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Abstract

We consider the emerging problem of comparing the similarity between (unlabeled) pedigrees. More specifically,
we focus on the simplest pedigrees, namely, the 2-generation pedigrees. We show that the isomorphism testing
for two 2-generation pedigrees is GI-hard. If the 2-generation pedigrees are monogamous (i.e., each individual at
level-1 can mate with exactly one partner) then the isomorphism testing problem can be solved in polynomial
time. We then consider the problem by relaxing it into an NP-complete decomposition problem which can be
formulated as the Minimum Common Integer Pair Partition (MCIPP) problem, which we show to be FPT by
exploiting a property of the optimal solution. While there is still some difficulty to overcome, this lays down a solid
foundation for this research.

Introduction
Pedigrees, or commonly known as family trees, are
important tools in evolutionary and computational
biology. They are important for geneticists, as with a
valid pedigree the recombination events can be deduced
more accurately [8], or disease loci can be mapped con-
sistently [22,23]. In this sense, pedigrees could greatly
help geneticists.
There have been many practical methods for recon-

structing pedigrees [30,26,4,5,17]. For instance, Thompson
[30] defined the pedigree reconstruction problem as: given
the genetic data from a set of extant individuals, recon-
struct relationships between the individuals that may share
unobserved ancestors. There have also been research using
the machine learning methods to construct pedigrees with
the maximum likelihood [19,10]. Some theoretical results
are also known [27-29].
It is known that a lot of computations on pedigree

graphs are NP-hard [24,20,16], so a series of research
has been conducted on speeding up these computations
[6,13,21]. It is expected that these research will continue,
possibly along different directions.

On the other hand, methods for comparing pedigrees
are rare. The brute-force method will not work when
the data set has size in the thousands [1,14]. People can
typically use phylogenetic trees as the basis to compare
tree-like pedigrees. On the other hand, even for humans
the pedigrees could be more complex than trees as
inter-generational mating is not rare. The only known
research that systematically study pedigree comparison
is by Kirkpatrick et al. [18], where the pedigree iso-
morphism and edit distance problems, for both general
pedigrees and leaf-labeled pedigrees, are systemically
studied.
In this paper, we follow the work by Kirkpatrick et al.

[18] to consider the isomorphism and similarity pro-
blems for the simplest pedigree – 2-generation pedi-
grees, where the isomorphism and similarity problems
are both studied. Surprisingly, we show that the iso-
morphism problem is Gl-hard (GI – Graph Isomorph-
ism) even for 2-generational pedigrees. We then relax
the similarity measure and formulate this as a Minimum
Common Integer Pair Partition (MCIPP) problem, gen-
eralizing the famous NP-complete Minimum Common
Integer Partition (MCIP) problem, which we show to be
Fixed-Parameter Tractable (FPT). While these is still
some difficulty to overcome, this lays down a solid foun-
dation for this research.
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Preliminaries
An (unlabeled) pedigree is a directed graph P = (I(P),
E(P)) with vertices I(P) and edges E(P), together with a
gender function s : I(P) ® {male, female} such that:

1 P is acyclic.
2 For all nodes v ∈ I(P), the in-degree of v is either
two or zero.
3 For two edges (a, c), (b, c) ∈ E(P), we have s(a) ≠ s(b).

In practice, we typically draw a pedigree in a top-down
fashion to denote the direction of the edges. Moreover,
we use square (resp. circular) nodes to represent males
(resp. females). See Figure 1 for an example. Throughout
this paper, we assume that a pedigree (or graph) contains
no isolated nodes (i.e., those with in-degree and out-
degree both zero). This is easy to handle if it does – we
just remove these isolated nodes.
Let N = {1, 2, 3, . . .}. An individual u ∈ I(P) is

monogamous if it mates with exactly one partner, i.e.,
the number of individuals u’, u’ ≠ u, such that (u, x),
(u’, x) ∈ E(P) for some x ∈ I(P) is exactly one. A pedigree
is monogamous if all the individuals are monogamous.
In Figure 2, the sub-pedigree formed by the rightmost
component is monogamous while the leftmost component
is not. A pedigree P = (I(P), E(P)) is generational if there is
a function g : I(P) → N such that:

1 g(v) = 1 for all v ∈ I(P) with in-degree zero.
2 For all (u, v) ∈ E(P), we have g(v) = g(u) + 1.

