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Abstract
Background: A necessary step for a genome level analysis of the cellular metabolism is the in silico
reconstruction of the metabolic network from genome sequences. The available methods are mainly based
on the annotation of genome sequences including two successive steps, the prediction of coding sequences
(CDS) and their function assignment. The annotation process takes time. The available methods often
encounter difficulties when dealing with unfinished error-containing genomic sequence.

Results: In this work a fast method is proposed to use unannotated genome sequence for predicting
CDSs and for an in silico reconstruction of metabolic networks. Instead of using predicted genes or CDSs
to query public databases, entries from public DNA or protein databases are used as queries to search a
local database of the unannotated genome sequence to predict CDSs. Functions are assigned to the
predicted CDSs simultaneously. The well-annotated genome of Salmonella typhimurium LT2 is used as an
example to demonstrate the applicability of the method. 97.7% of the CDSs in the original annotation are
correctly identified. The use of SWISS-PROT-TrEMBL databases resulted in an identification of 98.9% of
CDSs that have EC-numbers in the published annotation. Furthermore, two versions of sequences of the
bacterium Klebsiella pneumoniae with different genome coverage (3.9 and 7.9 fold, respectively) are
examined. The results suggest that a 3.9-fold coverage of the bacterial genome could be sufficiently used
for the in silico reconstruction of the metabolic network. Compared to other gene finding methods such
as CRITICA our method is more suitable for exploiting sequences of low genome coverage. Based on the
new method, a program called IdentiCS (Identification of Coding Sequences from Unfinished Genome
Sequences) is delivered that combines the identification of CDSs with the reconstruction, comparison and
visualization of metabolic networks (free to download at http://genome.gbf.de/bioinformatics/index.html).

Conclusions: The reversed querying process and the program IdentiCS allow a fast and adequate
prediction protein coding sequences and reconstruction of the potential metabolic network from low
coverage genome sequences of bacteria. The new method can accelerate the use of genomic data for
studying cellular metabolism.
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Background
Knowledge about the metabolic network of an organism
is essential for understanding its physiology and pheno-
typic behavior. A comprehensive understanding of the
metabolic network at the system level is particularly
important for both biotechnological and biomedical
research and is now made possible by rapid advances in
genome sequencing and functional genomics. In silico
reconstruction of metabolic networks from genome
sequences of organisms represents a starting point for a
systematic analysis of metabolism [1-3]. The functionality
of the potential metabolic network of a given organism
can then be further experimentally studied by system per-
turbations at both physiological and genetic levels [4].

Several methods and tools have been recently developed
for the reconstruction, visualization and analysis of meta-
bolic networks. These include general static metabolic net-
work tools such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [5], the Boehringer Mannheim meta-
bolic charts [6,7] and dynamic or potentially dynamic
tools such as WIT [3], MPW [8], EcoCyc [9,10] and Path-
Finder [11]. Metabolic network reconstruction is generally
based on the identification of metabolic enzymes and the
corresponding biochemical reactions in a specific organ-
ism. For this purpose the EC numbers of all possible
enzymes need to be determined. The set of EC numbers of
an organism may be obtained from the genome annota-
tion. This conventional approach of metabolic network
reconstruction is briefly summarized in Fig. 1A. It covers
three successive steps: (1) gene finding, (2) database
searching and function assignment and (3) metabolic
reconstruction. In the first step, genes or coding sequences
(CDSs) are predicted from the genome data using pro-
grams such as Glimmer [12], GeneMarkS [13], ZCURVE
[14] or CRITICA [15]. Then, coding sequences are used as
queries and compared to sequence databases such as Gen-
Bank, GenPept and SWISS-PROT or to databases of pro-
tein domains and functional sites such as InterPro [16],
PROSITE [17], Pfam [18] etc. Based on the similarity, the
function of the database entry may be assigned to a CDS
as its annotation. From these function assignments the
metabolic network can be constructed. This three-step
approach is used for example in the WIT system [3].
Efforts were also made in some bioinformatic systems
such as WIT to reconstruct metabolic networks from
incomplete genome data [3]. The program suite ERGO™,
a commercial version of WIT, integrates over 400 finished
and unfinished genomes into a comprehensive network
of metabolic and non-metabolic pathways [19]. No
details about the WIT approach have been published and
merely some information about 55 annotated genomes
(Status: March 2004) is publicly available on the website
of WIT [20].

