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Abstract
Background: Document gene normalization is the problem of creating a list of unique identifiers
for genes that are mentioned within a document. Automating this process has many potential
applications in both information extraction and database curation systems. Here we present two
separate solutions to this problem. The first is primarily based on standard pattern matching and
information extraction techniques. The second and more novel solution uses a statistical classifier
to recognize valid gene matches from a list of known gene synonyms.

Results: We compare the results of the two systems, analyze their merits and argue that the
classification based system is preferable for many reasons including performance, simplicity and
robustness. Our best systems attain a balanced precision and recall in the range of 74%–92%,
depending on the organism.

Background
Recently, researchers have begun to apply machine-learn-
ing-based information extraction techniques to biomedi-
cal text, most notably to identify gene and chemical
compound mentions [1-3]. A related problem is gene nor-
malization, which involves annotating a document (or
abstract) with the list of identifiers for genes mentioned in
the document. Gene normalization requires as input a
synonym list. Each entry in the list represents a specific gene
and contains both a unique identifier for that gene, called
here a normal form, and a set of different ways in which
the gene has been or may be mentioned. Ideally this list
will be complete. However, in practice, gene mentions
vary widely and evolve over time. Table 1 contains a few
entries of the synonym list for the fly organism. To facili-
tate gene normalization research, the organizers of Bio-
Creative [4] have made available a number of abstract/
normalized-list pairs for three different organisms: fly,
mouse and yeast. The exact breakdown is 5000 for train-
ing, 100–250 for development (depending on the organ-

ism) and 250 for evaluation. They also provided extensive
synonym lists based on resources from the associated
model organism databases.

The problem of gene normalization is relatively new and
unexplored. Morgan et al. [5] provide a good introduction
to the problem space and present a two staged system that
identifies mentions and then labels each mention with a
normal form. The focus of their work is on the fly
organism.

Gene normalization is both easier and harder than identi-
fying gene mentions. It is easier because it does not
require textual boundaries of each mention to be identi-
fied, but only that some mention be detected and the doc-
ument annotated accordingly. On the other hand, gene
normalization is harder than identifying mentions in that
it requires the actual gene to be detected and associated
with the organism-specific unique gene identifier. The
three organisms under consideration, yeast, fly, mouse,
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have from thousands to tens of thousands of genes. Even
if it were possible to identify every gene mention with
100% accuracy, it would still be difficult to disambiguate
each mention given the number of possibilities and the
high degree of overlap among synonym lists for different
but related genes (see Hirschman et al. [6] for an analysis
of number of terms and degree of ambiguity for this task).

Gene normalization can thus be described by its two fun-
damental difficulties. The first is finding those mentions
that do not occur as a known synonym in a curated list.
This problem is highly correlated to the recall of the sys-
tem: a more extensive synonym list, or a better way of
inferring that some mention pertains to a gene in the list,
increase the chance that the system will recognize a gene
that is mentioned in the text. The second problem is to
determine which unique gene each identified mention
refers to. This is correlated with the precision of the system
in that some identified mentions may not actually be
genes, or might be genes for other organisms or might be
ambiguous amongst many genes. Identifying that these
mentions do not match a unique identifier will reduce the
amount of incorrect genes returned by the system.

The two systems we present here primarily focus on the
second problem: identifying the unique gene that has
been mentioned. This includes identifying whether some
mention is erroneous. In general the systems treat the
given synonym lists as complete, with some tolerance for
punctuation and orthographic differences. Even with this
assumption we were able to achieve good performance for
all organisms: 74%-92% balanced precision and recall.
The first system presented relies on a series of pattern
matching techniques to find and filter synonym string
matches. The second system extracts all possible synonym
matches and uses a binary classifier to determine which
are valid.