The number g(v) is called the generation of v. For a
generational pedigree P, we use Ig (P) to represent the
individuals of P whose generation is g. The pedigree on
Figure 1 is not generational, due to node 11. Figure 2
shows a 2-generation pedigree. Throughout this paper,

we will focus only on this simplest 2-generation
pedigrees.
Given two pedigrees P = (I(P), E(P)), P’ = (I(P’), E(P’))

with the associated gender functions s(−), s’(−) respec-
tively, a bijection j: I(P) ® I(P’) is a pedigree isomorph-
ism between P and P’ if:

1 For every u ∈ I(P), s(u) = s’(j(u)), and
2 (u, v) ∈ E(P) if and only if (j(u), j(v)) ∈ E(P’).

Hardness for 2-generation pedigree
Graph Isomorphism (GI) is one of the most famous pro-
blems in computational complexity whose precise com-
plexity has been open since 1972 [15,12]. It is not
known to be in P or NP-complete. The class of GI-com-
plete problems are those which are polynomial time
equivalent to the GI problem. The class of GI-hard pro-
blems are those problems at least as hard as the GI pro-
blem. It is known that even testing the isomorphism for
chordal bipartite graphs is GI-complete [32].
In [18], it was shown that the pedigree isomorphism

problem is GI-hard. The reduction is from bipartite iso-
morphism. The construction uses a pedigree of three
generations. Here we show that even testing the iso-
morphism of two 2-generation pedigrees is GI-hard.
Theorem 1 Testing the isomorphism between two 2-

generation pedigrees is GI-hard.
Proof. We reduce bipartite graph isomorphism problem

to our problem. Let B1 = (U1, V1, E1), B2 = (U2, V2, E2) be
two bipartite graphs (with no isolated nodes). For our
construction, we perform the following:

1 All nodes in U1,U2 are marked male.
2 All nodes in V1,V2 are marked female.
3 B1 is converted into a pedigree P1 = (I(P1), E(P1)) as
follows: (3.1) I(P1) = U1 ∪ V1 are the generation-1
nodes; (3.2) E(P1) is initially set as empty; (3.3) for (u, v)
∈ E1 we create a new generation-2 node uv such that
s(uv) = female, E(P1) ¬ E(P1) ∪ {(u, uv), (v, uv)}.
4 B2 is converted into a pedigree P2 identically as in
step (3).

Figure 1 A simple unlabeled pedigree, the numbers are only
used to ease the description. All edges are downward.

Figure 2 A 2-generation pedigree, the right component is
monogamous.
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We claim that B1 and B2 are isomorphic iff P1 and P2 ,
both 2-generational, are isomorphic. We only show the
necessary direction here as the other one is easy. If P1 and
P2 are isomorphic, the first property we make use of is
that all the generation-2 nodes are female. So, in the iso-
morphism between P1 and P2, if a generation-2 node uv ∈
I(P1) is mapped to a generation-2 node xy ∈ I(P2), we can
simultaneously contract uv, xy to their corresponding
male parents in P1 and P2. Consequently, we obtain the
isomorphism between B1 and B2. □
Note that in our construction, all generation-2 indivi-

duals are female; moreover, a pair of generation-1 indi-
viduals mate with exactly one female child. A simple
example on this reduction is shown on Figure 3.
Although the isomorphism testing problem is GI-hard

even for 2-generation pedigrees, in some situations the
problem is not hard to solve. In fact, when both of the
2-generation pedigrees are monogamous then the pro-
blem can be solved in linear time.
When a pair of generation-1 couple mate to have gen-

eration-2 children, for instance i females and j males,
we say that these two parents and the i + j children
form an 〈i, j〉-family. In Figure 2, the rightmost compo-
nent is a 〈1,1〉-family.
Theorem 2 Testing the isomorphism between two 2-

generation monogamous pedigrees is polynomial time
solvable.
Proof. It is easily seen that when a 2-generation pedi-

gree Q1 is monogamous then it is composed of a set of
disjoint 〈i, j〉-families. So to test the isomorphism
between two monogamous 2-generation pedigrees Q1,
Q2 it suffices to check whether two sets of integral pairs
are identical, which can be done in O(n log n) time
using the standard optimal sorting algorithms in two
passes similar to the radix sort. In the first pass, we sort

all the pairs according to their first components, and in
the second, for each contiguous list of pairs with the
same first component, we sort them according to the
second components. □

