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Abstract
Background: The usefulness of log2 transformation for cDNA microarray data has led to its
widespread application to Affymetrix data. For Affymetrix data, where absolute intensities are
indicative of number of transcripts, there is a systematic relationship between variance and
magnitude of measurements. Application of the log2 transformation expands the scale of genes with
low intensities while compressing the scale of genes with higher intensities thus reversing the mean
by variance relationship. The usefulness of these transformations needs to be examined.

Results: Using an Affymetrix GeneChip® dataset, problems associated with applying the log2
transformation to absolute intensity data are demonstrated. Use of the spread-versus-level plot to
identify an appropriate variance stabilizing transformation is presented. For the data presented, the
spread-versus-level plot identified a power transformation that successfully stabilized the variance
of probe set summaries.

Conclusion: The spread-versus-level plot is helpful to identify transformations for variance
stabilization. This is robust against outliers and avoids assumption of models and maximizations.

Background
Microarrays measure the abundance of thousands of
mRNA transcripts in one experiment. Currently, two dif-
ferent microarray technologies dominate gene expression
research efforts, namely, custom spotted arrays and
Affymetrix GeneChips®. Custom spotted arrays are charac-
terized by long single strands of complimentary DNA
(cDNA) affixed to a solid substrate in spots to which two
different fluorescently labelled samples are hybridized.
Affymetrix GeneChips® are characterized by the use of sev-
eral (11–20) short oligonucleotide (25-mers) probes to
interrogate for a single gene and to which one fluores-
cently labelled sample is hybridized. For both technolo-
gies, the fluorescence intensity for each probe/spot is

assumed to be indicative of the amount of mRNA tran-
script in the sample. Since two samples are hybridized to
custom spotted arrays, the ratios of the experimental sig-
nal relative to a control signal of the resulting intensities
are analyzed. On the other hand, for the one sample
hybridized to an Affymetrix GeneChip®, the absolute
intensities indicative of the number of transcripts are the
resulting gene expression measures.

To satisfy assumptions required for statistical analyses,
data from both technologies are often transformed by a
suitable function [1]. Specifically, the reasons for applying
a transformation to a dataset include to achieve stability
in variance, or to achieve linearity, additivity and/or
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normality. Sometimes a transformation is applied
because it facilitates interpretation and induces symmetry.
Such is the case when applying the log2 transformation to
custom spotted microarray (cDNA) data. This transforma-
tion defines the relative abundance of a transcript in an
experimental sample in comparison to the control sample
as the unit of analysis. For genes where the experimental
intensity is greater than the control intensity, the ratio
could take values in the range (1, ∞); for genes where the
experimental intensity is less than the control intensity,
the ratio is compressed to the range (0, 1). The log2 trans-
formation of ratio data promotes symmetry by treating
under and over expressed genes similarly. A typical exam-
ple used to elucidate this concept is the one that considers
two genes, one with a ratio of 2.0 representing a doubling
of intensity and another with a ratio of 0.5 represents a
halving of intensity; on a log2 scale these values are sym-
metric about zero (no change) with values 1 and -1
respectively [1]. The application of the log2 transforma-
tion to cDNA data thus has proven useful for achieving
symmetry as well as ease of interpretation.

The usefulness of the log2 transformation for cDNA
microarray data has led to its widespread application to
Affymetrix GeneChip® data as well [2-4]. While this trans-
formation is appealing to the biologists due to the reasons
stated above for cDNA arrays, it neither facilitates inter-
pretation nor does it necessarily render true the assump-
tions required for statistical analysis, such as equal
variance, normality, etc., in Affymetrix GeneChip® data.
When data are amounts or counts, as with Affymetrix
GeneChip® data, where the intensities are assumed to rep-
resent amounts of mRNA transcripts, there is often a sys-
tematic relationship between the variance of the
measurements and magnitude of the measurements. The
log2 transformation expands the scale of genes with low
absolute intensities while compressing the scale of genes
with higher intensities; it essentially reverses the direction
of the relationship between the variance and the mean
expression level. That is, after the transformation lowly
expressed genes have a higher variance and highly
expressed genes have a lower variance [5].