Initial directions
With the availability of highly accurate gene taggers [2],
one simple approach would be to extract all the gene men-
tions from text and to match these mentions to the syno-
nym list of each organism. However, there are many
difficulties with such an approach. The primary problem

is that mentions may be ambiguous. For instance, the
gene mention alcohol dehydrogenease is a valid synonym
for 111 different fly genes. Simply matching alcohol dehy-
drogenease to all 111 genes would lead to a steep decline
in precision (since the mention is most likely referring to
only one specific gene). Second, the system would be
dependent on the accuracy of the gene tagger. Our experi-
ments showed that for mouse, the gene tagger used [2]
performed reasonably well on the development data.
However, for fly and yeast, the tagger's performance was
less than useful. This is most likely a result of the fact that
the tagger training data did not contain enough examples
for those organisms. These experiments were conducted
by visual inspection on the tagged output of the gene tag-
ger. No exact numbers of tagging performance can be pro-
vided on these data sets since the data is not internally
annotated with gene mentions.

The above approach was taken by Morgan et al. [5] for the
fly organism and their system achieved very promising
results: 88% precision and 61% recall. The system is two
staged. The first uses an HMM gene tagger to find men-
tions of genes in text. The second step looks for matches
of each mention to a known synonym while carefully fil-
tering those matches on highly ambiguous or unreliable
synonyms. The primary reason that this approach worked
for Morgan et al. is that they were able to create a training
set specific to fly for identifying gene mentions. This set
was created by reverse engineering of the synonym list
with a set of gene normalized training documents to find
gene mentions in each document. The training data is
noisy, but experiments run by Morgan et al. show the
trained tagger to perform at a reasonable level. 

Another seemingly straightforward approach is to treat
the problem as multi-class document classification. Here,
each normalized gene form is a possible class and the goal
is to label each document with a set of classes (genes). We
encountered two major problems to this approach. Multi-
class document classification is typically done for tens and
in rare instances hundreds of classes. However, as stated
earlier, each organism has thousands of genes and in
some cases tens of thousands. This poses substantial com-
putational issues. Another major obstacle is that not all

Table 1: Example of partial entries from the fly synonym list.

Normalized Form Possible Synonyms

FBgn0003943 CG11624 Ub, Ubi p, Ubi63E, polyubiquitin
FBgn0003944 CG10388 Cbx, DmUbx, Hm, Ubx, abx, bithorax
FBgn0003945 Udg, Uracil DNA glycosylase
FBgn0004837 Suppressor of Hairless, br7, C: Group C, RBP JKappa, lethal 7 in the black-reduced region
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classes are observed in the training data. Only 22%, 13%
and 47% of all fly, mouse and yeast genes were ever seen
in the training data. This would make it impossible to
gather the enough statistics to make accurate predictions.

Implementation
In this section we present the implementation details of
our two approaches to gene normalization.

Pattern matching
Given a synonym list that is both unambiguous and
exhaustive, creating a normalized gene list would be triv-
ial. We could simply match every occurrence of a syno-
nym in the text, and based on those matches label the
document with the corresponding normalized mentions.
Unfortunately, the synonym list for this task has neither
property. As previously mentioned, many synonyms are
ambiguous, either occurring with multiple genes or in
contexts where no gene mentions are present. For
instance, blink, with and weak are all listed in the fly syno-
nym list. Matches to these common English words will
most likely not constitute actual gene mentions. But even
with these ambiguities, which increase greatly the number
of genes that a simple pattern matching system would
propose, using the synonym list does not retrieve all men-
tions. This does not mean that a pattern matching
approach is useless, our first system relies heavily on
standard techniques. However, we do not assume that
every synonym in the list reliably labels documents with
their normalized gene mentions. Instead, we prune each
organism's synonym list so that it only contains syno-
nyms that we believe will be informative, based on
labeled training documents. A synonym, s, for a gene, g, is
considered informative if and only if for the training set D:

The left-hand-side fraction is the conditional probability
of g labeling a document, given that there was a match of
s in the document. The threshold δ was tuned to 0.4 on
the development data set for all three organisms. The
result was that the number of total synonyms was reduced
from 99501 to 4029 for fly, 130548 to 2898 for mouse
and 14756 to 2307 for yeast. This reduction is substantial,
since, as Table 2 indicates, it resulted in an absolute
increase in f-measure of 50% for fly and 27% for mouse.
δ is directly proportional to precision and recall. Higher
values of δ result in higher precision at the expense of

recall and lower values of δ result in higher recall at the
expense of precision.

