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Abstract

Background: Data from biomedical domains often have an inherit hierarchical structure. As this structure is usually
implicit, its existence can be overlooked by practitioners interested in constructing and evaluating predictive
models from such data. Ignoring these constructs leads to potentially problematic and the routinely unrecognized
bias in the models and results. In this work, we discuss this bias in detail and propose a simple, sampling-based
solution for it. Next, we explore its sources and extent on synthetic data. Finally, we demonstrate how the state-of-
the-art variant prioritization framework, eXtasy, benefits from using the described approach in its Random forest-
based core classification model.

Results and conclusions: The conducted simulations clearly indicate that the heterogeneous granularity of feature
domains poses significant problems for both the standard Random forest classifier and a modification that relies
on stratified bootstrapping. Conversely, using the proposed sampling scheme when training the classifier mitigates
the described bias. Furthermore, when applied to the eXtasy data under a realistic class distribution scenario, a
Random forest learned using the proposed sampling scheme displays much better precision that its standard
version, without degrading recall. Moreover, the largest performance gains are achieved in the most important part
of the operating range: the top of prioritized gene list.

Background
The data resulting from biomedical experiments often
forms an implicit hierarchy in terms of granularity. A
typical example is genomic data, where a single gene
can harbor many mutations while it is at the same
time a part of higher-order constructs (e.g., chromo-
some, patient). Likewise, a modeled target variable
reflects this intrinsic property of the data. These struc-
tures pose no significant problem if the granularity of
a target matches that of a data record. However, this is
often not the case as the values of features from differ-
ent levels of the hierarchy could be mixed together to
form data records, while the outcome might remain
implicitly defined over coarser domain. In these situa-
tions, a flexible enough learning algorithm can be

trained to “recognize” higher order structure by using
only its corresponding features. This deficiency of
learning can affect both performance of the prediction
and correctness of the validation procedure.
We illustrate the described issue on the case of the

state-of-the-art variant prioritization algorithm called
eXtasy [1]. This method is based on fusing genomic
data and it incorporates predictors defined over three
distinct levels of data granularity. On the gene level (the
coarsest grain) it integrates the haploinsufficiency scores
[2]. On the intermediate level, each mutation within a
single gene is characterized by several additional muta-
tion-level features including various deleteriousness pre-
diction scores (Polyphen [3], SIFT [4], MutationTaster
[5], LRT [6], CAROL [7], which are all extracted from
the dbNSFP database [8]) and conservation scores for
vertebrate, placental mammals, and primate groups
[9,10]. Finally, a data record (the finest grain) is defined
over mutation and a disease phenotype pair. It also
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contains additional features corresponding to diverse
metrics obtained from the Endeavor variant prioritiza-
tion tool [11]. The fact that Endeavor provides scores
for gene/phenotype pairs makes the problem even more
complex. Figure 1 displays a part of the eXtasy data
where the described hierarchy of granularity is clearly
visible.
One issue is how to evaluate predictive models

learned from this kind of data. In this particular case all
data records that correspond to the same mutation have
an identical outcome: disease causing or not. If the data
were randomly divided into training and validation sets
on the instance level (i.e., without considering the hier-
archical structure), an algorithm could achieve high
accuracy by simply learning the SIFT score value for
each mutation. In other words, the SIFT value acts as
an unique identifier. This clearly distorts a validation
scheme’s reliability and leads to optimistically biased
performance estimates. Fortunately, the aforementioned
problem is relatively easy to alleviate: the partition
scheme must ensure that all data instances sharing the
same mutation ID either only appear in the training set
or only appear in the validation set.
However, the gene level information is also present in

the data records while most (but not always all!) muta-
tions within a single gene share the same outcome. If
the percentage of mutations that have different labels
within a gene is smaller than the theoretically achievable
classification accuracy, the validation could be again
optimistically biased due to the previously described
issue. If this is the case, the previous reasoning implies
that the partition should be based on the gene as