Recently, other variance stabilizing transformation meth-
ods for microarray gene expression data have been intro-
duced [6-8]. The gene expression data have been
modelled as

y = α + µeη + ε,  (1)

where y represents the measured intensity, α represents
the average background, µ represents the true gene expres-
sion level, with normally distributed error terms η and ε
with zero mean and differing non-zero variances [6]. For
this model, when µ is large, y is distributed approximately

as a lognormal random variable. Therefore, a log transfor-
mation of y results in observations with constant variance
when µ is large. In this case the generalized logarithm
transformation is

g(y) = ln (y - α + sqrt [(y - α)2 + c]),  (2)

where , stabilizes the asymptotic variance [6]

for large samples. Rocke and Durbin [7] compared three
logarithmic-based transformations (the generalized loga-
rithm, the started logarithm, and the log-linear hybrid)
using a simulation study and in application to an existing
dataset. They found the generalized logarithm resulted in
better overall performance in achieving variance
stabilization.

In this paper, an Affymetrix GeneChip® HG-U133A data-
set consisting of 16 technical replicates (QAQC Dataset),
where the Microarray Suite Software (version 5.0) was
used to derive the expression summaries for all probe sets,
is used to demonstrate some of the problems associated
with applying the log2 transformation to absolute inten-
sity data. Another approach to identify an appropriate var-
iance stabilizing transformation using the spread-versus-
level plot [9] is proposed. The spread-versus-level plot

plots the log of the median on the x-axis ( )
against the log of the fourth-spread on the y-axis. The
slope of the spread-versus-level plot (b) can be used to
suggest a power transformation that will most appropri-
ately stabilize the variance. When using a spread-vs-level
plot, the suggested power of the transformation is p = 1 - b.

The effectiveness of using the spread-versus-level plot to
identify a suitable monotone transformation that appro-
priately stabilizes the variance for probe set expression
summaries is demonstrated using the QAQC dataset.

Results
To demonstrate the dependence of the variance on level of
gene expression, a plot of the mean for each probe set
across the 16 technical replicates by the associated vari-
ance was constructed (Figure 1). It is apparent from the
plot that the variance increases with increasing gene
expression. Figure 2 represents the plot of the mean versus
the corresponding variance for the log2 transformation.
This plot demonstrates, as previous authors have found
[4,5], that the log transformation increases the variability
on the lower end of the range while compressing the var-
iability among the highly expressed genes. In other words,
clearly, the log transformation has not stabilized the vari-
ance in this case.

c S= σε η
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In Figure 3 the spread-versus-level plot for the same data
is presented. The estimated slope of the linear regression

model fit to the spread-vs-level plot was  = 0.569.

Therefore, the estimate of the power transformation

turned out to be,  = 1 - 0.569 = 0.431. Typically, for sim-

plicity the parameter estimate  is rounded to the nearest

half-integer, which in this case would lead to  = 0.5. The
family of power transformations is defined as

where, x is the observed data, p is a number to be deter-
mined and Φ is the monotonic transformation. Substitut-
ing the p obtained from the plot yields,

Φ0.5(x) = (x0.5 - 1)/0.5 = .

Applying this transformation to the signal intensities in
the QAQC dataset and plotting mean versus the variance
as before (Figure 4) shows that stabilization of the vari-
ance is achieved. There are a few outlying probe sets iden-
tifiable in Figure 4. One of the advantages of using the
estimated slope from the spread-versus-level plot to iden-
tify a power transformation is that this plot uses robust
measures of location (median) and spread (fourth-
spread). For this dataset, the "outlying" probe sets were
defined as those with a variance greater than 50. The esti-
mated slope after removing the outliers was 0.568; as
expected, the slope of the linear regression fit to the
spread-versus-level plot is fairly robust against outliers.
Thus, the transformation identified by the spread-versus-
level plot is not affected by these few outlying probe sets.