While using a pruned synonym list performs significantly
better than simple pattern matching with the original list,
the system still predicts far too many genes for each docu-
ment. To further restrict the genes considered, a second
stage of the pattern matching system produces, for each
document, a set of candidate genes. Now, only genes that
are present in the candidate list for a document and are
also associated with an informative synonym in that doc-
ument will be added to the document's final list.

For a fly-related document, the system extracts the 1000
closest documents in the training data using Euclidean
distance over word indicator feature vectors:

I(w, d) = 1 if word w is in document d and 0 otherwise

Only words that did not occur in a stop-list of common
English words were included in this calculation. The gene
lists for the neighbouring documents are merged to create
the final candidate list.

For mouse-related documents, the system first tags the
document using a gene tagger [2]. Each gene mention is
then compared to every synonym in the mouse synonym
list. If the gene mention and a synonym have a Jaro-Win-
kler similarity [7] greater than 0.85, then the gene that
synonym is associated with is added to the candidate list
for that document. The Jaro-Winkler metric returns a sim-
ilarity score in the 0 to 1 range based on many factors,
including the number of characters in common (shared
by both strings and in the same order) and the longest
common substring, both of which stress the importance
of characters occurring in the same order.

This two-stage pattern matching system compensates for
the fact that the given synonym list contains large
amounts of ambiguity, but does nothing to reduce the
number of gene mentions that a naive pattern matching
approach misses due to the incompleteness of the syno-
nym lists. We observe that many of these omissions occur
because of differences in punctuation or morphology.
Thus, the pattern matching system includes a third, and
final stage. In it, all punctuation is removed and each
token is stemmed with the Porter stemmer [8] in both the
documents and the synonym lists. Stemming removes
missed matches due to minor morphological differences
like, human beta-globin peptides versus human beta-globin
peptide. As before, each informative synonym is compared
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to each document. If the synonym matches and the corre-
sponding gene is in the candidate list for that document,
then the gene is added to that document's final gene list.

Finally we will note that the yeast system required neither
a candidate list nor stemming to gain maximum perform-
ance. The reason for this is that most researchers refer to
yeast genes using a standard nomenclature, where each
gene is usually mentioned in one of a few known and
unambiguous forms. Table 2 shows the performance for
the different stages of the system for the fly and mouse
organisms. Table 3 summarizes the final results of the sys-
tem on the evaluation data.

Shortcomings of pattern matching
It is rather surprising how well pattern matching can do if
used with some care. However, there is something unset-
tling about this approach. First, several parameters need to
be adjusted on the development data. These include δ as
well as the various parameters required to create the
neighbour lists (for instance, number of closest docu-
ments and the Jaro-Winkler distance). For all hand-tuned
parameters there is the danger of overfitting to the devel-
opment data. By examining Tables 2 and 3, it appears that

this may not be a problem for this set of data. In particu-
lar, the F1 score for the mouse organism is actually better
on evaluation then on development, and for both fly and
mouse the recall on the evaluation set is higher than the
recall on the development set. Nevertheless, these hand-
tuned parameters are difficult to set and there is no sup-
porting theoretical analysis for their effect.

The complexity of the system is also a problem. Data is
transformed in many stages: stemming, creating the
informative synonym list, creating the neighbor list and
finally matching the synonyms to the text. As with all
pipelined systems, this may lead to cascading errors in
which an error early in the pipeline will cause errors to be
made at later stages.

A lack of uniformity between each organisms system is
also an undesirable trait. Particularly, neighbor lists are
generated differently for each organism or not at all in the
case of yeast. One could easily argue that the method will
not generalize well to other organisms. What we really
desire is one uniform approach, for all organisms, in
which every parameter is automatically set during the
training phase.

Table 2: Performance of pattern matching system on development data. Precision and recall numbers for pattern matching system 
using: A) Simple direct matching of synonyms to text. B) Direct matching of synonyms to text only considering informative synonyms. 
C) Same as B, except restrict that a synonym must be in a documents candidate list for match to be valid. D) Same as C, except 
matches are run with all tokens stemmed. Numbers are reported for both fly and mouse.