Similarity of 2-generation pedigrees
The hardness result in the previous section implies that
it might be too much if we use the standard isomorph-
ism to measure the similarity of 2-generation pedigrees.
In practice, ambiguities exist in pedigree-related data-
sets. In fact, it is estimated that 2-10% of people do not
know their biological father [2,25]. For 2-generation
pedigrees, in general the pedigrees cannot be monoga-
mous. So, we need a new measure to weakly describe
the similarity of two 2-generation pedigrees.
For a general 2-generation pedigree P, it is not diffi-

cult to identify all (not necessarily disjoint) 〈i, j〉-families
(or simply families, when 〈i, j〉’s are used). (For instance,
the left component in Figure 2 can be decomposed into
two families: 〈2, 0〉 and 〈0, 1〉.) Then, we try to decom-
pose the generation-2 nodes in these families so that the
resulting number of isomorphic sub-families is mini-
mized. Note that in this process a generation-1 pair can
appear in more than one sub-family. This can in turn be
formulated as the Minimum Common Integer Pair Par-
tition (MCIPP) problem.

MCIP and MCIPP Problems
Throughout this paper, for MCIP, we focus on integers
in N = {1, 2, 3, . . .}. A partition of an integer n is a

multiset τ(n) = {n1, n2,..., nt} such that
∑

1≤i≤t
ni = n .

For example, when n = 9, {1, 2, 2, 4} is a partition of n.
It should be noted that while it is simple to partition an
integer, the number of such partitions is usually

Figure 3 An example for the GI-hardness reduction. In P1, only four (the leftmost and rightmost two) generation-2 nodes are labeled, some
underlined and some overlined, to maintain clarity.
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(counter-intuitively) huge. For instance, the integer 10
has 190569292 distinct partitions [3].
A partition of a multiset X = {x1, x2,...,xp} is a multiset

union of all the partitions τ(xi), i.e., ∪1≤i≤pτ(xi). A multi-
set Z is a common partition of two multisets X = {x1,
x2,..., xp}, Y = {y1, y2,..., yq} if there are partitions τ1, τ2
with ∪1≤i≤pτ1(xi) = ∪1≤j≤qτ2(yj) = Z. The size of the parti-
tion Z is denoted as |Z|. For example, given X = {5, 8},
Y = {3,10}, a common partition of X, Y is Z = {1, 2, 2, 4,
4}, and the size of this partition is 5. It is easily seen
that the necessary condition for X and Y to admit a
common partition is that the sums of the integers in X
and Y are equal. Throughout this paper, whenever we
talk about a common partition for sets of integers X
and Y, we always assume that this condition is met.
MCIP (Minimum Common Integer Partition)
Instance: Two multiple sets of integers A and B, and an
integer k.
Question: Does A, B admit a common partition of size k?
For the ease of presentation, we use MCIP(A, B) to

represent this instance.
Given a 2-tuple of integers, 〈a, b〉, the projection

P1(〈a, b〉) = a,P2(〈a, b〉) = b . Let S be a set of 2-tuples
of integers, P1(S) = ∪s∈SP1(s),P2(S) = ∪s∈SP2(s) .
Given two sets of 2-tuples S, T, a common partition of

S and T is a set of 2-tuples H = {〈g1, h1〉, 〈g2, h2〉, ..., 〈gk,
hk〉} such that P1(H) is a common partition of P1(S)
and P1(T) , and, P2(H) is a common partition of
P2(S) and P2(T) . k is the size of the partition H.
Again, it is easily seen that the necessary condition for S
and T to admit a common partition is that the sums of
the integers in P1(S) and P1(T) are equal, so are those
in P2(S) and P2(T) . Throughout this paper, whenever
we talk about any common partition of sets of 2-tuples
S, T, we always assume that this condition is met.
MCIPP (Minimum Common Integer Pair Partition)
Instance: Two multiple sets of 2-tuples of integers S and
T, and an integer k.
Question: Does S, T admit a common partition of size k?
Recall that a 2-tuple 〈i, j〉 represents the pedigree of