opposed to the mutation ID. This had been done during
the initial eXtasy evaluation. However, sometimes the
higher-order structures either are not obvious or are
not known beforehand. In these cases, only a careful
examination of the feature values can reveal potential
problems.
The problem of inflated performance estimates in the

presence of hierarchical feature granularity has been
implicitly recognized before. One example is in the mul-
ticentric study that addresses the prediction of stroke
patients restitution [12]. In this work, the authors
noticed that when the data from several clinics are
mixed together and then divided for the purpose of vali-
dation, the resulting performance is an overestimate
compared to a genuinely external data set. To circum-
vent this, they advocate a “leave-one-center-out” valida-
tion approach. Note that in this case there was not a
single center-level variable in the data, yet other vari-
ables, such as demographics, can serve as proxy for cen-
ter-level information.
Similarly, a “leave-one-drug-subclass-out” approach was

used to assess the prediction of the functional class of an
unrepresented drug type [13]. There each model has been
trained on all but one subclass of antidepressant drugs
and then used to classify members of the subclass that was
omitted during training. Furthermore, a “leave-one-cow-
out” strategy was proposed in the context of predicting the
somatic cell count in whole milk from near infrared spec-
troscopy measurements [14]. Surprisingly, this validation
problem is not always fully recognized.
The second issue associated with hierarchical granu-

larity is much more latent and therefore often neglected

Figure 1 A part of the eXtasy data. Rectangles enclose values of haploinsufficiency (gene-level feature), mutation taster score (mutation-level
feature) and a text mining based score from the Endeavor (gene+phenotype level feature). Note that all mutations within the gene associated
with these data records are non disease-causing.
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in the data modeling. That is, even if the validation
scheme is appropriately defined with the respect to the
highest level of data granularity on which the decision
values are (mostly) uniform, the discussed bias still
exists. In such a situation, performance estimates will be
correct but the performance itself might decline. This
happens if the rows (i.e., examples) are inter-indepen-
dent, even though the data consists of a single table
where each example is described as a fixed-length fea-
ture vector. The interdependencies exhibit themselves
on different levels of granularity, where all inter-depen-
dent examples have an identical value for a specific fea-
ture as well as the same value for the target variable.
Thus the feature value appears correlated with the target
variable whereas in reality the feature value is correlated
with the hierarchical structure of the data. Failing to
consider the interdependencies during learning could
cause the algorithm to produce a model that simply
identifies a pattern that is correlated with the hierarchi-
cal structure of the data as opposed to a pattern that is
correlated with the target variable. In other words, the
algorithm can be still overfitting on coarse grained fea-
tures of the training data partition, failing to actually
generalize from it.
In the context of the eXtasy data, the described bias

materializes as learning, to a certain degree, to recog-
nize genes which constitute the training set, instead of
extracting general characteristics of disease causing
mutations, leading to a reduced performance on the
test set. This happens because many data instances
share the same values of higher order features. For
example, instead of learning that “mutation A that
occurs in gene B is probably disease causing due to
the high haploinsufficiency score of gene B (which
implies correlation of haploinsufficiency with out-
come),” the algorithm may infer that “mutation A is
probably disease causing because the haploinsufficiency
score of gene B is exactly 0.998 (which is a value that
uniquely identifies the given gene).” The second rule
does not provide any insight into a new example with
haploinsufficiency of 0.999.
This situation is radically different from having one

or more categorical variables in the data set, although
sometimes it might be hard to distinguish between
these two. While categorical features can also have
identical values for several data instances and can be
correlated with the outcome, their values are not
ordered. Thus, here it may be desirable that the algo-
rithm learns the correlation between particular cate-
gories and the outcome, instead of extracting some
trend that involves the ranges of the variable values. In
addition, when the trained model is applied on unseen
data the number of possible categories typically stays

the same. This is not the case with coarse-grained fea-
tures, as previously unobserved values of these vari-
ables are often present in new data (ex. a SIFT score
of previously undiscovered mutation that did not parti-
cipate in training).
In the remaining text, we describe a simple, sam-

pling-based method for dealing with the described
bias. First, we further illustrate the problem using a
conveniently generated synthetic data set and analyze
the robustness of the solution to different factors,
including the grain size and the level of label noise.
Second, we demonstrate how the performance of the
core eXtasy model can be improved through the use of
the hierarchical sampling.