The three-step method starting from gene finding has sev-
eral drawbacks for the reconstruction of the metabolic
network from incomplete or unfinished genome
sequences. In unfinished sequences of a genome, espe-
cially in sequences with a low genome coverage (e.g. less
than 4 fold), there may be many sequencing errors that do
not warrant an accurate prediction of genes [21]. For
example, the start or stop positions of CDSs may not be
accurately predicted. Protein sequences translated from
these CDSs may be completely wrong because of coding
frame shifts. Fusion CDSs may be predicted, to which the
function assignment is difficult. Moreover, a CDS that
normally appears as one CDS in other organisms may be
predicted as several smaller fragmented CDSs. On the
other hand, existing CDSs may not be found at all, either
because of sequencing errors or because of limitations of
the gene finding software. For eukaryotes, the prediction
of CDSs is even more difficult because of the existence of
introns.

To avoid these problems, alternative methods are required
for directly reconstructing metabolic networks from
unfinished genome data. Sequencing and annotation are
still time and resource consuming. An as early as possible
exploitation of the genome data is of importance for func-
tional genome research. In this work, we propose a
method to identify coding sequences for proteins (partic-
ularly for metabolic enzymes) directly from unannotated
low-coverage genomic data for in silico reconstruction of
the metabolic network. The method is demonstrated with
genome data from two organisms. A program combining
automatic prediction and function assignment of CDSs
with a visualization and comparison of metabolic net-
works of different organisms is also delivered.

Principle of the new method
The principle of the new method is schematically shown
in Fig. 1B. In comparison to the conventional three-step
method (Fig. 1A) our method can be called a two-step
approach. To avoid the separate step of gene finding in the
conventional methods, we propose to reverse the search-
ing relationship between public databases and the query
sequence: gene or protein sequences from public data-
bases are taken as queries, while the sequences in the
unannotated genome of a given organism are treated as a
local database that can be searched using a standalone
algorithm of BLAST [22]. This results in the prediction of
possible CDSs in the genome and simultaneously their
functions. Functional information about these CDSs is
then used to reconstruct the metabolic network. Thus, our
method can significantly simplify the process of CDS pre-
diction and metabolic network reconstruction. By skip-
ping over the separated steps of gene-finding and function
assignment, our method can avoid or relax some of the
problems of the traditional methods mentioned above.
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Schematic illustration of methods for reconstructing the metabolic network from genome dataFigure 1
Schematic illustration of methods for reconstructing the metabolic network from genome data: (A) conventional three-step 
method based on coding sequence (CDS) prediction, function assignment and metabolic reconstruction; (B) proposed two-
step method based on a simultaneous and direct identification of coding sequences and their functions from raw genome 
sequences. Note that the query process has been reversed in the new method in comparison to the conventional method.
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Results and Discussion
Evaluation of IdentiCS for identifying protein coding 
sequences from genome sequences of S. typhimurium 
LT2
To examine the applicability of the method proposed, the
well-annotated genome sequences of S. typhimurium LT2
[23] are used as "standard of truth" for statistic evaluation.
According to the annotation given in the KEGG database,
S. typhimurium LT2 has 4449 CDSs, out of which 1218
have been annotated with enzyme EC numbers. These
CDSs encompass 656 different unique EC numbers. The
reliability of CDS prediction by the program IdentiCS is
evaluated by using a nucleotide database (KEGG genome)
and a combined protein database (SWISS-PROT +
TrEMBL + TrEMBL update) separately. The annotated cod-
ing sequences or proteins of S. typhimurium were filtered
out of these databases before sequence alignment. All
CDSs having an E-value less than 10-10 were accepted and
submitted for comparison with the KEGG annotation of
S. typhimurium. The results are summarized in Table 1.
92.6% and 97.7% (sensitivity) of the CDSs in the original
annotation of S. typhimurium are identified by using the
KEGG genome database and the whole protein database
SWISS-PROT and TrEMBL, respectively. The sensitivity on
the nucleotide level (91.1% and 98.2% for the two data-
bases respectively) is similar as on the CDS level. These
results suggest that the SWISS-PROT-TrEMBL based
approach is more preferable than the KEGG genome
based approach for our method. It is understood that the
combined protein database SWISS-PROT and TrEMBL
contains almost all of the known protein sequences avail-
able in public databases (including proteins in silico trans-
lated from nucleotide sequences) while the KEGG
database contains only a limited number of sequenced
and annotated genomes. The difference becomes more
significant if the organism studied is evolutionarily far
from any organism whose genome is completely
sequenced and annotated.