Mean versus variance plotFigure 1
Mean versus variance plot. Plot of the mean probe set MAS 5.0 signal intensities by the corresponding variance across the 
16 HG-U133A GeneChips®.
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Figure 4, however, is not on the same scale in comparison
to Figures 1 and 2. Therefore, a plot of the rank of the
median probe set signal intensities versus the associated
fourth-spread across the 16 HG-U133A GeneChips® (Fig-
ure 5) is considered [10]. This plot more clearly demon-
strates the improvement in variance stabilization achieved
by this transformation. The fitted lowess regression curve
is overlaid, where the span is 1/3, is roughly horizontal,
indicating constant variance.

As noted in this figure, there are still a few probe sets at the
highest intensity level that suffer from increased variabil-
ity. These probe sets are among those expression summary
values that are greater than the expression summary val-
ues for the most concentrated hybridization spike-in
control (that is, the AFFX-CreX and AFFX-r2-P1-cre probe
sets, with a mean of 2796 on MAS 5.0 scale, 103.7 on the
transformed scale). From our quality assessment of the
hybridizations, there is linearity over the range of concen-
trations covered by all the hybridization spike-in controls.

However, for signal intensities outside of this range, line-
arity cannot be determined. In a statistical analysis, these
may be deemed outliers and may need to be examined
separately from the remaining probe sets.

After applying the generalized logarithm transformation
[6,8] to the QAQC Dataset using the Bioconductor vsn()
library [8] and plotting the rank of the median probe set
signal intensities by the associated fourth-spread (Figure
6) reveals the retention of increased variability among
genes with smaller signal intensities, though vastly
improved in comparison to the log2 transformation. The
fitted lowess regression curve is overlaid where the span is
1/3. The coefficient of variation for the fitted values from

the lowess regression for the  transformed data
was 0.15 while the coefficient of variation of the fitted val-
ues from the lowess regression for the generalized loga-
rithm transformation was 0.22. Bootstrap percentile-
based confidence intervals for the coefficient of variation
were estimated by resampling the paired median and

Mean versus variance plot of log2 transformed dataFigure 2
Mean versus variance plot of log2 transformed data. Plot of the mean log2 transformed MAS 5.0 probe set signal inten-
sities by their associated variance for the 16 HG-U133A GeneChips®.
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spread observations, fitting a lowess regression to the
bootstrapped data, then estimating the coefficient of vari-
ation using the lowess fitted values. The 99% confidence
interval for the vsn() transformed data was (0.2109,

0.2265); the 99% confidence interval for the 
transformed data was (0.1431, 0.1644). Thus, it may be
concluded that the variance was better stabilized by the

 transformation.

Discussion
Reasons for transforming data often include the desire to
find a scaling of the data that would simplify the analysis,
for example, by making the data meet assumptions such
as symmetry, equal variance, straight line relationship,
and/or additivity of effect. One common assumption of
many traditional statistical methods is that the variance is
constant over the levels of gene expression. Since the abso-
lute intensities are positive, this assumption is generally
not valid because the variance increases with increasing
intensities. The log2 transformation, which is routinely

applied to absolute intensities that result from Affymetrix
GeneChip® experiments [2,3], unfortunately does not
achieve the desired results. As shown (Figure 2) the trans-
formation only reverses the mean-variance relationship.
To overcome this drawback of the log2 transformation,
methods such as the Local Pooled Error test have been
suggested [4] to more accurately estimate the variance for
lowly expressed log2 signal intensities. In this article, as
one alternative, the spread-versus-level plot to identify
more appropriate monotonic transformations that stabi-
lize the variance was proposed. The spread-vs-level plot
proved useful for identifying a transformation useful for
simplifying an analysis by meeting assumptions such as
symmetry and equal variance.