Methods
Hierarchical sampling
The core model of eXtasy is based on the Random for-
est classifier [15]. Random forests are an ensemble
method that constructs a set of unpruned decision trees
using different bootstrap samples [16] of the data.
Furthermore, randomness is injected during model con-
struction by only considering a randomly sampled sub-
set of the candidate variables at each split point, as
opposed to scanning all candidate variables as is done in
traditional decision tree learning. The final label of an
unseen example is an unweighted vote of the predictions
by each model in the ensemble (as done in bagging
[17]). Hence, Random forests may be particularly sus-
ceptible to the described problem due to the fact that
they both sample examples and attributes. That is, fail-
ing to account for the correlations during this sampling
could produce a biased sample.
We propose a straightforward modification to the Ran-

dom forest framework, named hierarchical sampling.
Instead of extracting a bootstrap from the complete
training set to build a single tree on, we first stratify the
training examples according to the distinct values of the
feature over which the coarsest granularity level is
defined. In the case of the eXtasy data, that would be the
gene identifier. Note that a feature could implicitly define
the grain while not being a part of a data set at all (a
“latent factor” of the outcome grouping), suggesting that
domain knowledge is needed to perform this procedure.
After stratification, we randomly select just one data
instance from each partition to form the in-bag sample
for learning one tree. This helps prevent a single tree
from learning to recognize a particular value of the
higher-order feature, as only one example having the
value will be present in each sample. At the same time,
each partition will be well represented in the ensemble as
a whole, provided that a sufficient number of trees are
learned. Algorithm 1 formally describes this procedure.
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Algorithm 1 Random Forest with hierarchical
sampling
Inputs:
D = {P1 = {e1,1,...,e1,n},...,Pp = {ep,1,...,ep,m}} is the set of

training examples, divided into p partitions, where each
partition corresponds to examples sharing the same
value of the feature that is defined over the coarsest
domain
t is the number of trees to learn
1: Let T = ∅
2: for i = 0 to t do
3: Let BS = ∅
4: for j = 0 to p do
5: Let k ~ Uniform[0, |Pj|]
6: BS = BS ∪ {ej,k}
7: end for
8: ti = LearnTree(BS)
9: T = T ∪ {ti}
10: end for
11: return T
Algorithm 2 Random Forest with stratified

bootstrapping
Inputs:
D = {P1 = {e1,1,...,e1,n},...,Pp = {ep,1,...,ep,m}} is the set of

training examples, divided into p partitions, where each
partition corresponds to examples sharing the same
value of the feature that is defined over the coarsest
domain
t is the number of trees to learn
1: Let T = ∅
2: for i = 0 to t do
3: Let BS = ∅
4: for j = 0 to p do
5: for k = 0 to |Pj| do
6: Let l ~ Uniform[0, |Pj|]
7: BS = BS ∪ {ej,l}
8: end for
9: end for
10: ti = LearnTree(BS)
11: T = T ∪ {ti}
12: end for
13: return T
It is important to distinguish the described procedure

from stratification in the classical sense as outlined in
Algorithm 2. While the later is often used with the Ran-
dom forest classifier and seems very similar to the hier-
archical sampling, its purpose is diametrically different.
The stratification is typically used for making sure that
each of the (latent) classes (in our case examples having
the same value of the coarsest feature) is sufficiently and
accurately represented. This is usually achieved by boot-
strapping each stratum separately, in contrast to taking
just one example from it. Hence, while this procedure is
appropriate in many situations, such as when dealing

with categorical variables, in this given context classical
stratification can lead to overfitting by guarantying the
repeated presence of each gene within the in-bag data
partition of each tree in the ensemble. Conversely, taking
one example per stratum assures that no gene-level infor-
mation will be over-represented in a single tree. Repeat-
ing the sampling before learning each new tree helps to
protect the model from under representing the data as a
whole in the ensemble. To further underline this distinc-
tion, we include a Random Forest model trained with
stratification in the following synthetic data analyses.