The specificity of the method is about 81–82% on the
CDS level and 87.2–94.9% on the nucleotide level for the

KEGG genome database and the whole protein database
SWISS-PROT and TrEMBL. The moderate specificity on
CDS level is due to the relatively high amount of addition-
ally predicted CDSs (false positive). It should be men-
tioned that all the additionally predicted CDSs have quite
strong statistic significance (most of them with an E-value
1E-20 – 1E-40). These additional CDSs may be missed in
the original annotation and could in fact represent good
candidates for an improved annotation of the genome.

The inconsistence rate by IdentiCS is as low as 0.35% for
the KEGG genome database and 0.64% for the SWISS-
PROT and TrEMBL protein database, indicating the relia-
bility of our method.

In the above mentioned evaluation of the method, the
cut-off E-value is less than 1E-10 for the CDS prediction.
Further the effects of different scoring parameters (i.e. bits
score, E-value and identities) and their cut-off values on
the CDS prediction by using the database SWISS-PROT
and TrEMBL are examined. (Fig. 2A,2B,2C) show the dis-
tribution of the true positive CDSs, false positive CDSs,
sensitivity and specificity as function of bits score, E-value
and identities respectively. The major part of the false pos-
itive CDSs is found in the regions of bits score less than ca.
80 and E-value larger than 1E-15. The specificity increases
with the bits score and E-value in a form of a saturation
curve while the sensitivity decreases almost linearly. This
indicates that the prediction performance can be further
optimized by choosing appropriate cut-off parameters. If
the CDSs with bits score less than 75 (their corresponding
E-values are higher than 1E-15 in most cases) are rejected,
the false positive will decrease by 40% (from 987 to 602)
while the false negative will increase from 110 to 144
(Table 2). The prediction specificity increases from 81.5%
to 87.7% at the expense of a slight decrease in the sensitiv-
ity from 97.5% to 96.8%. The specificity of IdentiCS can
be further improved by combining a third criterion, i.e.
Identities > = 25% (Table 2). Thus, the sensitivity and spe-
cificity of IdentiCS for CDS prediction are satisfactory and

Table 1: Evaluation of the method IdentiCS for identification of CDSs in the genome of Salmonella typhimurium. KEGG: KEGG genome 
database; SW: SWISS-PROT + TrEMBL + TrEMBL updates.

Database KEGG SW

True positive 4121 4339
False positive 907 987
False negative 328 110
Sensitivity %* 92.6 (91.1) 97.7 (98.2)
Specificity %* 82.0 (94.9) 81.5 (87.2)

Inconsistence rate (%) in TP 0.35 0.64

*: Values shown in parentheses are calculated based on the nucleotide level according to Burset and Guigo[32]
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Distribution of false positive, true positive, sensitivity and specificity as functions of bits score (Fig. 2A), E-value (Fig. 2B) and identity (Fig. 2C)Figure 2
Distribution of false positive, true positive, sensitivity and specificity as functions of bits score (Fig. 2A), E-value (Fig. 2B) and 
identity (Fig. 2C). The bars for the distribution of false positive and true positive indicate the corresponding number of CDSs in 
a given interval of the statistic parameter (5 for bits score, 1 for -log(E-value) and 0.01 for identity) divided by the number of all 
false positive or true positive CDSs submitted for analysis. The lines show the specificity and sensitivity change along the cut-off 
scoring values.
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can be balanced to certain extent by choosing proper scor-
ing parameters.

Identification of enzyme-coding sequences in S. 
typhimurium LT2
For the reconstruction of metabolic network it is desired
to know the enzyme-coding sequences, and especially the
EC-number containing enzymes in an organism. The pos-
sibility to use the EC number-containing subset of the
combined protein database SWISS-PROT + TrEMBL to
identify enzyme-coding sequences in S. typhimurium LT2
and thus to further reduce the computation time for con-
structing the metabolic network is examined (Table 3).
1894 of EC-number containing CDSs (EC-CDSs) are iden-
tified. Of the 1218 originally annotated EC-CDSs, 98.9%
of them are identified with an annotation inconsistence
rate of as low as 0.08%. The specificity appears to be rela-
tively low due to the large number of false positives. How-
ever, if the prediction of EC-CDSs is compared to all the
originally annotated CDSs, the number of true positive
EC-CDSs is increased from 1204 to 1813 and the number
of false positive EC-CDSs is decreased from 690 to 55,
resulting in a specificity of 97.1%. The inconsistence rate
still remains at a low level, indicating the prediction and
function assignment for the additionally predicted EC-
CDSs is correct and their EC numbers are missed in the
original annotation. This can helps in reconstructing a
more complete metabolic network.