For the QAQC Dataset, the spread-versus-level plot led to
a square root transformation, rather than the log2 transfor-
mation. This dataset consisted of 16 technical replicates;
since the spread-vs-level plot is used to empirically iden-
tify a power transformation, the most appropriate power
transformation to stabilize the variance is completely data

Spread versus level plotFigure 3
Spread versus level plot. Spread-versus-level plot for 16 HG-U133A GeneChips® using MAS 5.0 probe set expression sum-

maries; parameter estimates from least squares regression:  = 0.052,  = 0.57.β̂0 β̂1
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specific. Therefore, the  transformation suggested
should be treated as an illustration and is not necessarily
the most appropriate one for all data sets. In fact, there
may be situations in which our method may lead to the
more commonly used log transformation itself, while for
other datasets it may not lead to any power transforma-
tion that could stabilize the variance. We note, however,
that in a serial dilution experiment conducted to assess
linearity of signal [11], the authors found the square root
transformation by trial and error to be an appropriate
transformation. Thus this empirically derived transforma-
tion obtained through the use of the spread-versus-level
plot confirmed a similar finding.

Conclusions
The estimated slope from the spread-versus-level plot
could be used to identify a power transformation that will
appropriately transform gene expression data to stabilize
the variance. It is computationally easy to implement as it
avoids the requirement of a statistical model and maximi-
zation of a likelihood. Moreover, since this plot uses

robust measures of location and spread, the slope of the
linear regression fit to the spread-versus-level plot is fairly
robust against outliers.

Methods
Transformation
One of the most commonly used families of variance sta-
bilizing transformations is the Box-Cox transformation
[12]. This family of transformations is defined by equa-
tion (3). Box and Cox selected p as the value that maxi-
mized the likelihood under any given model. A graphical
technique based on the spread-versus-level plot may also
be used to empirically estimate p [9]. This method is
robust against outliers and avoids the need for maximiza-
tion of the likelihood. The spread-versus-level plot plots
the log of the median (x-axis) by the log of the fourth-
spread (y-axis). The slope b of the spread-versus-level plot
identifies the approximate value of the exponent for the
power transformation, where p = 1 - b. When the slope b
is close to 1, p is close to 0 and therefore the transforma-
tion would be ln(x).

Mean versus variance plot of power transformed dataFigure 4
Mean versus variance plot of power transformed data. Plot of the mean of the probe set signal intensities after applying 

the  transformation by the associated variance for the 16 HG-U133A GeneChips®.2 2x −
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Spread-versus-level plot
To construct a spread-versus-level plot, three order statis-
tics, namely the median (M) the upper fourth (FU) and the
lower fourth (FL) must be identified. These order statistics
may be found using the following algorithm. First, sort
the data in ascending order. On the basis of ordering, the
rank of an observation can be defined as an upward rank
(determined by counting up from smallest to largest) or a
downward rank (determined by counting down from
largest to smallest). Considering both the upward and the
downward ranks together, the depth of a data value in a
sample is defined as the smaller of its upward rank and its
downward rank. For example, the depth of the median is
(n + 1)/2. (When the number of observations n is even,
the median is interpolated to lie between the two middle
values.) The fourths are those values with a depth equal to
([depth of median] + 1)/2. Therefore, each fourth is half-
way between the median and the corresponding extreme
[13]. The fourth-spread (dF) is a robust measure of spread
and is estimated by (upper fourth) - (lower fourth),

denoted by dF = FU - FL. The interquartile range is nearly
the same as the fourth-spread but differs slightly when the
number of observations is even.