Experiments with synthetic data
To characterize the discussed bias in greater detail and to
analyze its sources and extent, we constructed synthetic
data where the phenomena is isolated from other sources
of variation and is relatively easy to control. This data set
is described by seven variables and it has a binary class
label. We generated four thousand examples such that
the class distribution is balanced (i.e., that data have two
thousands examples for each class). The first three fea-
tures are non-informative and are simply sampled uni-
formly from the interval (0,1). The next three features are
informative and each one is represented by a conditional
Gaussian distribution. The mean depends on the class
and the variance, and hence the overlap, is different for
each feature (see Figure 2). The first six features remain
unchanged in all experiments. The seventh feature has
been created to represent the hierarchical structure in
the data. It will be manipulated in the two experiments.
The first one has been designed to reveal the relation

between the size of the coarsest variable partitions
(grain) and magnitude of the described bias. In particu-
lar, the additional non-informative feature has been gen-
erated by sampling its value uniformly and appending it
to the rest of the data, as done previously. However, in
this case the number of distinctive values that this new
feature can take has been varied from two to two thou-
sands per class, which led to a change in granularity of
the feature domain. In total, ten possible sizes of parti-
tion have been considered (|P| ∈ {1, 2, 5, 10, 20, 50,
100, 200, 500, 1000}).
Given each of these, the appropriate feature has been

created, after which the whole data set has been divided
into equally sized training and testing partitions along its
distinct values. All three classification models are then
learned using the training data and evaluated on the test
data. The total number of trees in each model ensemble
has been set to 1000 and the size of the random subset of
variables from which each decision tree split is chosen
(parameter M) to its recommended value for classifica-
tion, that is, to the square root of the total number of fea-
tures [15]. This whole procedure has been repeated one
hundred times for every bin size. In each repetition, the
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auxiliary feature is regenerated and a new, random train-
ing-test split is made. In addition, in order to facilitate
complementary insight into the learning process, the out-
of-bag feature importance measures [15] obtained from
the classical Random forest model have been harvested
along the way.
The second experiment will assess the effect of label

noise on the extent of the bias. The label noise was intro-
duced by swapping certain percentages of the values from
each partition of the auxiliary feature belonging to the one
class with values of its counterpart from the other class.
This percentage is varied from 5 to 50% in steps of 5,
resulting in ten possible noise levels in total. The partition
size was increasing again, but in this case starting from 20
to allow for the meaningful injection of noise. Finally,
training and evaluating the models have been performed
in the same way and with the same parameter setting as in
the previous experiment.

Experiments with eXtasy data
To ensure a fair comparison, we test the method on the
original eXtasy benchmark data. Briefly, this data set
consists of two classes of mutations: disease causing var-
iants and rare mutations present in healthy individuals.

There are 24,454 disease causing variants in the data
set, which were obtained from the Human Gene Muta-
tion Database (HGMD [18]). The controls come from
68 in-house sequenced exomes of healthy individuals
and the 1000 Genomes Project [19]. For each of the
1142 Human Phenotype Ontology (HPO) terms asso-
ciated with the disease-causing variants, 500 mutations
were randomly sampled from the pool of controls and
assigned to a given phenotype. Endeavor scores [11]
have been appended to each variant-phenotype combi-
nation, together with haploinsufficiency [2], conservation
[9,10] and deleteriousness prediction scores [3-6].
To compare hierarchical sampling to the standard

bootstrapping, we use the same evaluation scheme as in
the original study [1]. That is, we randomly divide the
complete benchmark data set on the gene-level such
that two-thirds of the genes constitute the training set
and one-third are in the test set. We consider two test
scenarios. In the first one, we compare two sampling
schemes on the unaltered test set, effectively repeating
the eXtasy benchmark. In the second one, we randomly
undersample the positives from the test set in order to
mimic the class distributions we would expect to see in
the wild, where only one out of 9000 non-synonymous