The KEGG genomes based prediction is also evaluated for
its ability to predict the enzyme-coding sequences. 95.4%
of the CDSs originally annotated to have an EC-number
are correctly predicted and assigned with EC numbers.
This value is slightly lower than the one based on the
SWISS-PROT+TrEMBL database. The more complete pro-
tein databases are therefore more suitable for EC-CDS
identification as well.

Identification of enzyme coding sequences with different 
coverage of genome sequences of K. pneumoniae
Both the KEGG genomes and SWISS-PROT-TrEMBL data-
bases are used to identify enzyme-coding sequences from

the 3.9-fold and 7.9-fold coverage genome sequences of
K. pneumoniae. From the 3.9-fold coverage genome, Iden-
tiCS identified 1169 and 1342 EC-CDSs by applying the
KEGG genome database and SWISS-PROT-TrEMBL data-
bases, respectively, whereas from the 7.9-fold genome
sequences 1158 and 1495 EC-CDSs, respectively. As in the
case of S. typhimurium, IdentiCS identified 15% to 30%
more EC-CDSs with queries from SWISS-PROT-TrEMBL
than with queries from KEGG for the two versions of K.
pneumoniae genome sequences respectively. The number
of EC-CDSs identified for K. pneumoniae is comparable to
that identified for S. typhimurium with the respective data-
bases. They are also comparable to the number (1156) of
annotated EC-CDSs of E. coli based on the KEGG genome
database. With the method proposed by Ma and Zeng
[24], the structure and evolution distance of the metabolic
networks of these three organisms and other 47 bacteria
are compared. The metabolic network of K. pneumoniae is
found to be most similar to those of E. coli and S. typhimu-
rium (data not shown). Thus, the predicted number of
enzyme-encoding sequences for K. pneumoniae appears to
be reasonable. With the same 3.9-fold coverage genome
sequences of K. pneumoniae, the method of WIT predicted
2650 EC-CDSs which are twice the number of EC-CDSs in
E. coli and S. typhimurium. The EC-CDSs predicted by WIT
are significantly smaller and fragmented, possibly because
of the presence of too many errors in the unfinished
genome sequences. The fragmentation problem was over-
come in our method that leads to a significant reduction
in the number of identified EC-CDSs. The less false posi-
tive EC-CDSs will further simplify experimental design
such as for microarray to examine the metabolic network.

A comparison of the unique EC numbers of EC-CDSs
identified from the two different versions of genome
sequences and by the different approaches reveals that the
results of these different combinations share over 80% of
common EC numbers (Table 4). The WIT version con-
tains more EC numbers than other versions, obviously
because the criteria used in our approaches allow a region
to have only one function or an EC number whereas the
method used by WIT allows more. With the 3.9-fold

Table 2: Effects of different scoring criteria on CDS identification in the genome of S. typhimurium using IdentiCS and the database 
SWISS-PROT and TrEMBL. Criteria 1: E-value < = E-10; Criteria 2: E-value < = E-10 and Bits score > = 75; Criteria 3: E-value < = E-10, 
Bits score > = 75 and Identities > = 25%

Criteria 1 Criteria 2 Criteria 3

True positive 4339 4305 4303
False positive 987 602 555
False negative 110 144 146
Sensitivity % 97.5 96.8 96.7
Specificity % 81.5 87.7 88.6
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genome sequences both KEGG and SWISS-PROT based
methods identified a certain number of EC numbers (44
and 81, respectively) that are not identified by WIT. Inter-
estingly, the two different versions of genome sequences
result in very close EC numbers. The KEGG based
approach identified only 11 (1.68%) more and the
SWISS-PROT-TrEMBL based approach identified merely
57 (7.76%) more by using the 7.9-fold genome sequences
than by using the 3.9-fold genome sequences (Table 4).
This indicates that the 3.9-fold coverage genome
sequences result in a fairly good estimation of enzyme-
coding sequences for the purpose of an in silico reconstruc-
tion of the metabolic network of K. pneumoniae. It would
be of interest to examine if this also applies to other
organisms or even lower genome coverage. The use of
lower genome coverage sequences for studying cellular
metabolism will greatly accelerate the exploitation of
genome sequencing projects.

The EC numbers of K. pneumoniae as identified by the
combination of 7.9-fold genome sequences and SWISS-

PROT and TrEMBL databases are summarized in Table 5
in terms of different functional categories. More than half
of the enzymes are involved in the metabolism of
carbohydrates, amino acids, cofactors and vitamins.
22.2% – 47.6% of the enzymes in the different KEGG
metabolism categories can be found in K. pneumoniae
(Table 5). These values are comparable to the values of
several evolutionarily closely related strains such as
Escherichia coli, S. typhimurium, S. typhi, Pseudomonas aeru-
ginosa and Yersinia pestis.