a couple which has i female and j male chilren. Again,
we use MCIPP(S, T) to represent this instance. As
MCIPP is a generalization for MCIP, all the known
negative results regarding MCIP hold for MCIPP; i.e.,
MCIP and MCIPP are both NP-complete and APX-
hard, following [7]. (In the past, d-MCIP has also been
considered, where the input is d multisets with the
same sum. Efficient asymptotic approximation algo-
rithms have been obtained for large d [7,33,34], the
best factor being 0.5625 · d + O(1) [34]. We will only
consider d = 2 in this paper.) Also, note that the inte-
ger 0 in a solution for MCIP is meaningless while it is
possible that 0 can appear either in the input or in the

solution for MCIPP. So for MCIPP, we focus on inte-
gers in N ∪ {0} = {1, 2, 3, . . .} .
Finally, a Fixed-Parameter Tractable (FPT) algorithm

is an algorithm for a decision problem with input size
n and parameter k whose running time is O(f (k)nc) =
O*(f(k)), where f (−) is any computable function on k
and c is a constant. FPT algorithms are efficient tools
for handling some NP-complete problems, especially
when k is small in practical datasets [9,11].

Some properties of MCIPP
Given a pair of integers a, c, we say a dominates c if
a >c. Given a pair of 2-tuples of integers 〈a, b〉 and
〈c, d〉, we say 〈a, b〉 dominates 〈c, d〉 if a ≥ c and b ≥ d.
To simplify the writing, we say that 〈a, b〉 and 〈c, d〉
form a dominating pair if either 〈a, b〉 dominates 〈c, d〉
or vice versa. Likewise, 〈a, b〉 and 〈c, d〉 form a non-
dominating pair if either a >c, b <d or a <c, b >d.
We first describe some optimality properties for both

the optimization versions of MCIP and MCIPP. When
the context is clear, we still use MCIP(-,-) and MCIPP
(-,-) to denote the corresponding optimization versions
of the instances.
Lemma 1 Let A, B be the input for MCIP. In any fea-

sible solution, if a partition for some × ∈ A, τ (x) = {x1,
x2,...,xp}, and a partition for some y ∈ B, tau(y) = {y1,
y2,...,yq}, satisfies that |τ(x) ∩ τ(y)| > 1 then this solution
for MCIP is not optimal.
Proof. Suppose to the contrary that |τ(x) ∩ τ(y)| > 1,

and the corresponding partition for A, B is optimal.
WLOG, suppose τ(x) = {x1, x2,..., xp} and τ(y) = {y1, y2,...,
yq} contain r common elements {z1, z2,..., zr} then we
can update τ(x) ¬ τ(x) − {z1, z2,..., zr}∪{z1 + z2 + ... + zr}
and τ(y) ¬ τ(y) − {z1, z2,..., zr}∪{z1 + z2 + ... + zr}. Then
the solution size for MCIP on A, B is reduced by r − 1,
contradicting the optimality of the assumption. □
With the above lemma, we can now assume that for

any optimal partition for some x ∈ A and some y ∈ B,
they share at most one common element. Notice that
this lemma also holds for MCIPP, i.e., in an optimal
partition of 〈s1, s2〉 ∈ S and 〈t1, t2〉 ∈ T, τ(〈s1, s2〉) and
τ(〈t1, t2〉) share at most one common 2-tuple. Similarly,
we can assume that in the input for MCIP (A, B) (resp.
MCIPP (S, T)) there is no common pair of integers in A
and B (resp. no common pair of 2-tuples in S and T), as
it must be put in the optimal solution.
The following property is trivial and holds for both

MCIP and MCIPP.
Lemma 2 Let |MCIPP*(S, T)| be the optimal solution

size for MCIPP(S, T). Then |MCIPP*(S, T)| >max{|S|, |T|}.
For a pair of dominating 2-tuples 〈a, b〉 and 〈c, d〉, we

can use subtraction to partition them into two common
pairs. For example, if a ≤ c and b ≤ d, then we can
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obtain the common partition {〈a, b〉, 〈c − a, d − b〉. So,
given 〈2, 4〉 and 〈4, 5〉 we can obtain a partition {〈2,4〉,
〈2,1〉} for 〈4, 5〉. We also say that this is a dominating -
partition operation. Apparently, for MCIP, this gives a
way to partition a pair of integers as well. For instance,
given 2 and 6, we can subtract 2 from 6 to obtain a par-
tition {2, 4} for 6.
We next describe some properties on non-dominating