Figure 2 Features of the synthetic data. Kernel density estimates of the synthetic data distributions. Panels in the first row display distributions
of three non-informative features for two classes separately. Note that decreased density in the vicinity of sampling interval borders is in fact an
artifact of the kernel density estimation procedure and not of the uniform sampling itself, thus it affects only this visualization. The bottom three
panels depict informative features.
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mutation in a genome is potentially disease-causing [20].
In both scenarios, and for both sampling schemes, we
use the same setting for the Random forest parameters
as in the synthetic data experiments. We repeat the
aforementioned procedure 100 times to stabilize the
values of the performance metrics.
Finally, we evaluate the significance of the observed dif-

ferences between the two methods by using the Wilcoxon
signed-ranks test together with the Bonferroni multiple
testing correction. When comparing two classifiers, the
Wilcoxon signed-ranks test is preferred to the standard t-
test [21], because the later exhibits a high probability of
type I error when used in this context [22]. Similarly, the
Bonferroni correction is very conservative [23], so we use
it to stay on a safe side when making an inference about
differences in performance.

Results and discussion
The results of the synthetic data benchmarks are pro-
vided in Figures 3 and 4. Due to space limitations and
the class-balanced design of the synthetic data, we only
present aggregate measures for classification perfor-
mance. From Figure 3, it is immediately apparent that
increasing the partition size directly leads to a decrease
in the performance of the classical Random Forest for-
mulation, starting from bin sizes as small as twenty.
This trend is evident even in this setup, where we do
not make smooth transition between the number of
instances in a partition.
The evolution of the associated feature importance

metrics suggests that the reason for the decreased per-
formance is indeed progressive overfitting on the addi-
tional non-informative feature. That is, in parallel with
bin enlargement, this feature becomes increasingly
important for classification, while at the same time the
importance of the genuinely informative features
decline. Furthermore, training the same classifier with
stratification does not seem to help, as its performance
tightly follows that of the regular version.
Conversely, the Random Forest trained with hierarchi-

cal sampling stays relatively insensitive to the change in
bin size, with the only exception being the last step.
However, this is a degenerate case in which the method
has only one example per class available for training
each tree, which is clearly insufficient for good generali-
zation. Also, this situation is not likely to be encoun-
tered in practice. The described effect persists even in
the presence of label noise, as it is apparent in Figure 4.
Yet in the case of the classic Random forest or the Ran-
dom forest trained with stratified bootstrapping, the bias
obviously declines as the amount of added noise is
increased. This is expected, as adding label noise trans-
lates to an implicit reduction of the partition size.

The results of the eXtasy-based benchmark are pro-
vided in Table 1 and Figure 5. Figure 5 shows the PR
(Precision-Recall) curves only, as there the difference in
performance between the two methods is graphically
evident. These curves are constructed using threshold
averaging [24] over the 100 runs. Table 1 reports the
corresponding area under the curve values. Following
the recommendations for reporting on classification
benchmarks [25] and to provide insight into the differ-
ent aspects of the classification performance, Table 1
also provides average values for Precision (Positive pre-
dictive value), Recall (Sensitivity), Negative predictive
value, Specificity and the Matthews correlation coeffi-
cient for both scenarios and indicates if the differences
are statistical significant. In addition, it provides values
for the area under the ROC (Receiver Operating Char-
acteristics) curves obtained by threshold averaging.
The difference between bootstrapping and hierarchical