Comparison of IdentiCS and CRITICA for identifying 
coding sequence from low coverage genome sequences
CRITICA is a well-developed program for the prediction
of coding sequences [15]. It combines the comparative
analysis of DNA sequences with noncomparative
methods (i.e. dicodon bias). We compared CRITICA and
IdentiCS for predicting CDSs from the two different ver-
sions of K. pneumoniae genomic sequences. The compari-
son is done on the basis of all the CDSs including non-

Table 3: Evaluation of the performance of IdentiCS for the prediction of EC number -containing CDSs (EC-CDSs) with the EC-number 
containing subset of the protein database SWISS-PROT and TrEMBL.

Compared to originally annotated EC-CDSs Compared to all originally annotated CDSs

EC-CDSs predicted 1894 1894
True positive 1204 1813
False positive 690 55
False negative 14 NA

Sensitivity 98.9% NA
Specificity 63.6% 97.1%

Inconsistence rate in T.P. 0.08% 3.32%

NA: not applicable.

Table 4: Comparison of EC numbers identified with different methods and different versions of the genome sequence of Klebsiella 
pneumoniae. WIT: WIT version of annotation by gene prediction from the 3.9-fold genome sequences; KEGG3.9 and KEGG7.9: 
annotations of the 3.9-fold and 7.9-fold genome sequences by applying the KEGG genome database. SW3.9 and SW7.9: annotations of 
the 3.9-fold and 7.9-fold genome sequences by applying SWISS-PROT and TrEMBL protein databases.

Annotation 
version

Number of unique 
ECs identified

Version-specific EC numbers* compared to:

WIT KEGG3.9 KEGG7.9 SW3.9 SW7.9

WIT 764 - 162 159 152 131
KEGG3.9 646 44 - 4 63 56
KEGG7.9 653 48 11 - 68 57

SW3.9 693 81 110 108 - 15
SW7.9 735 102 145 139 57 -

*The version-X-specific EC number compared to the version Y is referred to EC numbers that are only found in the annotation Version X but not 
in Y. For example, the KEGG3.9 has only 4 version-specific EC numbers compared to KEGG7.9. On the other side, KEGG7.9 has 11 version-
specific EC numbers compared to KEGG3.9.
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enzyme coding sequences. The results are summarized in
Table 6.

From the 3.9-fold coverage genome data, CRITICA pre-
dicts 6734 CDSs with a cut-off p-value = -4 suggested by
Badger and Olsen [15], while IdentiCS predicted 5650
CDSs (with a cut-off E-value = 1E-10). 94.0% of the CDSs
predicted by CRITICA are covered by the prediction of
IdentiCS. O, In many cases two or more smaller CDSs pre-
dicted by CRITICA are covered by a CDS predicted by
IdentiCS, obviously because of the relatively high

sequencing errors in the 3.9-fold coverage genome data.
CRITICA predicts 29 fusion coding sequences. Since they
have similarities to two different functions, function
assignment to this kind of fusion CDSs is uncertain. Half
of the CRITICA-specific CDSs have p-values between 1E-4
and 1E-10. In comparison, of the 1348 CDSs merely
predicted by IdentiCS, all have E-values less than 1E-10,
27% have E-values less than 1E-40; all the CDSs have an
identity greater than 20% and 60% have an identity
greater than 50%, indicating that the predictions by Iden-
tiCS have a high confidence.

Table 5: Distribution of the unique EC numbers of K. pneumoniae in different function categories compared to other organisms (see 
legend of Fig. 3 for name abbreviations of organisms). The EC numbers for K. pneumoniae were identified from the unannotated 7.9-
fold coverage genome sequences by SWISS-PROT-TrEMBL based IdentiCS. The EC numbers for other organisms are taken from the 
KEGG genome annotations. The total number of strain-specific ECs is shown in parenthesis under the strain name.