Fly Precision Recall F-measure

A. basic matching 0.033 0.861 0.063
B. informative syns 0.458 0.727 0.562
C. candidate list 0.709 0.667 0.687
D. stemming 0.713 0.690 0.701

mouse Precision Recall F-measure

A. basic matching 0.151 0.583 0.240
B. informative syns 0.478 0.548 0.511
C. candidate list 0.739 0.505 0.600
D. stemming 0.716 0.656 0.685

Table 3: Pattern matching performance on evaluation data.

Organism Precision Recall F-measure

fly 0.638 0.695 0.665
mouse 0.830 0.673 0.743
yeast 0.950 0.894 0.921
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Match classification
Consider a system in which every time a synonym had a
text based match with a document the system also labeled
that document with that synonyms normal form. The
inspiration for our second model comes from the obser-
vation that this kind of liberal pattern matching can
achieve a very high recall (91%, 79% and 90% for fly,
mouse and yeast on the development data). The problem,
as addressed in the last section, is that this also results in
extremely poor precision. However, just as it is possible to
use the training data to determine which synonyms are
useful, it is also possible to use the training data to deter-
mine which matches are correct.

We present here a model that, given a set of synonym
matches, distinguishes correct from incorrect ones. This is
essentially a binary classifier in which good matches are
positively labeled and bad matches negatively labeled. To
create training data for the classifier, we matched every
synonym to each training document using a loose match-
ing criterion (punctuation and numbers were ignored).
We then extracted, for each match, the text that matched
(adding back the removed characters), some context of
the match, the normal form causing the match, as well as
the number of other genes which matched that specific
piece of text. For the training data, if the normal form for
a match was in the normalized gene list for that docu-
ment, then the match was labeled positive. Below are
some examples of such matches:

of drosophila Kinesin heavy chain attached to,
FBgn0001308, 1, Y

was analyzed in trajectories with, FBgn0001250, 5, N

homeotic gene Ultrabithorax (ubx, FBgn0013100, 7, N

The italicized text is the text causing the match. We extract
two words before and after the match. In the first example,
the normalized form causing the match is FBgn0001308,
it was the only gene matching that piece of text and it con-
stituted an actual match. Note that the third match, Utra-
bithorax, is negative because it is actually a match for the
gene FBgn0003944, which shares the synonym Utrabitho-
rax with FBgn0013100.

This provided a large set of positive and negative matches
required to train a classifier. We used the MALLET [9]
implementation of maximum entropy models [10] for
our classifiers. Maximum entropy classifiers model the
conditional probability of a class given an input vector
with the log-linear form:

where y is a class (in our case yes or no), x is an input vector
and Z(x) is a normalizing term. (It is easy to see that in the
binary case, maximum entropy classification is equivalent
to logistic regression.) For our model, x is a binary vector
containing predicates on the matched text, its context, the
normal form causing the match and the number of other
genes matching the text. Each feature function fi(y, x)
maps an input vector and class to a binary variable, for
instance:

The above feature has a value of 1 for all matches in which
the word directly before the matched text is drosophilia and
the classification for the match is yes. The parameters of
the model are the feature weights λi. Ideally one would
like the weights of features that tend to be on for correct
classifications to be strongly positive, the weights of fea-
tures that tend on for incorrect classifications to be
strongly negative, and the weights of uninformative fea-
tures to be zero. To accomplish this the parameters are set

to maximize the log-likelihood of the training data :

A Gaussian prior over weights, with variance tuned to 1.0
on the development data, reduces the danger of overfit-
ting the model to the training data [11]. The log-likeli-
hood function is concave allowing optimal parameter
values to be found by numerical optimization methods.
Our system uses a limited-memory quasi-Newton
method, which has been shown to be one of the most effi-
cient algorithms for maximizing the log-likelihood of
maximum entropy models [12,13].
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Table 4: Maximum entropy classification performance on evaluation data.