sampling in terms of the achieved area under the ROC
and PR curve might seem marginal when only the result
on the eXtasy benchmark data is considered. However,
the realistic class distribution scenario highlights the
benefit of hierarchical sampling as there are large
improvements in PR space, especially in the low-recall,
high-precision region of curve which is of most interest
for prioritization algorithms. Due to the associated
financial costs of confirmatory experiments, analysis is
usually only conducted on highly ranked candidate var-
iants (i.e., those at the top of the ordered list) and not
on all mutations that are classified as positive. Thus the
precision of the prioritization method for the highest
ranked genes is of critical importance, especially as most
state-of-the art deleteriousness prediction methods suf-
fer from high false positive rates when predicting the
impact of rare disease-causing mutations [26].
The discussed performance differences are difficult to

detect when using ROC analysis alone, as ROC curves
are invariant to changes in the class distribution. This
property of ROC curves is also the reason for which
they should, in principle, be identical for both scenarios,
given a classifier. Naturally, they are not, due to varia-
tion in performance estimates. This variance is large
enough to also cast doubt on the systematic cause of
any observed difference in ROC curves between classi-
fiers in the same scenario. However, dominance of one
curve over another in PR space implies dominance in
ROC space as well [27], while the size of the effect can
differ. Hence, the extent of the difference between two
classifiers in PR space for the realistic class distribution
scenario constitutes indirect proof of the existence of
the systematic effect in ROC space.
As the result in the table show, the hierarchical sam-

pling RF performs worse than the standard RF in terms
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Figure 3 Results of the first experiment on the synthetic data. Evolution of testing accuracy, area under the ROC curve and Mathews
correlation coefficient of Random forest classifiers trained with three sampling schemes and under the increasing size of partitions of the grain-
defining feature (Panel A). Vertical bars indicate empirical 95% confidence intervals. Panel B displays corresponding change in Random forest
feature importance metrics for all features of the synthetic data set under the standard bootstrapping. This metric captures an increase in out-of-
bag classification error when the values of given feature are shuffled.
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of sensitivity in both test scenarios. Conversely, this is off-
set by the higher precision it achieves in both settings.
Being complementary to the measures already mentioned,
specificity and the negative predictive value also reflect the
aforementioned trade-off, albeit to a smaller degree (as
more abundant negatives play major role in these).

However, as is apparent from the PR curves, setting the
decision threshold of the RF trained using the hierarchical
sampling so that it achieves the same sensitivity of the
standard RF still results in the higher precision of the first
RF. These results are in line with previous discussions on
differences in performance at the top of prioritized lists.

Figure 4 Results of the second experiment on the synthetic data. Heat-maps of mean testing accuracy (Acc, the first row), area under the
ROC curve (AUC, the second row) and Mathews correlation coefficient (MCC, the third row) of Random forest classifiers trained with either
standard bootstrapping (the first column), stratified bootstrapping (the second column) or hierarchical sampling (the third column). Panels
capture relation between given performance metrics and bin size/label noise level combinations. Note that values of Mathews correlation
coefficient can be as low as -1, which is the reason why upper parts of corresponding plots have uniform coloring (i.e. all values in this region
are smaller than zero).

Table 1 Results of the eXtasy-based benchmark

eXtasy benchmark class distribution realistic class distribution

Metric bootstraping hierarchical sampling bootstraping hierarchical sampling

Sensitivity 0.863751* 0.783985 0.888667* 0.816667

Specificity 0.951801 0.980001* 0.951809 0.980030*

Precision 0.711571 0.842510* 0.002423 0.005313*

NPV 0.980934* 0.970764 0.999985* 0.999976

MCC 0.751416 0.788129* 0.044896 0.064834*

AUC-ROC 0.972466 0.973497 0.979336 0.981345

AUC-PR 0.888809 0.895255 0.095083 0.128191

Results of the benchmark in terms of average Sensitivity, Specificity, Precision, Negative predictive value (NPV) and Matthews correlation coefficient (MCC). Bold
typing indicates which method of generating in-bag sample is better given a performance measure and a classification scenario, while asterisk (*) points on
statistically significant differences (p = 0.05 level). The values of the area under the ROC and PR curve are obtained from the average curves constructed by
threshold averaging; hence no statistical testing has been applied on these.
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Additionally, even with the default RF threshold (0.5), the
improved version of eXtasy classifies approximately 188
out of 9000 variants as disease causing, with the probabil-
ity of capturing the real one equal to 0.81 (i.e. sensitivity).
In contrast, the standard eXtasy calls 417 out of 9000 var-
iants, with the probability of hit being 0.88.
We acknowledge that the presented results may vary

