are a sign of the rela-
tive immaturity of the semantic technologies platform,
and we expect they will be successfully addressed, as they
have been for other integrative platforms.

Future work
This study has indicated that the ABK platform used in
this study (see "Methods") can be made more generic and
flexible, resulting in tighter integration with the task
described. Although ABK stores data in RDF format, it
does not currently support schema definitions based on
OWL ontologies; as a result, some programming is cur-
rently necessary to reproduce the results described in this
paper. Adoption of RDF/OWL as the underlying schema
mechanism will yield multiple benefits: ontology-compli-
ant RDF output without any specific programming; cou-
pling of structural rules with ontology properties; and
integrated support of reasoning tasks based on semantic
rules and description logic. We these are achievable
results, at least for certain classes of ontologies, which
constitute the future development goals for the ABK plat-
form.
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Methods
The experimental procedure followed in this study is sum-
marized in Fig. 5.

Data retrieval and metadata extraction
The data retrieval and metadata extraction tasks were con-
ducted using the Aggregator of Biological Knowledge
(ABK) [20]. This desktop tool enables querying of multi-
ple Web-based data sources, retrieval of results in XML for-
mat, definition of user-defined structural rules, and
extraction of metadata values using these rules. The result-
ing metadata is presented to the user for manual inspec-
tion and quality assurance in a spreadsheet-like user
interface. ABK stores and outputs data in the RDF format,
and thus provides the extracted metadata in a form suita-
ble for processing by a reasoner. The ABK platform's capa-
bilities for handling heterogeneity have been
demonstrated on multi-database metadata aggregation
tasks [20], as well as text mining applications [21].

Data retrieval was performed by submitting a taxonomy
query to the two NCBI sequence databases, retrieving a
total of 92,343 documents, encoded in native NCBI XML
format (39,775 from GenBank and 52,568 from Gen-
Pept). ABK extracted cross-referencing identifiers from
each document, and matched to identify multiple docu-
ments referring to the same sequence. This task produced
a dataset of 40,169 records, each associated to at least one
and mo more than three database documents. Each of
these records represents a protein sequence from a given

isolate (GenBank record have protein sequence encoded
as a feature field).

Metadata extraction was performed by ABK using a mech-
anism known as structural rules. A structural rule consists
primarily of an XPath query [22], which specifies the path
used to reach the desired value in a document. Since XML
documents can be represented as a tree of nodes, XPath
expressions indicate the hierarchical path from the tree
root to the location of the value. ABK structural rules sup-
port a limited subset of the XPath grammar, exclusively
allowing path constraints based on value matching. These
restrictions enable the construction of intuitive point-and-
click user interfaces, by means of which end users can
specify structural rules by example, while inspecting a
document. ABK can process documents independent of
the XML schema used. Structural rules are defined in the
context of the source database, and are automatically
applied to all documents from the same database, which
are assumed to use the same XML schema.

For a given metadata property, multiple structural rules
can be defined, with an order of priority chosen by the
user. In most documents, only certain rules will produce
values; the property value extracted from a document is
that of the highest-priority rule that yields a value. How-
ever, if values from other rules conflict with the "winning"
value, this conflict is highlighted in the user interface.
Since a single record may be associated to several docu-
ments from multiple databases, ABK also allows the user

Experimental workflow of this studyFigure 5
Experimental workflow of this study. The workflow has three main stages: the retrieval and merging of the source docu-
ments from public databases; the extraction of metadata by multiple structural rules; and the semantic restructuring of the 
sequence metadata, which identifies isolates, and subsequently re-annotates the sequences.
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to specify database priority, thus establishing an order for
processing documents, and identifying the overall "win-
ning value". Conflicts resulting from differing values
extracted from multiple documents are also highlighted to
the user.

Property values embedded in free text are obtained by
applying value filters to structural rule results. These fil-
ters are plug-in modules that perform string processing
tasks on XPath query results. The configurable filters pro-
vided by ABK were suitable for nearly all tasks in this
study. These include dictionary filters (capable, for exam-
ple, of producing the value "CHICKEN" when encounter-
ing the string "bantam"), and regular expression filters
(capable to recognize formatted strings, such as NCBI
identifiers "ABB12345.1"). Regular expression filters were
used for properties subtype and isolate, while dictionary fil-
ters extracted proteinName, host and origin (the dictionaries
are supplied as Additional files 1, 2, 3, 4, 5, 6). Only the
property year required a specific filter, able to recognize
years in 2- and 4-digit formats.

The databases accessed in this study use the same XML
schema and thus a common set of structural rules was
specified (Table 1). The \rules and their priority were
determined by an expert curator, based on manual inspec-
tion of several representative records. The same curator
assigned GenPept a higher priority than GenBank.

Ontology and semantic representation
Values obtained from structural rules were encoded in
RDF format, using an OWL ontology (see additional file
1: viral-ontology.rdf). This ontology was specifically
designed to suit our analysis needs, as no suitable stand-
ard ontology could be identified for this purpose. In the
ontology, each sequence is represented by a resource of
type SequenceRecord, which may posses any of the proper-
ties proteinName, subtype, isolate, host, origin and year,
amongst others. Each of these properties is declared both
as owl:DatatypeProperty (it can be assigned a literal
value), and as owl:FunctionalProperty (it is single-valued,
since multiple values would be inconsistent). Another
type of object, IsolateRecord, is defined to represent indi-
vidual isolates associated to one or more sequences. To
facilitate the semantic restructuring task, properties sub-
type, isolate, host, origin and year can also be applied to Iso-
lateRecord objects.