To understand why a spread-versus-level plot is useful in
identifying an appropriate variance stabilizing transfor-
mation [9], let X be a real random variable from a popu-
lation with median MX, lower fourth FL, upper fourth FU,
and fourth spread dF. The spread-versus-level plot identi-
fies a transformation y = Φ(x) for which the fourth-spread
of Y is constant. Assuming the second derivative Φ''(x)
and higher order derivatives exist for all x, a Taylor series
expansion of Φ(x) around MX is

Let λ(MX) represent the distance from MX to FU as a pro-
portion of the distance dF, or λ(MX) = (FU - MX)/dF; then [1
- λ(MX)] would represent the proportionate distance from

Rank versus spread plot of power transformed dataFigure 5
Rank versus spread plot of power transformed data. Plot of the rank of the median probe set signal intensities after 

applying the  transformation by the associated fourth-spread across the 16 HG-U133A GeneChips®. The fitted low-
ess regression curve is overlaid where the span is 1/3.
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MX to FL. Therefore, the median and upper and lower
fourths for the data transformed by y = Φ(x) are

MY = Φ(MX),  (5)

(FU)Y = Φ(FU) = Φ [MX + λ(MX)dF],  (6)

(FL)Y = Φ(FL) = Φ{MX - [1 - λ(MX)]dF}.  (7)

Substituting these expressions into equation (4) to get
(FU)Y and (FL)Y, then taking the difference to get the
fourth-spread for the transformed data yields,

Recall that λ(MX) represent the distance from MX to FU as
a proportion of the distance dF; thus the term [2* λ(MX) -
1] will range from [0,1]. Moreover, if the upper and lower
fourths are roughly equal distant from the median (i.e., x
is roughly symmetric), this quantity will be zero. Addi-

tionally, since Φ''(MX) is a measure of concavity of the tan-
gent line at the median, it will generally be small.
Therefore, the quadratic term of (dF)Y is generally small
enough to be negligible compared to the leading term,
thus the approximation

(dF)Y ≈ dF· Φ'(MX)  (9)

is reasonable. Now, if the right-hand side of this equation
is held constant, it leads to a transformed variable Y with
constant variance. Therefore, supposing that the relation-
ship between spread dF and level X is a power transforma-
tion of the form dF(x) = k·xb for some constants k and b,

The spread-versus-level plot plots the log of the median

on the x-axis ( ) against the log of the fourth-

spread on the y-axis. (Recall, dF(x) = k·  so that log(dF)

Rank versus spread plot of generalized logarithm transformed dataFigure 6
Rank versus spread plot of generalized logarithm transformed data. Plot of the rank of the median probe set signal 
intensities after applying the generalized logarithm transformation by the associated fourth-spread across the 16 HG-U133A 
GeneChips®. The fitted lowess regression curve is overlaid where the span is 1/3.
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= log(k) + b· ). Therefore, the slope of the
spread-versus-level plot estimates b. Hence the suggested
power transformation would be xp = x1 - b.

Data
An experiment using 16 technical replicates in which data
were obtained using the Affymetrix GeneChip® technol-
ogy is considered to illustrate the transformation method
suggested in the previous section. Five identical aliquots
of 40 µg of the Universal Human Reference RNA (Strata-
gene, La Jolla, CA), isolated from 10 human cell lines,
were used as template for cDNA synthesis, cRNA in vitro
transcription, and labelling reactions. The final frag-
mented cRNA aliquots were pooled together. The pooled
Reference RNA was hybridized to 16 HG-U133A
GeneChips® (Dumur et al, personal communication) to
study GeneChip® reproducibility. Hybridization was per-
formed using the same lot number of the HG-U133A
arrays, which contains 22,283 probe sets. Immediately
after the scanning of every chip, a visual quality control of
the image was performed in order to ensure a successful
hybridization. Moreover, several parameters produced by
the Affymetrix Microarray Suite Software (version 5.0)
were monitored for quality control purposes, including:
the scaling factor, which is used to scale all probes sets to
a predetermined target value (in this study the target value
was set at 100); the percentage of probe sets called
'Present' using the Affymetrix Detection Call algorithm
[14]; and the 3'/5' ratios of signal intensity values for two
housekeeping genes, GAPDH and β-actin. The Microarray
Suite Software (version 5.0) was also used to derive the
expression summaries for all probe sets. The present study
was performed on the 22,215 probe sets designed to
match human transcripts; we eliminated those probe sets
that query for bacterial spike-in controls from our
analyses.
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