with the information content of the grain-defining fea-
ture and the rest of predictors, correlations among them
and the other factors. However, due to difficulties with
quantifying these aspects and the exponential number of
potential relations among them, we omit their detailed
treatment from this work. We also expect that further
improvements in performance could be obtained by fine
tuning the parameter M of the Random forest algo-
rithm. That is, the application of hierarchical sampling
increases the diversity of an ensemble compared to the
standard bootstrapping, possibly allowing for larger
values of M to be used [28]. Bigger values of M might
translate to an improved accuracy for the base classi-
fiers, resulting in an overall boost in performance.

Conclusions
We described the bias that arises when learning from data
characterized by nested granularity of the feature domains
and proposed a simple solution for it, named hierarchical
sampling. Using synthetic data, we demonstrated that the
approach efficiently mitigates the discussed bias, regardless
of the grain size and the amount of the label noise that is
present in the data. The simulation study also indicated
that the gain in performance can vary substantially for dif-
ferent classes of problems. That is, if the number of dis-
tinctive values of the coarsest grain concept is much
smaller than total number of data records, overfitting on

these concepts is more likely to occur. Furthermore, in
the case of the eXtasy variant prioritization algorithm, the
hierarchical sampling led to a notable improvement in the
model performance in terms of the precision, especially in
the most important operating regions for this particular
application. Also, as it uses less data (per single tree) than
standard Random forests bootstrapping, it typically results
in a more parsimonious model in terms of the average
tree depth.
However, the improvement in performance that might

be obtained by using hierarchical sampling is only visi-
ble under proper evaluation. In particular, if a hierarchy
of feature domains (even implicitly) exists in the data
and it is neglected during the evaluation, standard Ran-
dom forest will falsely perform better on the test data
due to the evaluation problems described in the “Back-
ground” section of this manuscript. Conversely, a Ran-
dom forest trained with the hierarchical sampling would
not be able to memorize values of the grain-defining
feature, and thus to recognize them in the test set.
Hence the situations where the proposed approach can
be useful are the same ones where the data partitioning
for validation purpose must be performed along values
of an implicit identifier having the lowest number of
distinctive values.
Finally, even the application of hierarchical sampling is

not in principle restricted to Random forests, the
method can be efficiently used only in conjunction with
an ensemble classifier that relies on some sort of bag-
ging scheme. If sampling from the highest granularity
level would be applied in the one-shot fashion (e.g., for
training an SVM), much data would be ignored during
training which could negatively affect performance. That
is, even in cases where the sample itself is reasonably

Figure 5 PR curves from eXtasy-based experiment. Precision-recall (PR) curves obtained by application of the eXtasy on the data with class
balance as in original eXtasy benchmark (left panel) and on the data with realistic class distribution (right panel). Each panel display two solid
curves - the one corresponding to the standard Random forest classifier training with bootstrapping and the one corresponding to hierarchical
sampling based training. The shaded areas represent empirical 95% confidence intervals obtained as a by-product of threshold averaging.
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large, general information embedded in the fine-grained
features might not be sufficiently represented. In con-
trast, bagging allows for all training data to be fully
exploited, while the proposed sampling ensures that no
base classifier can learn to recognize higher order struc-
tures in data. In the near future, we plan to integrate
the Random forest model learned using the hierarchical
sampling into the next version of the eXtasy framework.

Additional material

Additional file 1: A Matlab function for training Random Forest
with hierarchical sampling. This Matlab function accepts training data,
training outcomes, desired number of trees in the ensemble and the
ordinal number of the feature over which the hierarchical sampling has
to be performed, and returns a trained Random forest classier.
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