pairs of 2-tuples which are unique for MCIPP – for
MCIP, a pair of integers a, b has the property that either
a dominates b or vice versa. This is not the case for a
non-dominating pairs of 2-tuples, e.g. 〈1, 4〉 and 〈2, 3〉.
We start with this fundamental lemma.
Lemma 3 Let A’, B’ be a set of positive integers with the

same total sum, moreover, let us suppose |A’| = m + 1,
|B’| = m. Then there must exist elements a ∈ A’, b ∈ B’
such that a <b.
Proof. As |A’| > |B’|, we can arbitrarily select m ele-

ments from A’ and match up them with those in B in
an one-to-one fashion. As the sum of integers in A and
B are the same, in this matching at least one of elements
a ∈ A must be smaller than its matched counterpart
b ∈ B – otherwise, the sum of integers in A would be
larger than that of B’. □
Corollary 1 Let A, B be two sets of n > 1 positive inte-

gers with the same total sum. WLOG, let A = {a1, a2, ...,
an}, B = {b1, b2, ..., bn}. Then there must exist an element
b ∈ B’ = B − {bj} which is greater than some element a
∈ A’ = {a1, a2, ..., ai−1, ai − bj, ai+1, ..., an}, where ai >bj.
Proof. Obviously we have |A’| = n and |B’| = n − 1.

Then this corollary follows directly from Lemma 3. □
The implication of Corollary 1 for MCIP with input A,

B is obvious – we can successively find pairs of domi-
nating integers. In fact, in the proof of Corollary 1, once
we obtain a’ = ak ∈ A’ and b’ = bℓ ∈ B’ such that a’ <b’,
we can repeatedly use the above argument to A’’ = A’ −
{a’} = {a1, a2, ..., ak−1, ak+1, ..., an} and B’’ = {b1, b2, ...,
bℓ−1, bℓ − a’, bℓ+1, ..., bn}, where |A’’| = |B’’| = n − 1 and
the two sets A, B have the same sum.
Now let us see how this can be applied to MCIPP.

When we have an instance of MCIPP whose input {S, T}
is each composed of m non-dominating 2-tuples, then we
can find a pair s = 〈s1, s2〉 ∈ S and t = 〈t1, t2〉 ∈ T (assuming
s1 >t1 and s2 <t2) such that we can put 〈t1, s2〉 in some
solution set while the resulting instance S’ = ({S − {〈s1, s2〉})
∪ {〈s1 − t1, 0〉},T’ = ({T − {〈t1, t2〉}) ∪ {〈0, t2 − s2〉} is still a
valid instance for MCIPP. (We call this operation non-
dominating-partition.) Then, following Corollary 1, there
exists a pair of dominating 2-tuples s’ ∈ S’, t’ ∈ T’.
Moreover, if we apply the dominating-partition process
on these two tuples s’, t’, following Corollary 1, we can
repeatedly find dominating tuples until all tuples in S,
T are all commonly partitioned. This is because after

we apply the dominating-partition on s’, t’ (say s’ <t’)
to obtain an MCIPP instance S ’’,T’ ’, we have
|P1(S′′)| 	= |P1(T′′)|, |P2(S′′)| 	= |P2(T′′)| and the two
pairs of sizes in fact differ by one. Following Corollary
1, we can then repeatedly obtain dominating pairs.
Algorithm Heuristic-MCIPP(S, T)
Input: S, T
Output: A common partition τ(S, T) for S, T, initially

empty.
1 While |S| ≥ 2 and |T| ≥ 2
2 Repeat
2.1 select a pair of dominating 2-tuples, s ∈ S

and t ∈ T,
2.2 compute two decomposing 2-tuples by

subtraction,
2.3 update S ¬ S − {s}, T ¬ (T − {t}) ∪{t − s} if s <t,
2.4 update S ¬ (S − {s}) ∪{s − t}, T ¬ T − {t} if s >t,
2.5 update τ(S, T) ¬τ(S, T) ∪ {min(s, t)},
3 Until no dominating 2-tuples can be found.
4 If there are at least two pairs of non-dominating

2-tuples in S and T
5 Then
5.1 use a brute-force method to select two non-

dominating 2-tuples s’ ∈ S, t’ ∈ T which leads to succes-
sive dominating pairs.
6 If |S| = 1, |T| = 1, then find the smaller tuple in S

and T, x.
7 Return τ(S, T) ¬ τ(S, T) ∪ {x}.
Of course, due to the ‘existence’ constraint in Lemma