Function 
Categoriesa

ECsb KPN
(735)

ECO
(681)

STM
(655)

STY
(445)

PAO
(573)

YPE
(585)

Carbohydrate 
metabolism

427 151 154 147 101 105 123

Energy 
metabolism

167 60 62 62 46 61 58

Lipid 
metabolism

126 27 25 25 17 27 17

Nucleotide 
metabolism

166 83 82 80 45 66 72

Amino Acid 
metabolism

561 211 189 189 132 205 183

Other Amino 
Acids

146 49 45 43 26 47 41

Complex 
Carbohydrates

184 63 58 55 33 43 53

Complex Lipids 
metabolism

171 46 38 34 24 31 34

Cofactors and 
Vitamins

225 104 105 107 74 100 96

Sum of unique 
EC numbers

1899 567 537 529 349 464 476

a: Functional categorization according to KEGG; b: unique EC numbers of corresponding metabolism category calculated from KEGG metabolic 
pathway maps.

Table 6: Comparison of coding sequences (CDSs) prediction by IdentiCS and CRITICA from unfinished genome sequences of K. 
pneumoniae with different genome sequence coverage.

3.9 × genome data 7.9 × genome data

CRITICA IdentiCS CRITICA IdentiCS

Number of all CDSs 6734 5650 5135 5261
CDSs shared by both 
programs

6332* 4302 4823 4512

CDSs merely identified by 
the respective program

402 1348 312 749

*CDSs predicted by IdentiCS can cover more than one smaller CDSs predicted by CRITICA.
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From the 7.9-fold coverage genome data, CRITICA pre-
dicts 5135 CDSs. This number is much less than the CDS
number predicted from the 3.9-fold coverage. This may be
explained by the significant decrease of sequence errors in
the 7.9-fold genome data. In contrast, CDSs predicted by
IdentiCS are only 389 less than that predicted from the
3.9-fold genome data. 93.9% of the CRITICA predictions
are covered by the 4512 CDSs predicted by IdentiCS. Only
8 CDSs predicted by CRITICA span two or more CDSs.
This shows that the increase of sequence quality increases
the precision of the prediction of CRITICA. Again, the
IdentiCS-specific predictions have a high confidence: all
with E-values less than 1E-10 and amino acid sequence
identities greater than 20%, more than 50% with E-values
less than 1E-20 and identities greater than 50%. The fact
that in some cases fusion CDSs are predicted by CRITICA
and in other cases many highly potential coding regions
are not predicted as CDSs indicates a shortcoming in this
algorithm for low quality contigs. When CRITICA finds a
coding region with a high score, it tries to find the start
and stop codons by extending this region to both
upstream and downstream with the conditions of not
decreasing the total score after extension. Sequencing
errors, especially translation shifts, make it difficult for
CRITICA to calculate the extension score correctly. In such
cases, the algorithm used by IdentiCS does not need to
locate the start and stop codons. Transcription frame
shifts also have less interference to IdentiCS because it
does not use predicted coding sequence as queries but
uses entries from public database to search for coding
sequences in the raw genome sequences of an organism.
These features make IdentiCS more suitable for identify-
ing possible protein-coding regions from low-coverage
error-containing raw genome sequences than other avail-
able approaches.

Reconstruction and visualization of metabolic networks 
for comparison
With the identified enzyme-encoding sequences discussed
above the potential metabolic networks of S. typhimurium
and K. pneumoniae can be reconstructed and compared to
other organisms. The reconstruction of metabolic net-
works can be done in a similar way as based on CDSs from
annotated genome sequences as recently described by Ma
and Zeng [1]. Briefly, from the identified EC numbers of
CDSs, the set of biochemical reactions involved in the
organism can be established with the help of a reaction
database (i.e. a revised version of LIGAND [5] or BRENDA
[25]). From the reaction set, a connection matrix is
obtained that can be used to represent the metabolic net-
work as a directed graph for computational analysis.

For a straightforward visualization of the biochemical
reactions related to a specific organism and especially for
comparing the metabolisms of different organisms, the

KEGG metabolic maps act as a blueprint for visualization
of metabolic networks in this work. Reconstruction, com-
parison and visualization of the metabolic network have
been integrated in the program IdentiCS as a built-in com-
ponent. It can work directly with the coding sequences
and their functions predicted by IdentiCS or with existing
annotation files such as the those in Microsoft Excel for-
mat or in GenBank flat file format. To use the KEGG maps
for metabolic reconstruction, comparison and visualiza-
tion information from the KEGG metabolic pathways is
reformed into an Excel template. Metabolic network
reconstruction is realized by mapping the identified
enzymes (EC numbers) to the KEGG metabolic maps. Dif-
ferent similarity levels of the identified enzymes can be
displayed in different colors. All identified enzymes in the
map are marked and linked to their annotations. Web
links to other Internet databases such as IUBMB [26],
BRENDA [25], WIT [3], KEGG [5], Ecocyc [9,10] and
SWISS-PROT [27] are also integrated to offer the user a
fast tool to access the relevant information. For metabolic
network comparison, strain-specific colored boxes are
drawn on the lower part of the EC number rectangle if that
strain possesses this enzyme as demonstrated in Fig. 3 for
the glycolysis pathways. This box is linked to the original
annotation of the enzyme in that strain. The background
of the enzyme box becomes green if this enzyme is found
in all the compared organisms. In such a way an informa-
tive metabolic network is generated which can serve as a
starting point for functional and comparative analysis of
the metabolism of organisms under study.