Organism Precision Recall F-measure

fly 0.704 0.783 0.742
mouse 0.787 0.732 0.758
yeast 0.956 0.881 0.917
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To classify a new abstract, the system first extracts all the
synonym matches that occur within it. Then for each
match x, the classifier finds the classification y ∈ {yes, no}
with the highest probability P(y|x). For each positive
match, the normal form causing the match is added to the
documents normalized gene list. Results of the trained
models on evaluation data are shown in Table 4. The eval-
uation results differ from the official BioCreative 2004
results. This is due to a match extraction error that was
discovered and resolved after the official results were
submitted.

A quick glance at the results show that maximum entropy
classification does as well or better than pattern matching
for all organisms without the need for organism specific
optimizations. The only tunable parameter in this models
is the Gaussian prior. However, most experiments suggest
that performance does not change dramatically with dif-
ferent values for the prior. The prior exists primarily to
keep weights as close to zero as possible and in all our
experiments setting the prior to 1.0 was satisfactory to pre-
vent overfitting.

Results
Tables 3 and 4 outline the results for both the pattern
matching and the maximum entropy classification sys-
tems. The results are comparable for mouse and yeast,
however, the classification system outperforms the pat-
tern matching system for fly-related documents. The best
system for all organisms performs reasonably well with
performance ranging from 74% to 92%.

The primary limitation of the pattern matching and max-
imum entropy classification models are their reliance on
the gene synonym list to find potential matches. For the
three organisms under consideration here, it is possible to
attain a maximum recall of 91%, 79% and 90% for fly,
mouse and yeast using the their synonym lists to match
the text. In theory, if the synonym lists were complete we
could see an increase of up to 20% in recall. This problem
may be exacerbated for other organisms that do not have
synonym lists that have been as well curated as the ones
for fly, mouse and yeast.

A simple mechanism to increase the recall for synonym
matching is to relax the matching criteria further using
some sort of edit distance or string similarity metric [7].
Recently, Tsuruoka and Tsujii [14] have experimented
with soft matches for protein name recognition. The diffi-
culty with such an approach is that the matching algo-
rithm would be potentially less efficient, with a naive
O(n2) implementation being totally impractical for this
task. However, approximate string matching techniques
as developed in computational biology might be useful
here.

Another approach could be to generate these synonym
lists automatically. Work on this problem has been done
by Yu and Agichtein [15]. However, the results of their sys-
tem are below 50% F1 measure and may not yet be usable
in practical applications such as gene normalization.

Conclusion
Comparing Tables 3 and 4, we see that maximum entropy
classification does just as well or better than the pattern
matching system. A primary advantage of maximum
entropy classification over pattern matching is that the
system is uniform across organisms, hence the method is
more likely to perform well when extended to different
organisms.

There are many ways in which the maximum entropy
model can also be improved. The most obvious of which
is to include more expert knowledge into the model. Max-
imum entropy models are widely used since they easily
allow for the integration of such expert knowledge
through the definition of new features. For extracting gene
mentions from text, these features generally take the form
of lexical resources and indicative regular expressions [2].
For gene normalization, it may be possible to have experts
additionally curate the synonym list to indicate which
synonyms should be trusted and which should not. This
could greatly improve performance, particularly for syno-
nym matches not seen in training. If the system matches
have a feature indicating that a synonym is trustworthy it
could provide evidence to classify the match as valid. Cur-
rently, the model's features are based primarily on textual
matching and contain no domain specific information. It
may also be possible to improve performance by intro-
ducing more context or some syntactic features from the
extracted matches. However, preliminary experiments on
the development data suggested that additional context
had a negligible effect on accuracy and only served to
increase the time it took to train the model.

Another potential improvement would be to relax the cri-
teria when extracting matches. Under perfect conditions
we should be able to extract all good matches and use the
classifier to eliminate the bad ones. Currently our match-
ing criteria extracts as low as 79% of all good matches,
which bounds the recall of the system. We are experiment-
ing with different string distance metrics proposed by
Cohen et al. [7] to try and raise the number of good
matches returned.
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