3 and Corollary 1, we would have to use a brute-force
method to find a pair s ∈ S, t ∈ T which can make the
process of repeatedly processing dominating pairs possi-
ble. Let us show an example, S = {〈9, 4〉, 〈1, 11〉, 〈6, 3〉}
and T = {〈2, 8〉, 〈12, 1〉, 〈2, 9〉}. In this example, among
the 9 non-dominating pairs between S and T, there are
4 solutions enabling us to successively find dominating
pairs. One of them is s = 〈6, 3〉 and t = 〈2, 9〉, which
gives us a common partition of size 6. The other 5 solu-
tions all lead to a common partition of size 7.
The above discussion enables us to design an algo-

rithm Heuristic-MCIPP to prove the next lemma.
Lemma 4 Let |MCIPP(S, T)| be the size of the solu-

tion returned by Heuristic-MCIPP. Then |MCIPP(S, T)|
≤ |S| + |T|.
Proof. When there is no non-dominating pairs in the

input, with the running of the algorithm Heuristic-
MCIPP, we have |MCIPP(S, T)| ≤ |S| + |T| − 1. The
reason is that when each of S and T has at least two 2-
tuples, we can use the dominating-partition procedure
to obtain two 2-tuples in the solution set for each pair
of dominating 2-tuples from S, T. When there are a
total of three elements in S, T, say, one in S and two in
T, we just need to return the two elements in T as their
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sum matches the one in S already. (This is certainly true
for MCIP as pointed out in [7].)
When there are p ≥ 2 pairs of non-dominating pairs at

Step 4-5 of the Heuristic-MCIPP algorithm, following
Corollary 1 and the subsequent arguments, there exists
a non-dominating pair s = 〈s1, s2〉 ∈ S, t = 〈t1, t2〉 ∈ T
which leads to successive dominating pairs. (We can use
the brute-force method to find this in O(p2(|S| + |T|))
time.) In this case, the solution obtained by Heuristic-
MCIPP has size at most 1 + (|S| + |T| − 1) = |S| + |T|,
where the first one corresponds to (s1, t2) (if s1 <t1) or
(t1, s2) (if s1 >t1). □
In fact, the above three lemmas imply that Heuristic-

MCIPP provides a factor-2 approximation for MCIPP, as
we have |S| + |T| ≤ 2max{|S|, |T|} ≤ 2|MCIPP*(S, T)|.
On the other hand, designing approximation algorithms
is not our focus for this paper; in fact, by a simple modifi-
cation for the Maximum Packing method in [7] we can
obtain a similar factor-1.25 approximation for MCIPP. In
the remainder of this paper, we solely focus on the exact
or FPT algorithm.
Note that Lemma 4 is different from its counterpart

for MCIP, which, according to Lemma 2.2 in [7], states
that |MCIP(A, B)| < |A| + |B| − 1. The latter in fact
immediately implies that for MCIP there is always an
optimal solution which does not partition at least an
integer from either A or B. That further implies that
there is a simple FPT algorithm for MCIP based on the
bounded-degree search. We will show a stronger prop-
erty in the next section to improve the FPT algorithm
for MCIP, and subsequently, an FPT algorithm for
MCIPP can be obtained.

An FPT algorithm for MCIPP
We first give the following lemma for MCIP.
Lemma 5 Let A, B be the input for MCIP and let a be

the smallest element in A or B. Then there is an optimal
solution for MCIP which contains a, i.e., there is an opti-
mal solution which does not partition the smallest ele-
ment in A and B.
Proof. We first show the following claim: in an optimal

solution τ for MCIP with input A, B, let a1, a2 be a pair
of elements in τ(z), z ∈ A ∪ B, with the condition that
(1) a1 + a2 <a, and (2) a2 is the minimum among all
pairs of elements in τ satisfying the condition (1), then
there is an optimal solution τ’ which partitions some
element z ∈ A ∪ B with τ’(z) = τ(z) − {a1, a2} ∪ {a1 + a2}.
The proof for the above claim is as follows. WLOG,

let z ∈ A and let a1 ∈ τ(y1) and a2 ∈ τ(y2) for two dis-
tinct integers y1, y2 ∈ B. Following the definition of 〈a1,
a2〉, τ(y1) contains at least one more element other than
a1, say a3; and following (2) we have a3 >a2. Suppose
that a3 ∈ τ(x) for some x ∈ A. By Lemma 1, x ≠ z. We
replace a3 by a′

3 = a3 − a2 , and a1 by a′
1 = a1 + a2 .