Conclusions
The use of genome sequences from S. typhimurium and K.
pneumoniae demonstrated the applicability and reliability
of the new method proposed for in silico identification of
protein coding sequences from unannotated genome
sequences. The use of protein sequence databases SWISS-
PROT and TrEMBL is more favorable than the use of
KEGG genome database for identifying coding sequences
and thus for metabolic network reconstruction. Further-
more, the method allows an adequate reconstruction of
the potential metabolic network from sequence data with
low coverage (e.g. < 4 fold) of the bacterial genome as
shown for K. pneumoniae. Together with the algorithms for
the automatic annotation of sequences, the visualization
and comparison of metabolic networks, the method and
program developed in this work can accelerate the use of
genomic data for studying cellular metabolism.

Methods
Database preparation
The applicability of the method proposed above was
examined with the genome sequences of two organisms,
namely Salmonella typhimurium LT2 and Klebsiella pneumo-
niae. The genome of S. typhimurium LT2 has been com-
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pletely sequenced and well annotated [23]. Thus, the
annotated genome sequences of S. typhimurium LT2 serve
as a reference to evaluate the accuracy of the proposed
method. The sequences and annotation for S. typhimurium
LT2 were downloaded from KEGG [28](version of Dec.
18. 2003). The genome of K. pneumoniae has been recently
sequenced and the annotation is still in progress. Two dif-
ferent versions of the raw genome data of K. pneumoniae
(3.9-fold whole genome shotgun coverage in 920 contigs
and 7.9-fold coverage in 341 contigs) obtained from the

Genome Sequencing Center of Washington University
[29] were examined in this study. Each version of the raw
genome data was formatted as a local database for BLAST
[22].

Two types of databases are used in this work for the pre-
diction and function assignment of CDSs for a given
organism, namely the nucleic acid database from KEGG
and the non-redundant protein sequence databases from
SWISS-PROT, TrEMBL and TrEMBL updates. The reason to

Glycolysis pathways as example for demonstration of metabolic comparison among different organismsFigure 3
Glycolysis pathways as example for demonstration of metabolic comparison among different organisms. KPN: K. pneumoniae 
MGH78578, ECO: Escherichia coli K-12 MG1655, STM: Salmonella typhimurium LT2, STY: Salmonella typhi, PAE: Pseudomonas aer-
uginosa PA01, YPE: Yersinia pestis strain CO92. Green background with enzyme EC number means that this enzyme exists in all 
the compared organisms. Colored rectangles under the EC number box represent links to the strain-specific annotation of the 
corresponding enzyme. Colored bars above the EC number link the enzyme to the corresponding entry in different public 
databases.
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choose the genome database from KEGG as query but not
from other nucleic acid databases such as GenBank or
EMBL is that KEGG contains the most extensive EC num-
bers for enzymes that are needed for reconstructing meta-
bolic networks. Therefore, the genome database of KEGG
version can serve as an EC number source and be used for
the purpose of comparative analysis of genome-based
metabolism. In contrast, the flat data files from GenBank
and EMBL do not contain the necessary enzyme index
information in many cases. SWISS-PROT is human-
curated and therefore more preferred. SWISS-PROT and
its sister database TrEMBL (SWISS-PROT Release 42.7,
TrEMBL Release 25.7, released on 15 Dec. 2003) were
obtained from the Swiss Institute of Bioinformatics [30].
Not "fasta" format files but SWISS-PROT flat files were
used because the enzyme EC numbers may not be
included in the fasta format files available on the FTP site.
Entries in the databases that do not contain EC numbers
can be filtered out before the sequence alignment step to
shorten the computational time if the purpose is merely to
identify metabolic enzymes and to reconstruct the meta-
bolic network. For identifying all possible CDSs, the com-
plete SWISS-PROT and TrEMBL databases are used.