Isolate restructuring and sequence reannotation
The metadata extraction task produced an RDF graph
comprising thousands of SequenceRecord resources, with
their associated extracted metadata, and references to their
source documents (an example is shown in Fig. 6A). This
model reflects the relationships between sequences and
properties that exist in the source database, but has a

major drawback: sequence records derived from the same
isolate are often disconnected from each other. This is
clearly an obstacle for studies that require the analysis of
multiple proteins from the same isolate. In addition, a
comparison of metadata values from multiple records
may identify inconsistencies in annotations for a particu-
lar isolate. For example, we expect all SequenceRecord
objects from the same isolate to have identical year prop-
erties, since all sequences are derived from the same sam-
ple, and this can lead to the recovery of the year
annotation for some of the records for which no value
could be extracted.

We therefore restructured the RDF graph by reconstructing
the IsolateRecord objects associated to the SequenceRecords.
Because most sequence properties (except for protein-
Name) are also isolate properties, their values were
attached to the IsolateRecord object, producing a restruc-
tured graph (Fig. 6B). This restructuring task was effected
by means of simple semantic rules, executed by Jena2
[23], which is also used by ABK for RDF data storage. For
convenience, the semantic rules were formulated using
the rule language of Jena's built-in reasoner. However, the
same rules could easily be defined in other semantic rule
languages, such as the W3C standard language SWRL [24].

The following two semantic rules were used for the
restructuring task:

The first rule identifies SequenceRecord objects that possess
an isolate name, creates a URI (unique identifier) based
on a normalized form of that isolate name, and ensures
that an object of type IsolateRecord assigned that URI is
attached to the SequenceRecord object. The second rule
copies the desired metadata properties to the IsolateRecord
object, whenever they are found in a SequenceRecord. The

[rule1: (?rec rdf:type vg:SequenceRecord)

(?rec vg:isolate ?iisolateId)

normalizeIsolate(?isolateId, ?nIsoId)

uriConcat(’’urn:abk:isolate:’, ?nIsoId, ?isolateUri)

->

(?isolateUri rddf:type vg:IsolateRecord)

(?isolateUri vg:hasSequenceRecordd ?rec)

]

[rule2: (?isolateUri vg:hasSequenceRecord ?rec)

(?reec ?prop ?value)

oneOf(?prop, vg:isolate, vg:virusSubtype,  vg:year,

                       vg:country, vg:hostOrganissm)

->

(?isolateUri ?prop ?value)

]
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oneOf() built-in function, which matches a property type
against a list, was specially created using Jena's extension
mechanism. Isolate normalization was considered neces-
sary in rule1, because isolate names are often encoded
inconsistently (e.g. variants such as "A/HongKong/123/
04", "A/hongkong/123/04"and "A/Hong Kong/123/04").
The normalizeIsolate() function was thus added to
remove all whitespace and special characters (except for
slashes) from isolate names, and convert them to lower-
case. Although this normalization did not solve all incon-
sistencies, it overcame naming defects for hundreds of
records.

The inferences from semantic rules were validated against
the OWL ontology using Jena's OWL DL reasoner, which
identified all cases in which the inferred isolate metadata
violated the ontology's description logic constraints. It
identified all isolates which received conflicting metadata
from their sequence records, and therefore were assigned
multiple values for their functional properties, as shown

in Fig. 7. The validation task reported all such inconsisten-
cies, which were then resolved manually by a curator. In
the final processing step, another simple semantic rule
was executed to re-annotate the sequence records: for
every SequenceRecord associated to an IsolateRecord, the Iso-
lateRecord properties were copied to the SequenceRecord.
This ensured metadata consistency for sequences derived
from the same isolate, and transferred all isolate metadata
corrections to the sequence records, thus reducing manual
curation effort.
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Restructuring sequence metadataFigure 6
Restructuring sequence metadata. Graph A shows the relationship between SequenceRecord resources, their metadata 
properties, and a source GenBank document, as encoded by ABK in its RDF output. In this example, records belonging to the 
same isolate have no relationship to each other. Graph B shows the same knowledge, restructured by the introduction of the 
IsolateRecord resource, and the transfer of isolate-specific metadata.

CHINA

A/Duck/GD/1234/04 

2004

Genbank:123456 

genbankRef

isolate

origin

year

SequenceRecord

record-234567/nt

DnaSequence

dnaSequence

NS1

record-234567 

proteinName

CHINA

A/Duck/GD/1234/04 

2004

isolate-a/duck/gd/1234/04

isolate

origin

year

IsolateRecord

NS1

Genbank:123456 

genbankRef

SequenceRecord

record-234567/nt

DnaSequence

dnaSequence

record-234567 
proteinName

hasSequenceRecord

A

B

Page 12 of 14
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 1):S7 http://www.biomedcentral.com/1471-2105/9/S1/S7

Identification of conflicting metadata valuesFigure 7
Identification of conflicting metadata values. Sequences from the same isolate should have identical value for certain 
metadata properties, such as origin. However, inconsistencies often occur, as shown in 7A. Rule-based metadata restructuring 
transfers the inconsistent values to the IsolateRecord resource, as shown in 7B. Since origin is declared as a functional prop-
erty, an OWL reasoner can identify the inconsistency as a breach of the ontology DL constraint.
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