Subsequently, we obtain another optimal partition τ’
with τ’(x) = τ(x) − {a3} ∪ {a′

3 , a2}, τ’(y1) = τ(y1) − {a1, a3}
∪ {a′

1 , a
′
3 }, and τ’(z) = τ(z) − {a1, a2} ∪ {a′

1 }. Apparently,
τ’ has the same size as τ, so it is also a minimum size
common partition for A, B.
It is obvious that, as long as the smallest element a

is partitioned in some optimal partition τ with
τ (a) = {a′

1, a
′
2, . . . , a

′
t} , we can repeatedly apply the

above steps to obtain another optimal partition τ’ with
τ ′(a) = {a′

1, a
′
2, . . . , a

′
i−1, a

′
i + a′

j, a
′
i+1, . . . , a

′
j−1, a

′
j+1, . . . , a

′
t} .

After t − 1 such steps, we obtain an optimal partition
which contains the minimum element a in A ∪ B. □
An example of the above proof is given as follows. We

have A = {2, 5, 5}, B = {6, 6}, and an optimal partition
τ = {1,1, 5, 5} where τ(2) = {a1 = 1, a2 = 1}. By the con-
struction in the proof of Lemma 5, y1 = 6, y2 = 6, a3 =
5, a′

3 = 4 and a′
1 = 2. The new optimal solution is τ’ =

{1, 2, 4, 5}, where a = 2 is kept.
We comment that we can use Lemma 2.2 by Chen

et al. [7] directly to prove a weaker claim: as |MCIP(A,
B)| < |A| + |B| − 1, there must be an optimal solution
whose corresponding matching graph between the parti-
tioned elements in A, B contains no cycle, which means
there is at least one leaf node. Then this leaf node cor-
responds to an unpartitioned integer in A or B. The
above lemma in fact implies a faster FPT algorithm for
MCIP. Pick the smallest element a ∈ A ∪ B (say a ∈ A),
we try to partition some other integer z ∈ B by sub-
tracting a from it. Then we repeat over the new pro-
blem instance involving z − a. This process is repeated
k times when either a solution is founded or we have to
report that there is no solution of size k. The running
time is O*((max{|A|, |B|})k) = O*(kk).
To obtain an FPT algorithm for MCIPP, we also need

a similar lemma.
Lemma 6 Let S, T be the input for MCIPP. Then there

is an optimal solution for MCIPP which either contains
〈a, b〉 ∈ S ∪ T or 〈c, d〉 ∈ S ∪ T, or contains 〈a, d〉,
where a is the minimum element in P1(S ∪ T)and d is
the minimum element in P2(S ∪ T) .
Proof. Again, we first show the following claim: in an

optimal solution τ for MCIPP with input S, T, let 〈a1,
a2〉, 〈b1, b2〉 be two 2-tuples in τ(z), z ∈ S ∪ T, such that
(1) a1 + b1 ≤ a, and (2) b1 is the minimum among all
pairs of 2-tuples in τ satisfying (1), then there is an opti-
mal solution τ’ which partitions some 2-tuple z ∈ S ∪ T
with τ’(z) = τ(z) − {〈a1, a2〉, 〈b1, b2〉} ∪ { a1 + b1, a2}.
(Symmetrically, we can have a claim on the second
component of 2-tuples in S ∪ T, i.e., d.)
WLOG, let z = 〈z1, z2〉 ∈ S and let 〈a1, a2〉 ∈ τ(y1) and

〈b1, b2〉 ∈ τ(y2) for two distinct 2-tuples y1, y2 ∈ T. Fol-
lowing the definition of (a1, b1), tau(y1) contains at least
one more pair 〈c1, c2〉, with c1 ≥ b1. Suppose that 〈c1,
c2〉 ∈ τ(x) for some x ∈ S. Again, by Lemma 1, x ≠ z.
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We replace 〈c1, c2〉 by 〈c1 − b1, c2〉, and 〈a1, a2〉 by 〈a1 +
b1, a2〉. Subsequently, we obtain another optimal parti-
tion τ’ with τ’(x) = τ(x) − {〈c1, c2〉}∪{〈c1 − b1, c2〉, 〈a2,
b2〉}, τ’(y1) = τ(y1) − {〈a1, a2〉, 〈c1, c2〉 ∪ {〈a1 + b1, a2〉},
〈c1 − b1, c2〉, and τ’(z) = τ(z) − {〈a1, a2〉, 〈b1, b2〉 ∪ {〈a1 +
b1, a2〉}. Again, τ’ is also a minimum size common parti-
tion for S, T.
Similar to Lemma 5, it is obvious that we can repeat-

edly apply the above steps to obtain an optimal solution
with does not partition the smallest element in
P1(S ∪ T) (and, symmetrically, P2(S ∪ T)). Hence the
lemma is proven. □
With the above lemma, it is again possible to have an