Automatic prediction and annotation of protein-coding 
sequences
The annotation process is based on similarity comparison
as normally used in other annotation processes. The dif-
ference is that in our approach the gene or protein
sequences from public databases are used as queries to
search and locate similar ones in the raw genome
sequences. When proteins from public database are used
as queries, the tblastn algorithm in the BLAST program is
applied that compares the query to all six translation
frames of the unannotated DNA sequences. The dynamic
translation of a small genomic database takes much less
system resource than the translation of a large public data-
base as in the conventional methods. Our method can
thus be realized on a common PC system, especially when
merely a subset of the public database is considered, for
example for the purpose of identifying metabolic enzymes
for metabolic network reconstruction.

Because of sequence errors (especially the translation shift
and abnormal stop codon) and the local alignment nature
of the BLAST algorithm, the BLAST research may report
several small alignments between different parts of the
query protein or gene and different parts of a genomic
contig even if there should be only one alignment in the
reality. In this situation, the tfasty34 program in the
FASTA3 suite [31] should give a better alignment since the
translation shift is considered. But the tfasty34 program
runs very slowly in our test and is therefore not used here
for large-scale genomic alignment. In this work, frag-
ment(s) of a genomic contig are joined to the genomic

fragment that has the highest alignment score, resulting in
a larger CDS fragment if:

1. they are coded on the same strand of the same genomic
contig as the highest score fragment. In other words, all of
these fragments must be translated either in positive or in
negative frames.

2. the alignments have an identity level not lower than
80% of the identity level of the highest score alignment.

3. the generated larger sequence region has alignment
gaps or extensions not more than 20% of its length.

Since many queries can be similar to the same region on a
genomic contig and sometimes they may have different
function annotations, the program must judge and
choose one annotation for this region. The decision is
made by applying the following criteria:

1. Each region normally has only one function. Here the
region represents a piece of nucleotides either on the pos-
itive strand or on the negative strand of a DNA molecule.
The same physical position on different strands of a DNA
molecule can belong to different regions, and can there-
fore have a different function assignment. Although there
are examples in some viruses that a region can code differ-
ent proteins depending on the transcription frame, it hap-
pens very rarely in other organisms. The user can assign a
tolerance value (e.g. 60 bp) to allow two successive
regions to overlap each other to some extent.

2. Highest similarity principle. If a query gene or protein
has a similarity to a CDS higher than other queries, then
the function of this query gene or protein is assigned as
the annotation of the CDS. Bits score is used as a measure
for similarity first. If two queries have the same bits score,
then the identity level in percentage is taken as a second
measure for similarity. If both bits score and identity are
the same and these two entries have different function
annotation (rarely occurred) then both of their functions
are assigned to that region.

3. Closest evolutionary relationship. If two or more query
genes or proteins are comparably similar (e.g. the differ-
ence between their identity levels is lower than 5%) to a
CDS but have different function, the evolutionary rela-
tionship between these organisms is further considered.
The annotation of the organism that is mostly related to
the studied organism from the viewpoint of metabolic
evolution is transferred to the unknown CDS. The evolu-
tionary relationship between different organisms and the
one studied is established with the method of Ma and
Zeng [24] after the initial function assignment for the
CDSs with the highest similarity criteria.
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In this way, the coding sequences of a genome are identi-
fied and annotated at the same time. No second large-
scale sequence alignment is needed. Once all the software
and databases are prepared, our program which is called
IdentiCS (Identification of Coding Sequences from Raw
Genome Sequences) can reconstruct the metabolic net-
work of an organism with about 5 million base pairs of
raw genome data. The computing time is less than 8 hours
on a PC with 2.8 GHz Pentium 4 CPU and 512 MB mem-
ory. This program works together with Microsoft Excel
under Windows environment.

Statistic evaluation
For a more detailed examination of our method, the
results are evaluated separately for the prediction of CDSs
and their function assignment, although our method inte-
grates these two aspects into one step. The terms true pos-
itive (TP), false negative (FN) and false positive (FP) are
used to calculate the sensitivity and specificity of CDS
prediction in comparison with CDSs in the original anno-
tation. The terms "sensitivity" and "specificity" are
defined according to Burset and Guigo [32]:

We also evaluated the terms TP, FN and FP on nucleotide
level according to Burset and Guigo [32] and calculated
the corresponding sensitivity and specificity as above. It
should be mentioned that a true positive CDS does not
necessarily mean that its function assignment is also cor-
rect. The terms consistence and inconsistence are used to
describe whether a true positive CDS has the same func-
tion assignment as in the original annotation or not. Cor-
respondingly, an "inconsistence rate" is used and defined
as:
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