FPT algorithm, Exact-MCIPP, for MCIPP using
bounded degree search. At each step, we search for 〈a,
b〉, 〈c, d〉 ∈ S ∪ T or 〈a, d〉 ∈ S ∪ T, where a is the mini-
mum element in P1(S ∪ T) and d is the minimum ele-
ment in P2(S ∪ T) such that some optimal solution for
MCIPP contains 〈a, b〉, 〈c, d〉 or 〈a, d〉. For one step, the
running time for the former would be O(k1 + k2) for the
first two cases and for the latter would also be O(k1 +
k2) – as 〈a, d〉 could be subtracted from O(k1 + k2)
pairs, where k1 = |S|, k2 = |T|. As k1, k2 ≤ k, the running
time of this step is bounded by O(2k). Running this for k
steps, the running time of the whole algorithm is O*
(2kkk). Hence, we have the following theorem.
Algorithm Exact-MCIPP(S, T)
Input: S, T, k
Output: A common partition τ(S, T) for S, T, initially

empty.
1 While k ≥ 1
2 Repeat
2.1 let a be the minimum element in P1(S ∪ T) ,
2.2 let d be the minimum element in P2(S ∪ T) ,
2.3 if 〈a, d〉 ∈ S ∪ T then τ(S, T) ¬ τ(S, T) ∪ {〈a, d〉},

delete 〈a, d〉 from S ∪ T, and update S, T and k ¬ k − 1,
2.4 if 〈a, b〉 ∈ S ∪ T then τ(S, T) ¬ τ(S, T) ∪ {〈a, b〉},

delete 〈a, b〉 from S ∪ T, and update S, T and k ¬ k − 1,
2.5 if 〈c, d〉 ∈ S ∪ T then τ(S, T) ¬ τ(S, T) ∪ {〈c, d〉},

delete 〈c, d〉 from S ∪ T, and update S, T and k ¬ k − 1,
3 Until S = ∅ or T = ∅ or k = 0.
4 If both S = ∅ and T = ∅
4.1 Then return τ(S, T),
4.2 Else return ‘no solution’.
Theorem 3 Minimum Common Integer Pair Partition

is FPT.
The running time of the above FPT algorithm is still

too high to be applied alone to the similarity compari-
son for arbitrary 2-generation pedigrees, i.e., when k is
large. In [14], the salmon data contains 60 individuals
from each family, with hundreds of families. To handle
some data like that, we either need to speed up the run-
ning time of our algorithm or combine the FPT

algorithm with some existing approximation algorithms
(which will be discussed next). Nevertheless, it lays
down a solid theoretical foundation for further research
on this problem, especially when k is relatively small.
In practice, to handle datasets possibly of varying k

values, we suggest a combination of the FPT algorithm
and approximation algorithms [7,31]. That is, when the
value of k is not too large, we can run this FPT algorithm;
when k is too large for the FPT algorithm to handle, we
can then use the approximation algorithms. (We comment
that the approximation algorithms in [7,31], though pre-
sented for MCIP, can be easily adapted for MCIPP.)

Concluding remarks
We consider the problem of testing the isomorphism
and similarity of the simplest possible unlabeled pedi-
grees. We show that the isomorphism testing is GI-
hard, excluding any chance for a polynomial time algo-
rithm (unless Graph Isomorphism is polynomially sol-
vable). We define a new similarity measure based on
〈i, j〉-family, and formulate this as the Minimum Com-
mon Integer Pair Partition (MCIPP) problem, which
generalizes the NP-complete problem of Minimum
Common Integer Partition (MCIP) problem. We show
that MCIPP (hence MCIP) is FPT (Fixed-Parameter
Tractable). It would be interesting to significantly
improve the running time of the FPT algorithms pre-
sented in this paper.
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